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0 Abstract

Quantitative estimates of the inertial-subrange
statistics of MHD turbulence are given by using the
Lagrangian renormalized approximation (LRA).
The estimate of energy spectrum is verified by DNS of
forced MHD turbulence.

Outline of the talk

1 Introduction (Statistical theory of turbulence)

2 Lagrangian renormalized approximation (LRA)

3 LRA of MHD turbulence

4 Verification by DNS
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1 Introduction (Statistical theory of turbulence)
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1.1 Governing equations of turbulence

Navier-Stokes equations ( in real space )
∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f ,

∇ · u = 0

u(x, t):velocity field, p(x, t): pressure field,
ν: viscosity, f(x, t): force field.

Navier-Stokes equations ( in wavevector space )
(

∂

∂t
+ νk2

)
ui

k =

∫
dpdqδ(k − p − q)M iab

k ua
pub

q + f i
k

M iab
k = −

i

2

[
kaP ib

k + kbP
ia
k

]
, P ab

k = δij −
kikj

k2
.

Symbolically, (
∂

∂t
+ νL

)
u = Muu + f
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1.2 Turbulence as a dynamical System

Characteristics of turbulence as a dynamical system

• Large number of degrees of freedom

• Nonlinear ( modes are strongly interacting )

• Non-equilibrium ( forced and dissipative )

Statistical mechanics of thermal equilibrium states can not be
applied to turbulence.

• The law of equipartition do not hold.

• Probability distribution of physical variables strongly deviates from
Gaussian (Gibbs distribution).
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1.3 Statistical Theory of Turbulence

cf. (for thermal equilibrium states)

Thermodynamics
The macroscopic state is completely
characterized by the free energy,

F (T, V, N).

Statistical mechanics
Macroscopic variables are related to
microscopic characteristics
(Hamiltonian).

F (T, V, N) = −kT log Z(T, V, N)

Statistical theory of turbulence ?
What are the set of variables that
characterize the statistical state of
turbulence?

• ε? (Kolmogorov Theory ?)

• Fluctuation of ε? (Multifractal
models?)

How to relate statistical variables to
Navier-Stokes equations?

• Lagrangian Closures?
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2 Lagrangian renormalized approximation (LRA)
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2.1 Closure problem

Symbolically,
du

dt
= λMuu + νu

λ := 1 is introduced for convenience.

d

dt
〈u〉 = λM〈uu〉 + ν〈u〉,

d

dt
〈uu〉 = λM〈uuu〉 + ν〈uu〉,

· · ·

Equations for statistical quantities do not close.

M〈uuu〉 should be expressed in terms of known quantity.
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2.2 Solvable cases

• Weak turbulence (Wave turbulence)
du

dt
= λMuu + iLu,

(
dũ

dt
= λM̃ũũ, ũ(t) := e−iLtu(t)

)

The linear term iLu is dominant and the primitive λ-expansion may be

justified in estimating λM〈uuu〉.

• Randomly advected passive scalar (or vector) model
du

dt
= λMvu + νu. (v: advecting velocity field with given statistics)

When the correlation time scale τv of v tends to 0, the leading order of the
primitive λ-expansion of λM〈vuu〉 becomes exact.

(One can also obtain closed equations for higher moments.)
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2.3 Closure for Navier-Stokes turbulence

Various closures are proposed for NS turbulence, but their mathematical

foundations are not well established.

• Quasi normal approximation

λM〈uuu〉 = λ2F [Q(t, t)]

Q(t, s) := 〈u(t)u(s)〉 correlation function.

– Inappropriate since the closed equation derives negative energy
spectrum.

• Direct interaction approximation (DIA) (Kraichnan, JFM 5

497(1959))

λM〈uuu〉 = λ2F [Q(t, s), G(t, s)]

G(t, s) response function.

– Derives an incorrect energy spectrum E(k) ∼ k−3/2. This is due to the
inclusion of the sweeping effect of large eddies.
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2.4 Lagrangian closures

• Abridged Lagrangian history direct interaction approximation (ALHDIA)
(Kraichnan, Phys. Fluids 8 575 (1965))

• Lagrangian renormalized approximation (LRA) (Kaneda, JFM 107 131
(1981))

Key ideas of LRA

1. Lagrangian representatives QL and GL.

M〈vvv〉 = F [QL, GL].

• Representatives are different between ALHDIA and LRA.

2. Mapping by the use of Lagrangian position function ψ.

3. Renormalized expansion.
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2.5 Generalized velocity

Generalized Velocity

u(x, s|t) : velocity at time t of a

fluid particle which passes x at

time s.

s : labeling time

t : measuring time

u(x, s|s)
u(x, s|t)

Lagrangian Position function

ψ(y, t;x, s) = δ(3)(y − z(x, s|t))

z(x, s|t): position at time t of a fluid particle which passes x at time s.

u(x, s|t) =

∫

D
d3y u(y, t)ψ(y, t;x, s)
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2.6 Two-time two-point correlations

t

s

ts

(l
ab

el
in

g
ti

m
e)

(measuring time)

(s|s) (s|t)

(t|s) (t|t)

LRA

ALHDIA

DIA

Representative Q (or QL)

〈u(x, t|t)u(y, s|s)〉 (DIA)

〈u(x, t|t)u(y, t|s)〉 (ALHDIA)

〈Pu(x, s|t)u(y, s|s)〉 (LRA)

Pu: solenoidal component of
u.

Similarly for G (or GL).
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2.7 Derivation of LRA
(i) Primitive λ-expansion

λM〈uuu〉 = λ2F (2)[Q(0), G(0)] + λ3F (3)[Q(0), G(0)] + O(λ4),

∂

∂t
QL(x, t; y, s) = λ2I(2)[Q(0), G(0)] + λ3I(3)[Q(0), G(0)] + O(λ4),

∂

∂t
GL(x, t; y, s) = λ2J (2)[Q(0), G(0)] + λ3J (3)[Q(0), G(0)] + O(λ4),

(ii) Inverse expansion

Q(0) = QL + λK(1)[QL, GL] + O(λ2), G(0) = GL + λL(1)[QL, GL] + O(λ2)

(iii) Substitute (ii) into (i) (Renormalized expansion).

λM〈uuu〉 = λ2F (2)[QL, GL] + O(λ3),

∂

∂t
QL(x, t; y, s) = λ2I(2)[QL, GL] + O(λ3),

∂

∂t
GL(x, t; y, s) = λ2J (2)[QL, GL] + O(λ3),

(iv) Truncate r.h.s.’s at the leading orders. (One may expect that λM〈uuu〉 depends on

representatives gently when representatives are appropriately chosen.)
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2.8 Consequences of LRA (1)

3D turbulence

• Kolmogorov energy spectrum

E(k) = Koε
2/3k−5/3, CK ' 1.72.

(Kaneda, Phys. Fluids 29 701 (1986))

2D turbulence

• Enstrophy cascade range

E(k) =





CKη2/3k−3[ln(k/k1)]−1/3, CK ' 1.81

CLk−3 (CL is not a universal constant)
,

depending on the large-scale flow condition.

• Inverse energy cascade range

E(k) = CEε2/3k−5/3, CE ' 7.41.

(Kaneda, PF 30 2672 (1987), Kaneda and Ishihara, PF 13 1431 (2001))
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Tsuji (2002)
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2.9 Consequences of LRA (2)

LRA is also applied to

• Spectrum of passive scalar field advected by turbulence (3D / 2D)
(Kaneda (1986), Kaneda (1987), Gotoh, J. Phys. Soc. Jpn. 58, 2365 (1989)).

• Anisotropic modification of the velocity correlation spectrum due to
homogeneous mean flow (Yoshida et al., Phys. Fluids, 15, 2385 (2003)).

Merits of LRA

• Fluctuation-dissipation relation Q ∝ G holds formally.

• The equations are simpler than ALHDIA.
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3 LRA for MHD
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3.1 Magnetohydrodynamics (MHD)

• Interaction between a conducting fluid and a magnetic field.

• Geodynamo theory, solar phenomena, nuclear reactor, ...

Equations of incompressible MHD

∂tui + uj∂jui = Bj∂jBi − ∂iP + νu∂j∂jui,

∂iui = 0,

∂tBi + uj∂jBi = Bj∂jui + νB∂j∂jBi,

∂iBi = 0,

u(x, t): velocity field B(x, t): magnetic field
νu : kinematic viscosity νB : magnetic diffusivity
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3.2 Energy Spectrum: k−3/2 or k−5/3 or else?

• Iroshnikov(1964) and Kraichnan(1965) derived IK spectrum

Eu(k) = EB(k) = Aε
1
2B

1
2

0 k− 3
2 ,

ε : total-energy dissipation rate, B0 =
√

1
3
〈|B|2〉

based on a phenomenology which includes the effect of the Alfvén wave.

• Other phenomenologies (local anisotropy), including weak turbulence
picture.
(Goldreich and Sridhar (1994–1997), Galtier et al. (2000), etc.)

• Some results from direct numerical simulations (DNS) are in support of
Kolmogorov-like k−5/3-scaling.
(Biskamp and Müller (2000), Müller and Grappin (2005))
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3.3 Closure analysis for MHD turbulence

• Eddy-damped quasi-normal Markovian (EDQNM)
approximation
– Eddy-damping rate is so chosen to be consistent with the IK spectrum.

– Incapable of quantitative estimate of nondimensional constant A.

– Analysis of turbulence with magnetic helicity
∫

V
dxB · A or cross

helicity
∫

V
dxu · B.

(Pouquet et al. (1976), Grappin et al. (1982,1983))

• LRA
– A preliminary analysis suggests that LRA derives IK spectrum.

(Kaneda and Gotoh (1987))

– Present study
∗ Quantitative analysis including the estimate of A.
∗ Verification of the estimate by DNS.
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3.4 Lagrangian variables

Xα
i (x, s|t) =

∫

D
d3x′Xα

i (x′, t)ψ(x′, t;x, s), Xu
i := ui, XB

i := Bi,

Q: 2-point 2-time Lagrangian correlation function
G: Lagrangian response function

Qαβ
ij (x, t;x′, t′) :=




〈[PXα]i(x, t′|t)Xβ

j (x′, t′)〉 (t ≥ t′)

〈Xα
i (x, t)[PXβ ]j(x′, t|t′)〉 (t < t′)

,

〈[PδXα]i(x, t′|t)〉 = Gαβ
ij (x, t;x′, t′)[PδXβ ]j(x

′, t′|t′) (t ≥ t′),

P : Projection to the solenoidal part.

In Fourier Space

Q̂αβ
ij (k, t, t′) := (2π)−3

∫
d3(x − x′)e−ik·(x−x′)Qαβ

ij (x, t,x′, t′),

Ĝαβ
ij (k, t, t′) :=

∫
d3(x − x′)e−ik·(x−x′)Gαβ

ij (x, t,x′, t′).
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3.5 LRA equations

Isotropic turbulence without cross-helicity.

Quu
ij (k, t, s) =

1

2
Qu(k, t, s)Pij(k), QBB

ij (k, t, s) =
1

2
QB(k, t, s)Pij(k),

QuB
ij (k, t, s) = QBu

ij (k, t, s) = 0

Guu
ij (k, t, s) = Gu(k, t, s)Pij(k), GBB

ij (k, t, s) = GB(k, t, s)Pij(k),

GuB
ij (k, t, s) = GBu

ij (k, t, s) = 0.

LRA equations
[
∂t + 2ναk2

]
Qα(k, t, t) = 4π

∫ ∫

4
dp dq

pq

k
Hα(k, p, q; t), (1)

[
∂t + ναk2

]
Qα(k, t, s) = 2π

∫ ∫

4
dp dq

pq

k
Iα(k, p, q; t, s), (2)

[
∂t + ναk2

]
Gα(k, t, s) = 2π

∫ ∫

4
dp dq

pq

k
Jα(k, p, q; t, s), (3)

Gα(k, t, t) = 1, (4)
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3.6 Response function

• Integrals in (2) and (3) diverge like k3+a′

0 as k0 → 0.
QB(k) ∝ ka′

, k0: the bottom wavenumber.

• No divergence due to Qu(k). (The sweeping effect of large eddies is
removed.)

Qu(k, t, s) = QB(k, t, s) = Q(k)g(kB0(t − s)),

Gu(k, t, s) = GB(k, t, s) = g(kB0(t − s)),

g(x) =
J1(2x)

x
,

• Lagrangian correlation time τ(k) scales as τ(k) ∼ (kB0)−1.
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3.7 Energy Spectrum in LRA

Energy spectrum
Eα(k) = 2πk2Qα(k)

Energy Flux into wavenumbers > k

Π(k, t) =

∫ ∞

k

dk′ ∂

∂t

∣∣∣∣
NL

[Eu(k, t) + EB(k, t)]

=

∫ ∞

k

dk′
∫ ∞

0

dp′
∫ p′+k′

|p′−k′|
dq′ T (k′, p′, q′)

Constant energy flux
Π(k, t) = ε

Eu(k) = EB(k) = Aε1/2B
1/2
0 k−3/2,

The value of A is determined.
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3.8 Energy flux and triad interactions

ε = Π(k) =

∫ ∞

0

dp′
∫ p′+k′

|p′−k′|
dq′ T (k′, p′, q′)

ε =

∫ ∞

1

dα

α
W (α) α :=

max(k′, p′, q′)

min(k′, p′, q′)

• Triad interactions in MHD turbulence are slightly more local than those
in HD turbulence.
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3.9 Eddy viscosity and eddy magnetic diffusivity

Hαβ>
ij (k, kc, t) :=

∫ 4>

p,q

Hαβ
ij (k,p,q, t),

(
∂tQ

αβ
i j (k, t, t) =

∫ 4

p,q

[
Hαβ

i j (k,p,q, t) + Hβα
j i (−k,−p,−q, t)

])

Hαβ>
ij (k, kc, t) = −ναγ(kc, t)k

2Qγβ
ij (k, t), (k/kc → 0)

νu(k, kc, t) = −
Huu>

ii (k, kc, t)

k2Qu(k, t)
, νB(k, kc, t) = −

HBB>
ii (k, kc, t)

k2QB(k, t)
, (0 < k/kc < 1)

νu(k, kc) := ε1/2B
−1/2
0 k−3/2

c fu

(
k

kc

)
,

νB(k, kc) := ε1/2B
−1/2
0 k−3/2

c fB

(
k

kc

)
,

• Kinetic energy transfers more efficiently than magnetic energy.

/ 27 .



01234

56789

4 Verification by DNS
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4.1 Forced DNS of MHD

• (2π)3 periodic box domain (5123 grid-points).

• νu = νB = ν

• Random forcing for u and B at large scales.

– Eu and EB are injected at the same rate.

– Correlation time of the random force ∼ large-eddy-turnover time.

• Magnetic Taylor-microscale Reynolds number: RM
λ :=

√
20EuEB

3εν
= 188.
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4.2 Energy spectra in DNS

E(k) := Eu(k) + EB(k), ER(k) = Eu(k) − EB(k).

• E(k) is in good agreement with the LRA prediction,

• ER(k) ∼ k−2. Eu(k) ∼ EB(k) in small scales.
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4.3 Comparison with other DNS

• Decaying DNS in Müller and Grappin (2005)

– E(k) ∝ k−5/3 for k > k0. ER(k0)/E(k0) ' 0.7.

• Forced DNS in the present study

– E(k) ∝ k−3/2 for k > k0. ER(k0)/E(k0) ' 0.3.

A ‘higher’ wavenumber regime is simulated in the present DNS.
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5 Summary

Inertial-subrange statistics of MHD turbulence are analysis by
using LRA.

• Lagrangian correlation time τ(k) scales as τ(k) ∼ (kB0)−1.

• Energy spectrum:

Eu(k, t) = EB(k, t) = Aε
1
2 B

1
2
0 k− 3

2 ,

– The value of A is estimated.

– verified by forced DNS.

• Triad interactions are slightly more local than in HD turbulence.

• Eddy viscosity > eddy magnetic diffusivity:
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