$\begin{array}{c} 01234 \\ 56789 \end{array}$

Direct Numerical Simulation of Gross-Pitaevskii Turbulence

Kyo Yoshida, Toshihico Arimitsu (Univ. Tsukuba)

START:⊳

0 Abstract

Gross-Pitaevskii (GP) equation describes the dynamics of low-temperature superfluids and Bose-Einstein Condensates (BEC). We performed a numerical simulation of turbulence obeying GP equation (Quantum turbulence). We report some preliminary results of the simulation.

Outline of the talk

- **Background (Statistical theory of turbulence)**
- **2** Quantum turbulence
- **3** Numerical simulation

 $\begin{array}{c} 01234\\ 56789 \end{array}$

 \triangleright

1 Background (Statistical theory of turbulence)

1.1 Governing equations of Turbulence¹(Classical)

Navier-Stokes equations (in real space)

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f},$$
$$\nabla \cdot \mathbf{u} = 0$$

 $\begin{aligned} \mathbf{u}(\mathbf{x},t) &: \text{velocity field,} \quad p(\mathbf{x},t) : \text{ pressure field,} \\ \nu &: \text{ viscosity,} \quad \mathbf{f}(\mathbf{x},t) : \text{ force field.} \end{aligned}$

Navier-Stokes equations (in wave vector space)

4

$$\begin{pmatrix} \frac{\partial}{\partial t} + \nu k^2 \end{pmatrix} u_{\mathbf{k}}^i = \int d\mathbf{p} d\mathbf{q} \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) M_{\mathbf{k}}^{iab} u_{\mathbf{p}}^a u_{\mathbf{q}}^b + f_{\mathbf{k}}^a \\ M_{\mathbf{k}}^{iab} = -\frac{i}{2} \left[k_a D_{\mathbf{k}}^{ib} + k_b D_{\mathbf{k}}^{ia} \right], \qquad D_{\mathbf{k}}^{ab} = \delta_{ij} - \frac{k_i k_j}{k^2}.$$
Symbolically,

$$\left(\frac{\partial}{\partial t} + \nu L\right)u = Muu + f$$

 \triangleright

_	
-	
< I	
_	
_	
_	

1.2 Turbulence as a dynamical System¹²³⁴ 56789

Characteristics of turbulence as a dynamical system

- Large number of degrees of freedom
- Nonlinear (modes are strongly interacting)
- Non-equilibrium (forced and dissipative)

Statistical mechanics of thermal equilibrium states can not be applied to turbulence.

- The law of equipartition do not hold.
- Probability distribution of physical variables strongly deviates from Gaussian (Gibbs distribution).

1.3 Violation of equipartition (1)

01234 56789

 \triangleright

Energy spectrum

$$E(k) = \frac{1}{2} \int d\mathbf{k}' \delta(|\mathbf{k}'| - k) |\mathbf{u}_{\mathbf{k}'}|^2$$

Inviscid truncated system (ITS)

- $\nu = 0$, $\mathbf{f} = \mathbf{0}$ (energy conserved system) and cutoff wavenumber k_c is introduced.
- The law of equipartition holds. $E(k) \propto k^2$.

Navier-Stokes turbulence (NS)

• Energy cascades from large scales to small scales.

6

• Kolmogorov spectrum $E(k) = C_k \epsilon^{2/3} k^{-5/3}$. (ϵ , energy dissipation rate).

1.4 Violation of equipartition (2)

01234 56789

 \triangleright

 \triangleleft

 $\begin{array}{r}01234\\56789\end{array}$

Longitudinal velocity increment

$$\delta u(r) = u^i(\mathbf{x} + r\mathbf{e}^i) - u^i(\mathbf{x})$$

Probability density function (PDF) of $\delta u(r)$ strongly deviates from Gaussian and has long tail for small r (intermittency).

Gotoh, Fukayama, and Nakano, Phys. Fluids 14, 1065 (2002)

 \triangleright

1.6 Statistical Theory of Turbulence

 $01234\\56789$

cf. (for equilibrium states)

Thermodynamics

The macroscopic state is completely characterized by the free energy,

F(T, V, N).

Statistical mechanics

Macroscopic variables are related to microscopic characteristics (Hamiltonian).

```
F(T, V, N) = -kT \log Z(T, V, N)
```

Statistical theory of turbulence ?

What are the set of variables that characterize the statistical state of turbulence?

- ϵ ? (Kolmogorov Theory ?)
- Fluctuation of *ε*? (Multifractal models?)

How to relate statistical variables to Navier-Stokes equations?

• Lagrangian Closures?

1.7 Classical Turbulence to Quantum Turbulence

The statistical theory of (classical) turbulence is far from complete (to our knowledge).

Why quantum turbulence ?

- Quantum turbulence may provide a test ground for the existing empirical theories for classical turbulence.
- Some new ideas may be obtained from the study of quantum turbulence.
 - Discrete structure of quantized vortex lines. Reconnection of the vortex line.

01234 56789

 \triangleright

2 Quantum turbulence

2.1 Dynamics of order parameter

01234 56789

Hamiltonian of locally interacting boson field $\hat{\psi}(\mathbf{x},t)$

$$\hat{H} = \int d\mathbf{x} \left[-\hat{\psi}^{\dagger} \frac{\hbar^2}{2m} \nabla^2 \hat{\psi} - \mu \hat{\psi}^{\dagger} \hat{\psi} + \frac{g}{2} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi} \right]$$

 μ : chemical potential, g: coupling constant

Heisenberg equation

$$\begin{split} i\hbar\frac{\partial\hat{\psi}}{\partial t} &= -\left(\frac{\hbar^2}{2m}\nabla^2 + \mu\right)\hat{\psi} + g\hat{\psi}^{\dagger}\hat{\psi}\hat{\psi}\\ \hat{\psi} &= \psi + \hat{\psi}', \qquad \psi = \langle\hat{\psi}\rangle \end{split}$$

 $\psi(\mathbf{x},t)$: Order parameter

 \triangleleft

 $\psi(\mathbf{x},t) \sim O(N)$ (N: number density of all particles) for $T < T_c$. Dynamics equations of ψ is obtained by neglecting $\hat{\psi}'$.

2.2 Governing equations of Quantum **1476** ulence

Gross-Pitaevskii (GP) equation

$$\begin{split} i\hbar\frac{\partial\psi}{\partial t} &= -\left(\frac{\hbar}{2m}\nabla^2 + \mu\right)\psi + g|\psi|^2\psi,\\ \mu &= g\bar{n}, \qquad n = |\psi|^2 \end{split}$$

 $\overline{\cdot}$: volume average.

Normalization

$$\tilde{\mathbf{x}} = \frac{\mathbf{x}}{L}, \qquad \tilde{t} = \frac{g\bar{n}}{\hbar}t, \qquad \tilde{\psi} = \frac{\psi}{\sqrt{\bar{n}}}$$

Normalized GP equation

$$i\frac{\partial\tilde{\psi}}{\partial\tilde{t}} = -\tilde{\xi}^2\tilde{\nabla}^2\tilde{\psi} - \tilde{\psi} + |\tilde{\psi}|^2\tilde{\psi}, \qquad \left(\xi = \frac{\hbar}{\sqrt{2mg\bar{n}}}, \qquad \tilde{\xi} = \frac{\xi}{L}\right)$$

 $\xi:$ Healing length ($\sim 0.5 {\rm \AA}$ in Liquid ${\rm ^4He}$)

Hereafter, $\tilde{\cdot}$ is omitted.

2.3 Superfluid velocity and quantized Vortex line

$$\psi(\mathbf{x},t) = \sqrt{\rho(\mathbf{x},t)} e^{i\varphi(\mathbf{x},t)}, \qquad \mathbf{v}(\mathbf{x},t) = 2\xi^2 \nabla \varphi(\mathbf{x},t)$$
$$\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial}{\partial t} \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p_q \qquad \left(p_q = 2\xi^4 \rho - 2\xi^4 \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right)$$

ρ : Superfluid (condensate) density**v**: Superfluid (condensate) velocity

Quantized vortex line ($\rho = 0$)

$$\omega = \nabla \times \mathbf{v} = \mathbf{0} \quad (\text{for } \rho \neq 0)$$
$$\int_C d\mathbf{l} \cdot \mathbf{v} = (2\pi n) 2\xi^2 \quad (n = 0, \pm 1, \pm 2 \cdots)$$

2.4 Experiments

 $\begin{array}{r} 01234 \\ 56789 \end{array}$

Maurer and Tabeling, Europhysics Lett. 43, 29 (1998)

- $k^{-5/3}$ spectrum is observed in superfluid turbulence (well below T_c).
- PDF of velocity increment

$$\delta u(r) = \delta u(\mathbf{x} + \mathbf{r}) - u(\mathbf{x})$$

deviates from Gaussian for small r (Intermittency).

2.5 Preceding Numerical Simulations 01234 56789

- Nore, Abid, and Brachet (1997), Abid *et al* (2003)
- Kobayashi and Tsubota (2005)
 - With dissipation and random forcing.

$$[i - \gamma(\mathbf{x}, t)] \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = [-\nabla^2 - \mu(t) + g |\psi(\mathbf{x}, t)|^2] \psi(\mathbf{x}, t) + V(\mathbf{x}, t) \psi(\mathbf{x}, t)$$

(in non-normalized form)

 \triangleright

- $E^{\mathrm{wi}}(k) \sim k^{-5/3}$ is observed.

$$\mathbf{w} = \sqrt{\rho} \mathbf{v}$$

 $E^{wi}(k)$ is the energy spectrum related to the incompressible part of w.

 \triangleright

Numerical simulation

3.1 Dissipation and Forcing

01234 56789

GP equation (in wave vector space)

$$\begin{split} i\frac{\partial}{\partial t}\psi_{\mathbf{k}} &= \xi^2 k^2 \psi_{\mathbf{k}} - \psi_{\mathbf{k}} + \int d\mathbf{p} d\mathbf{q} d\mathbf{r} \delta(\mathbf{k} + \mathbf{p} - \mathbf{q} - \mathbf{r})\psi_{\mathbf{p}}^* \psi_{\mathbf{q}}\psi_{\mathbf{r}} \\ &- i\nu k^2 \psi_{\mathbf{k}} + i\alpha_{\mathbf{k}}\psi_{\mathbf{k}} \end{split}$$

- Dissipation
 - The normal viscosity type model. $\nu = \xi^2$ is chosen.
 - The dissipation term acts mainly in the high wavenumber range ($k\sim>1/\xi$).
- Forcing (Pumping of condensates)

$$\alpha_{\mathbf{k}} = \begin{cases} \alpha & (k < k_f) \\ 0 & (k \ge k_f) \end{cases}$$

- α is determined at every time step so as to keep $\bar{\rho}$ almost constant.
- The forcing acts in the low wavenumber range $k < k_f$.

3.2 Simulation conditions

 $\begin{array}{r}01234\\56789\end{array}$

 \triangleright

- $(2\pi)^3$ box with periodic boundary conditions.
- an alias-free spectral method with a Fast Fourier Transform.
- a 4th order Runge-Kutta method for time marching.
- Resolution $k_{\max}\xi = 3$.

•
$$\nu = \xi^2$$
.

N	$k_{ m max}$	ξ	$ u(imes 10^{-3}) $	k_{f}	Δt	$ar{ ho}$
128	60	0.05	2.5	2.5	0.01	0.998
256	120	0.025	0.625	2.5	0.01	0.999
512	241	0.0125	0.15625	2.5	0.01	0.998

3.3 Energy

01234 56789

 \triangleright

Energy density per unit volume

$$E = E^{\min} + E^{\inf}$$

$$E^{\text{kin}} = \frac{1}{V} \int d\mathbf{x} \xi^2 |\nabla \psi|^2 = \int d\mathbf{k} \xi^2 k^2 |\psi_{\mathbf{k}}|^2 = \int dk E^{\text{kin}}(k)$$
$$E^{\text{int}} = \frac{1}{2V} \int d\mathbf{x} (\rho')^2 = \frac{1}{2} \int d\mathbf{x} |\rho'_{\mathbf{k}}|^2 = \int dk E^{\text{int}}(k) \qquad (\rho' = \rho - \bar{\rho})$$

$$E^{\rm kin} = E^{\rm wi} + E^{\rm wc} + E^{\rm q}$$

$$\begin{split} E^{\mathrm{wi}} &= \frac{1}{2V} \int d\mathbf{x} |\mathbf{w}^{\mathrm{i}}|^{2} = \frac{1}{2} \int d\mathbf{k} |\mathbf{w}^{\mathrm{i}}_{\mathbf{k}}|^{2} = \int dk E^{\mathrm{wi}}(k) \qquad \left(\mathbf{w} = \frac{1}{\sqrt{2\xi}} \sqrt{\rho} \mathbf{v}\right) \\ E^{\mathrm{wc}} &= \frac{1}{2V} \int d\mathbf{x} |\mathbf{w}^{\mathrm{c}}|^{2} = \frac{1}{2} \int d\mathbf{k} |\mathbf{w}^{\mathrm{c}}_{\mathbf{k}}|^{2} = \int dk E^{\mathrm{wc}}(k) \\ E^{\mathrm{q}} &= \frac{1}{V} \int d\mathbf{x} \xi^{2} |\nabla \sqrt{\rho}|^{2} = \int d\mathbf{k} \xi^{2} k^{2} |(\sqrt{\rho})_{\mathbf{k}}|^{2} = \int dk E^{\mathrm{q}}(k) \end{split}$$

3.4 Energy in the simulation

- $E^{\text{wc}} > E^{\text{wi}}$. Different from Kobayashi and Tubota (2005).
- Dissipation and forcing are different from those of KT.

3.5 Energy spectrum

01234 56789

 \triangleright

- $E^{\text{int}} \sim k^{-5/3}, E^{\text{kin}} \sim k^{4/3}.$
- $E^{\rm wi} \sim k^{-5/3}$?

 $\begin{array}{c} 01234\\ 56789 \end{array}$

 \triangleright

 $ho(\mathbf{x}) = |\psi(\mathbf{x})|^2, \qquad \sqrt{
ho(\mathbf{x})} = |\psi(\mathbf{x})|$

• The system is not nearly incompressible ($\rho \sim \neq \text{const}$).

23

- due to the non-separation of the scales ($L \sim 100\xi$)?

3.7 PDF of order parameter increment⁰¹²³⁴

24

56789

 \triangleright

 $\delta\psi(\mathbf{r}) = \psi(\mathbf{x} + \mathbf{r}) - \psi(\mathbf{x})$

PDF of $\operatorname{Re}[\delta\psi(r)]$

3.8 PDF of density increment

 $\begin{array}{c} 01234\\ 56789 \end{array}$

 \triangleright

 $\delta \rho(\mathbf{r}) = \rho(\mathbf{x} + \mathbf{r}) - \rho(\mathbf{x})$

PDF of $\delta \rho(r)$.

3.9 Low density region

01234 56789

 \triangleright

$$N = 128$$

 $\xi = 0.05$
 $\rho < 0.01$

27

01234 56789

 \triangleright

$$N = 256$$

 $\xi = 0.025$

 $\rho < 0.005$

4 Summary

 $\begin{array}{r} 01234 \\ 56789 \end{array}$

Numerical simulations of Gross-Pitaevskii equation with forcing and dissipation are performed up to 512^3 grid points.

- $E^{\text{int}}(k) \sim k^{-5/3}, E^{\text{kin}}(k) \sim k^{4/3}.$
- $E^{\text{wi}} < E^{\text{wc}}$.
- $E^{
 m wi}(k)\sim k^{-5/3}$ is not so clearly observed as in Kobayashi and Tsubota (2005).
- PDF of $\delta \psi(r)$ deviates from Gaussian as r decrease.
- Deviation from Gaussian of PDF of $\delta \rho(r)$ is larger than that of $\delta \psi(r)$.

5 Future Studies

 $01234\\56789$

• Closure analysis based on ψ , $\rho = |\psi|^2$.

- Can $E^{\rm int}(k) \sim k^{-5/3}$ and $E^{\rm kin}(k) \sim k^{4/3}$ be derived?

- Investigation of singularities in the physical space.
 - Relation between the spatial and temporal structures of quantized vortex lines (reconnection etc.) and intermittency.
 - Singularity spectrum $f(\alpha)$.