Workshop on New Perspectives in Quantum Turbulence: experimental visualization and numerical simulation Nagoya

Spectrum in Gross-Pitaevskii turbulence

Kyo Yoshida

University of Tsukuba

11th Dec, 2014

Table of contents

Quantum fluid (Introduction)

Closure Approximation

Quantum fluid (Introduction)

Closure Approximation

Quantum field equation

ullet Hamiltonian of interacting bosonic fields (${}^4 ext{He}, \ ext{Rb etc.})$ $\hat{\psi}(oldsymbol{x},t)$

$$\hat{H} = \int d\boldsymbol{x} \left[-\hat{\psi}^{\dagger} \frac{\hbar^2}{2m} \nabla^2 \hat{\psi} - \mu \hat{\psi}^{\dagger} \hat{\psi} + \frac{g}{2} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \right]$$

 μ : chemical potential, g: coupling constant

Heisenberg equation

$$i\hbar \frac{\partial \hat{\psi}}{\partial t} = -\left(\frac{\hbar^2}{2m} \nabla^2 + \mu\right) \hat{\psi} + g \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi}$$
$$\hat{\psi} = \psi + \hat{\psi}', \qquad \psi := \langle \hat{\psi} \rangle$$

- Order parameter $\psi(\boldsymbol{x},t)$
 - $\psi \neq 0$ for temperature $T < T_c$.
 - The order parameter contains information of superfluid component or Bose-Einstein condensate.

Gross-Pitaevskii equation

• The order parameter $\psi(x)$ $(x:=\{x,t\})$ obeys **Gross-Pitaevskii** (GP) equation

$$i\hbar \frac{\partial}{\partial t} \psi(x) = -\frac{\hbar^2}{2m} \nabla^2 \psi(x) - \mu \psi(x) + g|\psi(x)|^2 \psi(x).$$

Transformation of variables

$$\psi(x) = \sqrt{n(x)} e^{i\varphi(x)}, \quad \boldsymbol{v}(x) := \frac{\hbar}{m} \nabla \varphi(x)$$

• Equations of motion for Quantum fluid

$$\begin{split} \frac{\partial}{\partial t} n(x) &= -\boldsymbol{\nabla} \cdot (n(x)\boldsymbol{v}(x)), \quad \frac{\partial}{\partial t} \boldsymbol{v}(x) = -\boldsymbol{v}(x) \cdot \boldsymbol{\nabla} \boldsymbol{v}(x) - \boldsymbol{\nabla} p_q(x), \\ p_q(x) &:= -\frac{\mu}{m} + \frac{gn(x)}{m} - \frac{\hbar^2}{2m^2} \frac{\nabla^2 \sqrt{n(x)}}{\sqrt{n(x)}}. \end{split}$$

Constants of motion

Number of particles \bar{n} and Energy \bar{E}

$$\begin{split} \bar{n} &:= \frac{1}{V} \int \mathrm{d}\boldsymbol{x} |\psi(x)|^2, \\ \bar{E} &:= E_{\mathrm{K}}(t) + E_{\mathrm{I}}(t), \\ E_{\mathrm{K}}(t) &:= \frac{1}{V} \int \mathrm{d}\boldsymbol{x} \frac{\hbar^2}{2m} |\boldsymbol{\nabla} \psi(x)|^2, \\ E_{\mathrm{I}}(t) &:= \frac{1}{V} \int \mathrm{d}\boldsymbol{x} \, \frac{g}{2} |\psi(x)|^4 = \frac{1}{V} \int \mathrm{d}\boldsymbol{x} \, \frac{g}{2} [n(x)]^2, \end{split}$$

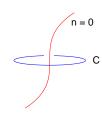
 $E_{\rm K}(t)$: kinetic energy, $E_{\rm I}(t)$: interaction energy

Quantum fluid

Differences between quantum fluid and ordinary fluid obeying Navier-Stokes equation are

- No dissipation,
- Quasi-pressure term $p_q(x)$,
- No vorticity, $\boldsymbol{\omega}(x) := \boldsymbol{\nabla} \times \boldsymbol{v}(x) = 0$ where $n(x) \neq 0$,
- Vortex line for n(x) = 0 with a quantized circulation.

$$\oint_C d\mathbf{l} \cdot \mathbf{v}(x) = \frac{2\pi\hbar}{m}k \qquad (k \in \mathbb{Z}).$$



Is the quantum fluid turbulence similar to the ordinary fluid turbulence?

Numerical simulation of GP equation

ullet Fourier transform of ψ

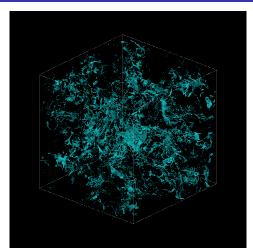
$$\psi_{\mathbf{k}}(t) := \int \mathrm{d}\mathbf{x} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \psi(x),$$

 GP equation with external force and dissipation in Fourier space representation.

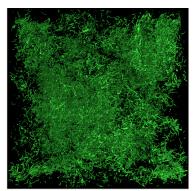
$$\begin{split} \frac{\partial}{\partial t} \psi_{\pmb{k}} &= -\mathrm{i} \xi^2 k^2 \psi_{\pmb{k}} + \mathrm{i} \mu \psi_{\pmb{k}} - \mathrm{i} g \int_{\pmb{p}, \pmb{q}, \pmb{r}} \delta(\pmb{k} + \pmb{p} - \pmb{q} - \pmb{r}) \psi_{\pmb{p}}^* \psi_{\pmb{q}} \psi_{\pmb{r}} \\ &+ \frac{\pmb{D}_{\pmb{k}}}{\pmb{k}} + f_{\pmb{k}} \end{split}$$

 D_k : dissipation, f_k : external force

Quantum and ordinary fluid turbulences



Low density region of a quantum fluid turbulence. Simulation with 512^3 grid points. (Yoshida and Arimitsu (2006))



cf. High vorticity region of a classical fluid turbulence. Simulation with 1024^3 grid points. (Kaneda and Ishihara (2006))

Spectra in Numerical Simulations

- Simulations with various kinds of D_k and f_k .
- ullet Spectrum of quantity X.

$$F^X(k) \propto \int_{\mathbf{k}'} \delta(k - |\mathbf{k}'|) \langle X(\mathbf{k}') X^*(\mathbf{k}') \rangle$$

- Kobayashi and Tsubota (2005)
 - $F^{\mathbf{w}}(k) \sim k^{-5/3}$ ($\mathbf{w} = P[\sqrt{n}\mathbf{v}], P$ pjojection onto solenoidal component).
- Yoshida and Arimitsu (2006)
 - $F^n(k) \sim k^{-3/2}$, $F^{\psi}(k) \sim k^{-2/3}$.
- Proment, Nazarenko and Onorato (2009)
 - ullet $F^{\psi}(k)\sim k^{-1}$ or k^{-2} , depending on $D_{m{k}}$ and $f_{m{k}}$.
- Scaling law of the Spectra in GP turbulence is unsettled.

Theoretical approach

Doublet representation

$$\begin{pmatrix} \psi_{\boldsymbol{k}}^+(t) \\ \psi_{\boldsymbol{k}}^-(t) \end{pmatrix} := \mathrm{e}^{-L_{\boldsymbol{k}}t} \begin{pmatrix} \psi_{\boldsymbol{k}}(t) \\ \psi_{-\boldsymbol{k}}^*(t) \end{pmatrix}, \qquad L_{\boldsymbol{k}} := \mathrm{i} \left(-\frac{k^2}{2m} + \mu \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

GP equation in Fourier space

$$\frac{\partial}{\partial t} \psi_{\mathbf{k}}^{\alpha}(t) = g \int_{\mathbf{pqr}} \delta_{\mathbf{k}-\mathbf{p}-\mathbf{q}-\mathbf{r}} M_{\mathbf{k}\mathbf{p}\mathbf{q}\mathbf{r}}^{\alpha\beta\gamma\zeta}(t) \psi_{\mathbf{p}}^{\beta}(t) \psi_{\mathbf{q}}^{\gamma}(t) \psi_{\mathbf{r}}^{\zeta}(t).$$

where $\int_{\pmb{k}}:=\int d^3\pmb{k}/(2\pi)^3$, $\delta_{\pmb{k}}=(2\pi)^3\delta(\pmb{k})$ and $\hbar=1.$

$$\begin{split} M_{\pmb{kpqr}}^{\alpha\beta\gamma\zeta}(t) &:= (\mathrm{e}^{-L_{\pmb{k}}t})^{\alpha\alpha'} \tilde{M}_{\pmb{kpqr}}^{\alpha'\beta'\gamma'\zeta'} (\mathrm{e}^{L_{\pmb{p}}t})^{\beta'\beta} (\mathrm{e}^{L_{\pmb{q}}t})^{\gamma'\gamma} (\mathrm{e}^{L_{\pmb{r}}t})^{\zeta'\zeta}, \\ \tilde{M}_{\pmb{kpqr}}^{\alpha\beta\gamma\zeta} &:= \begin{cases} -\frac{\mathrm{i}}{3} & \text{for } (\alpha,\beta,\gamma,\zeta) \in \{(+,-,+,+),(+,+,-,+),(+,+,+,-)\} \\ \frac{\mathrm{i}}{3} & \text{for } (\alpha,\beta,\gamma,\zeta) \in \{(-,+,-,-),(-,-,+,-),(-,-,-,+)\} \\ 0 & \text{otherwise} \end{cases}. \end{split}$$

Weak wave turbulence theory

• When $|\frac{\partial}{\partial t}\psi_{m{k}}^{\pm}|\ll |L_{m{k}}\psi_{m{k}}^{\pm}|$,

$$\psi_{\pmb k}^\pm(t) \sim \text{const. in time}, \qquad \psi(x) \sim \int \mathrm{d} \pmb x \psi_{\pmb k}^+ \mathrm{e}^{\mathrm{i} \pmb k \cdot \pmb x + L_{\pmb k} t}.$$

Correlation function

$$\langle \psi_{\mathbf{k}}^{\alpha} \psi_{-\mathbf{k}'}^{\beta} \rangle = Q_{\mathbf{k}}^{\alpha\beta} \delta_{\mathbf{k} - \mathbf{k}'},$$

Spectrum

$$F(k) = \int_{\mathbf{k}'} \delta(k' - k) Q_{\mathbf{k}'}^{+-},$$

- Weak wave turbulence (WWT) theory
 - In the energy-transfer range,

$$F(k) \sim k^{-1} \left(\ln \frac{k}{k_{\rm b}} \right)^{-1/3}$$
.

• In the particle-number-transfer range,

$$F(k) \sim k^{-1/3}$$
.

Strong turbulence

- GP turbulence
 - Weak wave turbulence (WWT) region: $|\frac{\partial}{\partial t}\psi_{\mathbf{k}}^{\pm}| \ll |L_{\mathbf{k}}\psi_{\mathbf{k}}^{\pm}|$, Strong turbulence (ST) region: $|\frac{\partial}{\partial t}\psi_{\mathbf{k}}^{\pm}| \gg |L_{\mathbf{k}}\psi_{\mathbf{k}}^{\pm}|$.
- For the ordinary fluid turbulence, which is essentially strong turbulence, some spectral closure approximations are available.
 - ullet $F^u(k) \propto k^{-5/3}$ in the energy-transfer range (Kolmogorov spectrum).

The aim of the present study is to derive the spectrum $F^{\psi}(k)$ of GP turbulence not only for the WWT region but for the **strong turbulence** (ST) region by means of a spectral closure approximation.

(K. Yoshida and T. Arimitsu, J. Phys. A: Math. Theor. **46** 335501 (2013))

Quantum fluid (Introduction)

Closure Approximation

Closure approximation

Unclosed hierarchy of moments,

$$\frac{d}{dt}\langle\psi\rangle=gM\langle\psi\psi\psi\rangle,\qquad \frac{d}{dt}\langle\psi\psi\rangle=g\underline{M\langle\psi\psi\psi\psi\rangle}.$$

 \bullet Approximate $M\langle\psi\psi\psi\psi\rangle$ as a function of lower order terms,

$$g\underline{M\langle\psi\psi\psi\psi\rangle} = g^2 \mathcal{F}[Q(t,s),G(t,s)] + O(g^3)$$

Correlation function

$$\langle \psi_{\mathbf{k}}^{\alpha}(t)\psi_{-\mathbf{k}'}^{\beta}(t')\rangle = Q_{\mathbf{k}}^{\alpha\beta}(t,t')\delta_{\mathbf{k}-\mathbf{k}'},$$

Response function

$$\left\langle \frac{\delta \psi_{\mathbf{k}}^{\alpha}(t)}{\delta f_{\mathbf{k}'}^{\beta}(t')} \right\rangle = G_{\mathbf{k}}^{\alpha\beta}(t, t') \delta_{\mathbf{k} - \mathbf{k}'}.$$

where $\delta f(t')$ is the infinitesimal disturbance added at time t'.

Invariance under global phase transformation

 For simplicity, let us assume that the statistical quantities are invariant under the global phase transformation,

$$\psi_{\mathbf{k}}^{\alpha}(t) \to e^{\alpha i \theta} \psi_{\mathbf{k}}^{\alpha}(t).$$

Then, by introducing $Q_{\mathbf{k}}(t,t')$ and $G_{\mathbf{k}}(t,t')$, we have

$$Q_{\mathbf{k}}^{+-}(t,t') = e^{-2ig\bar{n}(t-t')}Q_{\mathbf{k}}(t,t'), \quad Q_{\mathbf{k}}^{-+}(t,t') = e^{2ig\bar{n}(t-t')}Q_{-\mathbf{k}}^{*}(t,t'),$$

$$G_{\mathbf{k}}^{++}(t,t') = e^{-2ig\bar{n}(t-t')}G_{\mathbf{k}}(t,t'), \quad G_{\mathbf{k}}^{--}(t,t') = e^{2ig\bar{n}(t-t')}G_{-\mathbf{k}}^{*}(t,t'),$$

and otherwise 0.

Procedures for the closure approximation

(i) Expand Q and G in functional power series of the solutions $Q^{(0)}$ and $G^{(0)}$ for the zeroth-order in g.

$$\begin{split} Q &= Q^{(0)} + \sum_{i=1}^{\infty} g^i Q^{(i)}(Q^{(0)}, G^{(0)}), \qquad G &= G^{(0)} + \sum_{i=1}^{\infty} g^i G^{(i)}(Q^{(0)}, G^{(0)}), \\ \frac{\partial Q}{\partial t} &= \sum_{i=0}^{\infty} g^i A^{(i)}(Q^{(0)}, G^{(0)}), \qquad \frac{\partial G}{\partial t} &= \sum_{i=0}^{\infty} g^i B^{(i)}(Q^{(0)}, G^{(0)}). \end{split}$$

(ii) Invert these expansions to obtain $Q^{(0)}$ and $G^{(0)}$ in functional power series of Q and G.

$$Q^{(0)} = Q + \sum_{i=1}^{\infty} g^i C^{(i)}(Q, G), \qquad G^{(0)} = G + \sum_{i=1}^{\infty} g^i D^{(i)}(Q, G).$$

(iii) Substitute these inverted expansions into the primitive expansions of $\mathrm{d}Q/\mathrm{d}t$ and $\mathrm{d}G/\mathrm{d}t$ to obtain the renormalized expansions.

$$\frac{\partial Q}{\partial t} = \sum_{i=0}^{\infty} g^i E^{(i)}(Q, G), \qquad \frac{\partial G}{\partial t} = \sum_{i=0}^{\infty} g^i F^{(i)}(Q, G).$$

(iv) Truncate these renormalized expansions at the lowest nontrivial order.

Closure equations (1)

$$\frac{\partial}{\partial t}Q_{\mathbf{k}}(t,t') \\
=g^{2} \int_{-\infty}^{t} dt'' \int_{\mathbf{p}q\mathbf{r}} \delta_{\mathbf{k}-\mathbf{p}-\mathbf{q}-\mathbf{r}} e^{\frac{i}{2m}(k^{2}+p^{2}-q^{2}-r^{2})(t-t'')} \\
\times \left[-2Q_{-\mathbf{p}}^{*}(t,t'')Q_{\mathbf{q}}(t,t'')G_{\mathbf{r}}(t,t'')Q_{\mathbf{k}}(t'',t') - 2Q_{-\mathbf{p}}^{*}(t,t'')G_{\mathbf{q}}(t,t'')Q_{\mathbf{r}}(t,t'')Q_{\mathbf{k}}(t'',t') \\
+ 2G_{-\mathbf{p}}^{*}(t,t'')Q_{\mathbf{q}}(t,t'')Q_{\mathbf{r}}(t,t'')Q_{\mathbf{k}}(t'',t') + 2Q_{-\mathbf{p}}^{*}(t,t'')Q_{\mathbf{q}}(t,t'')Q_{\mathbf{r}}(t,t'')G_{\mathbf{k}}^{*}(t',t'') \right], \\
\frac{\partial}{\partial t}G_{\mathbf{k}}(t,t') \\
=g^{2} \int_{t'}^{t} dt'' \int_{\mathbf{p}q\mathbf{r}} \delta_{\mathbf{k}-\mathbf{p}-\mathbf{q}-\mathbf{r}} e^{\frac{i}{2m}(k^{2}+p^{2}-q^{2}-r^{2})(t-t'')} \\
\times \left[-2Q_{-\mathbf{p}}^{*}(t,t'')Q_{\mathbf{q}}(t,t'')G_{\mathbf{r}}(t,t'')G_{\mathbf{k}}(t'',t') - 2Q_{-\mathbf{p}}^{*}(t,t'')G_{\mathbf{q}}(t,t'')Q_{\mathbf{r}}(t,t'')G_{\mathbf{k}}(t'',t') \\
+ 2G_{-\mathbf{p}}^{*}(t,t'')Q_{\mathbf{q}}(t,t'')Q_{\mathbf{r}}(t,t'')G_{\mathbf{k}}(t'',t') \right] + \delta(t-t'), \\
G_{\mathbf{k}}(t,t') = 0 \qquad (t < t').$$

Closure equations (2)

Correlation function for the number density field,

$$\langle n_{\mathbf{k}}(t)n_{-\mathbf{k}}(t')\rangle - \langle n_{\mathbf{k}}(t)\rangle\langle n_{-\mathbf{k}}(t')\rangle = Q_{\mathbf{k}}^{n}(t,t')\delta_{\mathbf{k}-\mathbf{k}'},$$

$$\begin{split} &\frac{\partial}{\partial t}Q_{\boldsymbol{k}}^{n}(t,t')\\ &=\mathrm{i}\int_{\boldsymbol{p}\boldsymbol{q}}\delta_{\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}}\frac{1}{2m}(p^{2}-q^{2})\mathrm{e}^{\frac{\mathrm{i}}{2m}(p^{2}-q^{2})(t-t')}Q_{-\boldsymbol{p}}^{*}(t,t')Q_{\boldsymbol{q}}(t,t')\\ &+g\int_{-\infty}^{t}\mathrm{d}t''\int_{\boldsymbol{p}\boldsymbol{q}\boldsymbol{r}\boldsymbol{s}}\delta_{\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}}\delta_{\boldsymbol{k}-\boldsymbol{r}-\boldsymbol{s}}\frac{1}{m}(p^{2}-q^{2})\mathrm{e}^{\frac{\mathrm{i}}{2m}\left[(-p^{2}+q^{2})(t-t'')+(r^{2}-s^{2})(t'-t'')\right]}\\ &\times\left[-G_{\boldsymbol{p}}(t,t'')Q_{-\boldsymbol{q}}^{*}(t,t'')Q_{\boldsymbol{r}}^{*}(t',t'')Q_{-\boldsymbol{s}}(t',t'')+Q_{\boldsymbol{p}}(t,t'')G_{-\boldsymbol{q}}^{*}(t,t'')Q_{\boldsymbol{r}}^{*}(t',t'')Q_{-\boldsymbol{s}}(t',t'')+Q_{\boldsymbol{p}}(t,t'')G_{-\boldsymbol{q}}^{*}(t,t'')Q_{\boldsymbol{r}}^{*}(t',t'')G_{-\boldsymbol{s}}(t',t'')\right]\\ &+Q_{\boldsymbol{p}}(t,t'')Q_{-\boldsymbol{q}}^{*}(t,t'')G_{\boldsymbol{r}}^{*}(t',t'')Q_{-\boldsymbol{s}}(t',t'')-Q_{\boldsymbol{p}}(t,t'')Q_{-\boldsymbol{q}}^{*}(t,t'')Q_{\boldsymbol{r}}^{*}(t',t'')G_{-\boldsymbol{s}}(t',t'')\right]\\ &+O(g^{2}). \end{split}$$

Time scale of the nonlinear term

- Time scales
 - $T_{\rm L}(k) := 2mk^{-2}$, time scale of the linear terms.
 - $T_{\rm NL}(k)$, time scale of $Q_{\pmb k}(t,t')$ and $G_{\pmb k}(t,t')$ with respect to t-t'.
- ST region: $T_{\rm NL}(k) \ll T_{\rm L}(k)$,
- Assume that the contribution from the low wavenumber region is dominant in the wavespace integration. Then,

$$\begin{split} &\frac{\partial}{\partial t}Q_k(t,t')=g^2\int_{-\infty}^t\mathrm{d}t''\Big[n(t,t'')\Big]^2\Big[-4G_k(t,t'')Q_k(t',t'')+6Q_k(t,t'')G_k(t',t'')\Big],\\ &\frac{\partial}{\partial t}G_k(t,t')=-4g^2\int_{t'}^t\mathrm{d}t''\Big[n(t,t'')\Big]^2G_k(t,t'')G_k(t'',t')+\delta(t-t'),\\ &\text{where }n(t,t')=\int_{\mathbf{h}}Q_k(t,t'). \end{split}$$

We have

$$T_{\rm NL}(k) = g^{-1}\bar{n}^{-1}$$

in ST region $k \ll k_*$, where

$$k_* := (2m)^{1/2} g^{1/2} \bar{n}^{1/2} \quad (T_{\rm NL}(k_*) = T_{\rm L}(k_*)).$$

Energy flux

ullet Energy flux (energy flowing into modes with wavenumber larger than K)

$$\Pi(K) := \frac{\partial}{\partial t} \int_{\substack{\textbf{k} \\ k > K}} \left[\frac{k^2}{2m} Q_{\textbf{k}}(t,t) + \frac{g}{2} Q_{\textbf{k}}^n(t,t) \right].$$

Symbolically,

$$\begin{split} \Pi(K) &= g^2 \int_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q} \boldsymbol{r}, D} \delta_{\boldsymbol{k} + \boldsymbol{p} - \boldsymbol{q} - \boldsymbol{r}} \int^t \mathrm{d}t' \mathrm{e}^{\frac{\mathrm{i}}{2m} (k^2 + p^2 - q^2 - r^2)(t - t')} \frac{k^2}{m} \\ &\times Q_*(t, t') Q_*(t, t') Q_*(t, t') G_*(t, t') \\ &(* = \boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \quad D : \text{a wavevector space region}) \end{split}$$

When the contribution from the low wavenumber region is dominant,

$$\Pi(K) = g^2 \int_{kpq,D'} \delta_{k-p-q} \int^t dt' e^{\frac{i}{2m}(k^2 \pm p^2 - q^2)(t-t')} \frac{k^2}{m}$$
$$\times n(t,t')Q_*(t,t')Q_*(t,t')G_*(t,t')$$

• In the energy-transfer region,

$$\Pi(K) = \Pi$$
 (const.)

Spectrum in the energy-transfer range

• ST region $(k \ll k_*)$,

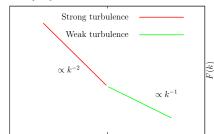
$$F(k) = C_1(2m)^{1/2}g^{-1/2}|\Pi|^{1/2}k^{-2}.$$

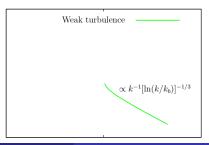
Probably, $\Pi > 0$.

• WWT region $(k \gg k_*)$,

$$F(k) = \begin{cases} C_2 g^{-2/3} \Pi^{1/3} k^{-1} \left(\ln \frac{k}{k_{\rm b}}\right)^{-1/3} \text{(low wavenumber marginal divergence)} \\ C_2' g^{-1} \bar{n}^{-1/2} \Pi^{1/2} k^{-1} \qquad \text{(low wavenumber divergence)} \end{cases}$$

 $\Pi > 0$.





Spectrum in the particle-number-transfer range

 \bullet Particle-number-flux (particles flowing into modes with wavenumber larger than K)

$$\Pi_{\mathbf{n}}(K) := \frac{\partial}{\partial t} \int_{\mathbf{k}, k > K} Q_{\mathbf{k}}(t, t).$$

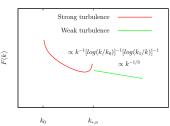
$$T_{\rm NL,n}(k) = g^{-1/2} |\Pi_{\rm n}|^{-1/2}, \qquad k_{*,\rm n} = (2m)^{1/2} g^{1/4} |\Pi_{\rm n}|^{1/4}.$$

• ST region $(k \ll k_{*,n})$

$$F(k) = C_3 g^{-1/2} |\Pi_{\rm n}|^{1/2} k^{-1} [\ln(\frac{k}{k_0})]^{-1} [\ln(\frac{k_1}{k})]^{-1} \quad ({\sf Probably} \ \Pi_{\rm n} > 0).$$

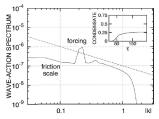
• WWT region $(k \gg k_{*,n})$

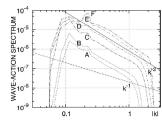
$$F(k) = C_4(2m)^{-1/3} g^{-2/3} |\Pi_n|^{1/3} k^{-1/3} \quad (\Pi_n < 0).$$



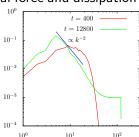
Numerical simulations

• Simulation with external forcing and dissipation [Proment, Nazarenko and Onorato (2009)]





Simulation without external force and dissipation (Yoshida, in progress)



Summary and problems

Summary

- By means of a spectral closure, the spectra of GP turbulence are obtained for the ST/WWT regions in the energy-transfer/particle-number-transfer ranges.
- Some numerical simulations are in support of $F(k) \propto k^{-2}$ of the ST region in the energy-transfer range.

Problems

- Some correction to the spectrum of ST region in energy-transfer range is needed to cancel the energy flow from $E_{\rm I}$ to $E_{\rm K}$ and to maintain the statistical stationarity.
- Correction beyond the log correction is needed for ST region in particle-number-transfer range to eliminate the divergence of the integral.
- Since $\Pi_{\rm n} < 0$ for $k \gg k_{\rm *,n}$ and probably $\Pi_{\rm n} > 0$ for $k \ll k_{\rm *,n}$, their compatibility is questionable.