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Abstract

Numerical simulations of the Gross-Pitaevskii equation which describes the dynamics of quantum
fluids are performed focusing on scales larger than the healing length. Dissipation and pumping of the
mass are applied in high and low wavenumber ranges, respectively, in order to achieve turbulent states.
In this setting of dissipation and pumping, it is found that the mass, or the particle number, cascades
from low to high wavenumbers and a constant flux of the particle number is observed in the cascading
wavenumber range. The spectrum F(k) (k is the wavenumber) of the order parameter field at the turbulent
state is analyzed and it is found that the obtained F(k) is consistent with the form ∝ k−1[ln(k/k0)]

−1 (k0
is the lower-end wavenumber of the scaling range) which is derived from a closure approximation of
the particle-number transfer range of strong turbulence [K. Yoshida, T. Arimitsu, Journal of Physics
A:Mathematical and Theoretical 46(33), 335501 (2013)].

1 Introduction
In a Bose gas or liquid, the order parameter ψ (⃗x, t) ∈ C, which is the expectation value of the field oper-
ator ψ̂ (⃗x, t), is nonzero for a temperature T < Tc with Tc being some critical temperature. Under certain
conditions[1], dynamics of the order parameter is approximately described by the Gross-Pitaevskii (GP)
equation [2, 3],

ih̄
∂
∂ t

ψ (⃗x, t) =− h̄2

2m
∇2ψ (⃗x, t)−µψ (⃗x, t)+g|ψ (⃗x, t)|2ψ (⃗x, t), (1)

where m is the mass of the boson, g is the coupling constant, µ is the chemical potential and h̄ is the
Planck constant divided by 2π . The chemical potential µ may be related to the particle number density
field n(⃗x, t) := |ψ (⃗x, t)|2 by µ = gn where the bar denotes the spatial average. Let ψ (⃗x, t) =

√
n(⃗x, t)eiθ (⃗x,t)

and then n(⃗x, t) and v⃗(⃗x, t) := (h̄/m)⃗∇θ (⃗x, t), can be viewed as the density field and the velocity field,
respectively, of a fluid. In this paper, we refer to the fluid as quantum fluid. Some examples of quantum
fluids are the superfluid component in superfluid phase of 4He and the Bose-Einstein condensates (BECs)
of ultracold atoms.

The fluctuation part ψ̂ (⃗x, t)−ψ (⃗x, t), which is neglected in the GP equation, may be weakly coupled to
the system of the GP equation and may act as a particle and energy reservoir which causes dissipation of
the particle number and the energy to the system of the GP equation, especially in small scales. See, e.g.,
Kobayashi and Tsubota[4] for a related theoretical and numerical study. Recently, Navon, Gaunt, Smith
and Hadzibabic[7], and Tsatsos et al. [8] managed to inject energy into the BEC of 87Rb atoms by stirring
it with magnetic fields varying in the order of the system size. When quantum fluids are equipped with the
dissipation at small scales and the external forcing at large scales, fluid motions may evolve into turbulence
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in a similar manner as in the case of the classical fluids obeying the Navier-Stokes equation. There have
been many experimental and numerical studies on the turbulent velocity fields of quantum fluids in relation
with those of classical fluids. See, e.g., the reviews Refs. [5, 6] and the references cited therein.

In the studies of turbulence of quantum fluids, it is natural to focus not only on v⃗(⃗x, t) but also on ψ (⃗x, t)
which is a more fundamental variable regarding the dynamics. The basic quantity which describes the
statistics of ψ (⃗x, t) is the spectrum F(k, t) :=∑k−1/2≤|⃗k′|<k+1/2 |ψ⃗k′(t)|

2, where ψ⃗k(t) :=(2π)−3 ∫
D d⃗xψ (⃗x, t)

exp(−i⃗k · x⃗) is the Fourier transform, and D is the domain of the fluid which we set to be a three dimen-
sional cube with the side length 2π and the periodic boundary conditions. When the contribution of the
nonlinear term, the last term in the rhs of (1), is small, F(k) (the time argument will be omitted hereafter)
can be analyzed using the weak wave turbulence (WWT) theory [9, 10]. Dyachenko, Newell, Pushkarev,
and Zakharov[11] derived F(k) ∝ k−1[ln(k/k0)]

−1/3 for the energy cascade range and F(k) ∝ k−1/3 for the
particle-number cascade range, where k0 is the lower-end wavenumber of the cascade range. For the case
when the symmetry is broken, i.e. ψ ̸= 0, Fujimoto and Tsubota[12] derived F(k) ∝ k−7/2 using WWT
theory and verified it with a numerical simulation of the GP turbulence.

As the scales of interest become larger, or the wavenumbers become smaller, the nonlinear term in
Eq.(1) becomes more significant and the WWT theory is not applicable any more. We call such a scale
region the strong turbulence region. Yoshida and Arimitsu analyzed the strong turbulence region of the GP
turbulence by a spectral closure approximation[13]. It is derived that F(k) ∝ k−2 for the energy cascade
range and F(k) ∝ k−1[ln(k/k0)]

−1 for the particle-number cascade range. It should be noted that the ex-
istence of the energy or particle-number cascade is the assumption of the analysis and that the conditions
for the emergence of these cascades are not clear. Furthermore, closure approximations are, in general,
empirical methods to analyze the system with strong non-linearity and they are not mathematically rigor-
ous. Therefore, the results from the closure approximation in Ref. [13] should be verified by the numerical
simulations or the experiments.

In this study, we perform numerical simulations of the GP equations focusing on large scales which
correspond to the strong turbulence region. We apply dissipation and pumping of fluid mass, or particles,
in high and low wavenumber ranges, respectively, expecting that some sort of cascade will emerge. The
obtained spectrum F(k) is compared with that derived from the closure approximation.

2 Set up of the numerical simulations
We performed numerical simulations of the GP equation equipped with external pumping and dissipation
of the fluid mass. The basic setting of the simulation is same as that in Ref. [14]. The domain D of the
fluid is a three dimensional cube with the side length 2π and periodic boundary conditions are applied. We
use the units such that τ := h̄/gn = 1 and n = 1. The time evolution equation for ψ⃗k is given by

∂
∂ t

ψ⃗k =−iξ 2k2ψ⃗k + iψ⃗k − i ∑
k⃗+p⃗−q⃗−⃗r=⃗0

ψ∗
p⃗ψq⃗ψ⃗r + D⃗k + P⃗k, (2)

where ξ := h̄/
√

2mgn is the healing length and D⃗k and P⃗k are the external dissipation and pumping of the
fluid mass, respectively. For given D⃗k, P⃗k and initial condition ψ⃗k(t = 0), the time evolution of ψ⃗k(t) by
Eq.(2) is simulated by using a fourth-order Runge-Kutta method with the time increment being denoted
by ∆t. For convolutions in the last term of the rhs of (2), we use an alias-free spectral method. Due to
the dealiasing, the maximum wavenumber kmax resolved in the simulation is kmax = (2

√
2/3)N/2, where

N is the number of grid points along each of the coordinates in real space. The initial fields are given by
|ψ⃗k| = Ak2 exp(k2/k2

i ) with random phases, where the peak wavenumber ki is set to 2 and A is a constant
determined from the constraint n = 1. Alternative initial fields are the resulting fields of a prior simulation
with the above initial fields.

We employ a simple type of the dissipation and pumping acting on high and low wavenumber ranges
(i.e. large and small scales), respectively, expecting that some general features of quantum fluid turbulence
that are irrelevant to the specific type of dissipation and pumping will appear in the intermediate wavenum-
ber range, if dissipation and forcing wavenumber ranges are sufficiently separated. We use a Laplacian type
model, D⃗k = −νk2ψ⃗k, for the dissipation and the pumping is introduced by amplifying low-wavenumber
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Table 1: Parameters in the simulations. ξ is the healing length, ν the coefficient of the dissipation term,
kp the bottom wavenumber of the pumping range, N number of grid points along one of the coordinate
direction, kmax maximum wavenumber resolved, ∆t the time increment and the particle-number dissipation
rate εn. All the values are given in the unit such that τ := h̄/gn = 1, ∆k := 2π/L = 1 and n = 1.

ξ [×10−3] ν [×10−3] kp N kmax ∆t εn

RUN1 0.03125 0.016 2.5 1024 483 0.01 0.185
RUN2 0.03125 0.008 2.5 1024 483 0.01 0.190
RUN3 0.03125 0.004 2.5 2048 965 0.01 0.176
RUN4 0.03125 0.002 2.5 2048 965 0.01 0.179
RUN5 0.125 0.002 2.5 2048 965 0.01 0.179
RUN6 0.5 0.002 2.5 2048 965 0.01 0.178

Figure 1: Density isosurfaces at a low density n = 0.004n in the whole cube domain. The side length of the
cube is 2π and the healing length ξ = 0.5× 10−3 (RUN6). The visualization data are produced by using
VISMO[15].

modes as P⃗k = αψ⃗k(0 < |⃗k|< kp) and P⃗k = 0(|⃗k|= 0, |⃗k| ≥ kp), where kp is the bottom wavenumber of the
pumping range and the parameter α is determined at every time step so as to compensate the loss of mass
due to the dissipation, i.e., n is kept at 1.

The values of the parameters used in the present simulations are listed in Table 1. The six simulated
time sequences are named RUN1 – 6 and they are simulated up to a time at which the spectrum F(k) is
quasi stationary. Since we are interested in strong turbulence regions, we set kmaxξ ≤ 1, i.e., length scales
larger than ξ are resolved in the simulations.

3 Structure of the density field
Throughout RUN1 – RUN6, we observed |ψ|2/n < 10−3, which implies that the spatial mean ψ scarcely
emerged and that the symmetry with respect to the global phase shift ψ (⃗x)→ ψ (⃗x)eiΘ is scarcely broken.
The three dimensional structure of low density regions are displayed in Fig. 1. The figure shows isosurfaces
at n(⃗x) = 0.004n and quantized vortex lines, specified by n = 0, should be surrounded by the surfaces. It
can be seen that vortices are not distributed uniformly in space and form clusters in a length scale which is
comparable with the system size. The cluster structure may be analogous to that of intense vorticity regions
observed in numerical simulations of turbulence obeying the Navier-Stokes equation[16]. Note that we put
kmaxξ = 0.483 so that the healing length ξ , which is the typical length scale of the density variation around
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Figure 2: (a) Particle-number flux Πn(k) normalized by the particle-number dissipation rate εn for the
healing length ξ = 0.3125×10−4 and several values of the particle-dissipation coefficient ν (RUN1 – 4).
(b) Spectrum F(k) for RUN1 – 4. Slopes of the dotted lines indicate ∝ k−1 and ∝ k−2.

the vortex lines, is not sufficiently resolved and therefore the structures of the individual vortices are not
well captured. However, we expect that the large-scale structure of clustering observed in Fig. 1 reflects the
general features of the GP strong turbulence. The expectation will be partially supported by the analysis in
the next section, in which the spectrum F(k) obtained in the simulation shows a general scaling law in the
low wavenumber range.

4 Analysis of the spectrum F(k)

The particle number flux Πn(k) through a wavenumber k can be given by Πn(k) = − (∂/∂ t)|ν=0,α=0

∑⃗k′(k′≤k) |ψ⃗k′ |
2 , where (∂/∂ t)|ν=0,α=0 denotes the contribution of the pure GP equation, i.e., without

dissipation and pumping, to the time derivative. The particle-number flux Πn(k) normalized by the particle-
number dissipation rate εn = 2ν ∑⃗k k2|ψ⃗k|

2 is shown for fixed ξ = 0.3125× 10−4 and several values of ν
(RUN1 – 4) in Fig. 2a. It can be seen that there exists a range where Πn(k) is approximately a constant
εn(> 0). The lower-end wavenumber of the flux-constant range is kξ ∼ 3 × 10−4 and the higher-end
wavenumber increases from kξ ∼ 10−3 to 3×10−3 with the decrease of the dissipation coefficient ν . The
energy flux Π(k) can be also computed from the simulation data. But, it is found that Π(k) depends on k
and can not be approximated by a constant (the figure omitted). Thus, we conclude that the particle-number
cascade from low to high wavenumber range occurs in the present setting of the GP turbulence.

The spectra F(k) obtained from the same data (RUN1 – 4) are shown in Fig. 2b. The slope of the
spectrum in the wavenumber range where the particle-number flux is approximately constant is between
F(k) ∝ k−1 and ∝ k−2. However, there exists a bump around the higher end of the constant flux range and
the width of the power law range is shortened due to the bump. The bump can be interpreted as the pileup
of particles at the end of the constant flux range before the dissipation. The bump is also observed in the
Navier-Stokes turbulence [17], but the bump in the GP strong turbulence seems to be more significant than
that of the Navier-Stokes turbulence. Note that the slopes between F(k) ∝ k−1 and ∝ k−2 are also obtained
in the numerical simulations of the GP equation with dissipation and pumping by Proment, Nazarenko and
Onorato [18]. In comparison with Ref. [18], the typical wavenumbers, kξ ∼ 10−4, in the scaling range of
the present simulation is smaller and so that it is expected that the nature of the strong turbulence is more
significantly reflected in the present simulation.

According to Ref.[13], F(k) in the particle-number transfer range of strong turbulence is given by

F(k)∼C3Π1/2
n k−1

[
ln
(

k
k0

)]−1

(k0 < k ≪ k1), (3)

where the logarithmic correction near the lower-end wavenumber k0 is applied and C3 is a universal con-
stant. Since the exponent −1 of the logarithmic term is marginal, a further correction may be required.
However, we neglect it for it would be quite difficult to detect the further corrections in the present simu-
lations with a limited width of the scaling range. The logarithmic correction near higher-end wavenumber
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Figure 3: Compensated spectrum kF(k) normalized by ε1/2
n for the particle-dissipation coefficient ν =

0.2 × 10−2 and several values of the healing length ξ (RUN4 – 6). Here, εn is the particle-number
dissipation rate. Thin solid and dotted lines are fits to the data in the range 6 ≤ k ≤ 25 with F(k) =
C3k−1[ln(k/k0)]

−1 and F(k) =C′k−2, respectively.

k1 is also neglected. This is because the cascade range where Πn(k) ∼ εn holds is not very wide and the
direct effect of the dissipation term D⃗k can not be neglected near k1. In Fig.3, the compensated spectrum

kF(k)/ε1/2
n is given for fixed ν and several values of ξ (RUN4 – 6). We find that F(k) is insensitive to

ξ in the range of 0.3125× 10−4 ≤ ξ ≤ 0.5× 10−3, which is consistent with the scaling given in Eq. (3).
Furthermore, Fig. 3 shows that Eq.(3) gives a better fit to the simulation data of F(k) in a range 6 ≤ k ≤ 25
in comparison with F(k) =C′k−2. However, note that Eq.(3) has two fitting parameters C3 and k0, whereas
F(k) =C′k−2 has only one.

5 Discussion
In WWT, the energy and the particle number are both of second order in ψ and it can be easily argued that
the energy (particle number) cascades in the forward (inverse) direction (See, e.g., Chap. 2 of Ref.[10]).
In the strong turbulence, the interaction energy, which is of fourth order in ψ , is dominant and then the
existences and directions of the cascades of multiple conservative quantities can not be argued as simply as
in WWT.

In the present numerical simulations of the GP strong turbulence, we found that the forward cascade of
particle number emerges when dissipation of fluid mass in a high wavenumber range and pumping in a low
wavenumber range is applied. The obtained spectrum F(k) is consistent with F(k)∼C3Π1/2

n k−1[ln(k/k0)]
−1

derived from a closure approximation for the particle-number transfer range of strong turbulence in Ref. [13].
The energy cascade in the strong turbulence is also assumed to exist in Ref. [13], but is not observed at least
in the present setting of the simulation. The existence of the energy cascade in the GP strong turbulence is
still an open question.

The relevance of the present setting of dissipation and pumping to existing experiments of stirred BEC
turbulence is not clear at present. Navon, Gaunt, Smith and Hadzibabic[7] and Tsatsos et al. [8] obtained
results which correspond to F(k)∝ k−3/2 and F(k)∝ k−2, respectively, in their experiments. The exponents
−3/2 and −2 are comparable with the spectrum obtained in Fig. 2b, however the wavenumber range in
their experiments are kξ ∼ 1 and in the present study kξ ≪ 1. It would be an interesting future study to
obtain the comprehensive understanding of F(k) in the whole scale range of both weak wave and strong
GP turbulences by integrating the means of theoretical analyses, numerical simulations and experiments.
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