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A model of randomly advected solenoidal field is presented. The model is formally derived by a linearization
of the Navier-Stokes equation with respect to the perturbation to a basic state and by assuming the character-
istic time scale of the basic state to be very short. The model includes a nofitosplce effect through a
pressurelike term that keeps the advected field solenoidal, but still yields exact equations for multipoint
moments. The advecting field is assumed to be statistically homogeneous and isotropic with zero mean and
structure function with exponedt An analysis is made of the scaling of the steady second-order moments of
the solenoidal field in two dimensions. The scaling expordgnf the isotropic partl(=0) and the anisotropic
part for the angular wave numbler 2 is obtained analytically or numerically. The scaling of the isotropic part
does not depend on whether the pressurelike term is present or not while the scaling of the anisotropic part is
affected by the pressurelike term. There are two homogeneous similarity solutions with real positive exponents
£, when £> £~1.3. The same kind of analysis is also applied to a simplified two-point closure equation.

DOI: 10.1103/PhysReVvE.63.016308 PACS nunerd7.27.Gs

[. INTRODUCTION One of the characteristic features of turbulence is the ex-
istence of the fluid motion and the advection effect associ-

Turbulent flows in nature and technology are in generakted with the motion. This effect is in fact included in Eq.
not isotropic due to the anisotropy of initial and boundary(1), and is represented by the advection tem¥)... .
conditions, external forcing, etc. Although the flows cannotMoreover, as shown by Kraichng4,5], if the characteristic
therefore be isotropic in a strict sense in particular at largéime scale ofv is very small and therefore may be assumed
scale, it has been widely accepted that the degree of th® be white in time, then Eql) yields exact closure equa-
anisotropy in a statistical sense decreases with the scale tions for multipoint moments such dg/(xq,t) #(X,t)...).
fully developed turbulence at high Reynolds number. If it isSuch exact closure equations are rare in the study of turbu-
true, however, little seems to be known regarding how fast otence, and this modehereafter called Kraichanan’s moglel
slow the anisotropy decays with the scale, in spite of somef Eq. (1) with assuming the whiteness @fhas stimulated
pioneering studietsee, for example, Nelkin and Nakafig, extensive studies on the anomalous scaling of the moments
Arad et al.[2,3], and references cited therginn this paper ([ ¢(x+r,t)— (x,t)]") for n=2,3,4,... (see, for example,
we consider this problem on the basis of a model of a soleRefs.[6—11], and references cited thergiThe model is also
noidal vector field that is advected by another rapidly changexpected to give some insight on the anomalous scaling of
ing random velocity field under the influence of a nonlocalthe velocity field obeying the Navier-Stokes equation.
effect which plays a role similar to the pressure in the On the other hand, it is also clear that there are differences
Navier-Stokes dynamics and keeps the field incompressibldaetween the Kraichnan’s modé{M) for the passive scalar

The study of this model is motivated by the comparisonand the Navier-Stokes dynamighlS). Among the differ-
between the equation for a randomly advected passive scalances are the following.
field, (a) The field ¢ in KM is a scalar, whereas the fieldin
NS is a vector satisfying the solenoidal conditi@.

(b) The pressure term in NS is absent in KM. Therefore,
the evolution ofiy in KM is local, whereas that afi in NS is
nonlocal in the sense that the former at a poiris deter-
and the Navier-Stokes equation with the incompressibilitymined by the value ofr and the spatial derivatives of the
condition, field itself (i.e., ) at the point, whereas the latter is affected
not only by the values at the point but also by the entire field
of u. [Note that Eqs(2) and (3) give

S (V) g V2=, &

Jd
Equ(u.V)u—vvzuz—Verf, 2)

p=—V"2(d;u) (dyu;),
V-u=0, (3)

andVp in Eq. (2) is therefore affected by the entire velocity
wherev=v(x,t) is the random velocity field advecting the field u, whereV 2 is the integral operator representing the
passive scalap= i(x,t), u=u(xt) is the velocity of a fluid inverse of the Laplace operat8F, and we use the summa-
of unity density p=p(x,t) is the pressureg is the molecular tion convention for repeated indicés.
diffusivity, v is the kinematic viscosity, antk andf are the (c) The convection velocity iny- V) in NS is not white
external source and forcing, respectively. in time, in contrast to that in KM.
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(d) The dynamics of NS is nonlinear in but KM as well
as Eq.(1) is linear in .
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disregard Eq(5), each component of the vectGrdoes not
interact with the others and behaves as the passive scalar in

It would be certainly interesting to consider a model thatgq. (1). Studies have been made of the anomalous scaling of
may capture all the features of the NS dynamics listed abovesnisotropy of the passive scalar model[$14]. If we set
However, at the present stage of our knowledge, it is difficult o, 8) = (— 1,0), then the model with the solenoidal condi-
to construct a model that allows us to derive exact closurgion (5) reduces to the one for a passive magnetic field, the
equations, but still represents the features of the NS dynamanomalous scaling of which has been studied for both the
ics not only in(a) and(b), but also(c) or (d). It may therefore  isotropic casdg15] and the anisotropic cadd6]. Thus the
be interesting to consider a model that may yield exact clomodel (4) includes both the models for a passive vector
sures and also capture the features of the NS dynamics notéiglds and for a passive magnetic field under appropriate
in (@ and(b). In this paper, we propose such a model in Secchoices of the values for the parametersind 8. Another
Il, and analyze the scaling of the second-order moments dhteresting case may be the modéd) with (a,8)=(0,1).
the model fields in two dimensior&D) both for the isotro-  This model is simpler than the model witkx (8) = (1,1) in
pic part and the anisotropic part in Sec. IIl. the sense that the stretching terth ¥)v is absent, but still

It may be worthwhile to recall here that Lagrangian two- keeps the features of the Navier-Stokes dynamics noted in
point closures such as the abridged Lagrangian history clog) and (b).

sure approximation(ALHDIA) [12] and the Lagrangian
renormalized approximatio(LRA) [13] are known to yield
reasonable approximations that are free from atiyhocad-

In the followings, we will consider the model with
(a,B8)=(1,1). The key feature of the modé&}) lies in the
presence of the nonlocal effect represented by the pressure-

justing parameter and in good agreement with experimentgke term Vv, by which the fieldd is kept to be solenoidal.

for the second-order moments of homogeneous and isotropigaking the divergence of Eq4) and using Eq(5) (with 3
turbulence at high Reynolds number. They are applicable, at 1) give

least in principle, also to anisotropic turbulence. It may be
interesting, therefore, to apply such closures for the analysis

of the dependence of anisotropy on the scale or the wave
number. The analysis would, however, be very complicatedg that
because of the complexity of the closure equations. As will

be shown in Sec. IV, the model presented in Sec. Il yields a

closure equation for the second-order moments that has a P(X)=
close relation to the one derived by a simplification of such
two-point closure equations. This is another motivation of

our studying the model. where D denotes the space dimension, a@8(x) is the
Green function satisfying

VZp=—(1+ &) (9jv) (4)),

~ (1 a) [ dyGPO a0 T AT )],
®

Il. MODEL AND CLOSURE EQUATIONS
FOR SECOND-ORDER MOMENTS V2GP(x)=6°(x),
One of the simple models capturirfg) and (b) may be

formally obtained by a linearization of the Navier-Stokes

equation with respect to the perturbatidghg,f) to a given
basic stochastic state,p, ,f,). Substituting

and appropriate boundary conditions, in whiéR is the
D-dimensional delta function. The parameteis here writ-
ten explicitly for later use although it is unity. In general, it is
necessary to add to E) integrals representing the contri-

bution fromV - and the boundary of the fluid domain. But
for the sake of simplicity, we assume in this paper that the

into Eq. (2), assuming that the basic state satisfies théieldsv,jj, f, andp satisfy the periodic boundary conditions
Navier-Stokes equatior{g) and(3), and retaining only terms andV-f=0, so that we need not consider such a contribu-
linear in the perturbation, give tion. The integral in Eq(6) is therefore to be understood as
the one over the fundamental periodic domain.

By the use of Eq(6), we may rewrite Eq(4) as

u=v+d, p=p,tp, f

ﬁni(X)ZZJ dyMiji(X,Y)v;(Y)T(y) + vV 20 (%) +Ti(x),

(5
)

where (,8)=(1,1). In the model considered below, we fur-
ther assume that the velocityis white in time. The model Where
then yields closure equations for multipoint correlations that
are exact as in Kraichnan’s model.

The left-hand-side of Eq4) is essentially similar to that
of Eq. (1) except the fact thaii in the former is a vector,

whereasy in the latter is a scalar. If we se(B)=(0,0) and

EgD

> (x—y) 6 9%

1 5 y
Mij(X,y) = 59 (X=Y) 6ikd] —
+yGP(x—y) ¢, ®)
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and y=(1+«a)/2=1. We will keep writinga and vy explic-
itly (although they are unijyso that the contribution of the
each term in Eq(8) will be seen clearly.

Let the random advecting velocitybe statistically homo-
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geneous in space and white noise process in time with zero

mean and the correlation

fo dr(vi(x+r,Dvj(x,t+ 7)) =V;(r,t).

Then after some algebra it is shown that the single time

second-order momettd;; (r,t) defined by
Ui (r,0) = (Ti(x+1,0T;(x,1),

satisfies
J 2
EUij(r,t)I{Lij[U]Jr vVaU;(r, )+ Fy(r)}

Hrhe (=}, ©)

whereL;; is the linear operator defined by

Lij[U]:4f dXJ dy[Miap(r,x)Mcq(0,y)

XVae( X=Y, 1) Upg(X—Y,1) + Migp(r,X) Mpcd(X,Y)
XVae(X=y,t)Ug;(y, 1) ], (10

and the random forckis assumed to be statistically station-
ary and independent from andt with zero mean and

Fij(r)zfldrﬁi(xﬂ,tﬁj(x,wT)>. (12)

The expressioi ;[ U] may be simplified by substituting the
expression(8) of M;j into (10). In particular, the trace
L;;[U] may be then written as

LilU]=[Vad0,t) =Va(r,t) 19,9:Uji (r,1) — a[ dpVic(r,1) ]
X[AcUpi(r,t) ] = a[ dqVai(r, 1) ][ daUig(r,t) ]
— a?[ Vi (1,£) JUpg(r,1)

+ f dp{4y(1+a—)G®(q,t)[dpdgVac(P,1)]

X[ 9adcUpa(P,t) 1= 29 329cd4d:GP(a)]
Xvac(qvt)udi(pat) + 2“7[aaacGD(q)]

X[3a0¢Vic(ad, 1) JUgi(p, 1)}, (12

whereg=r—p. Now we set the sides of the fundamental

domain to infinity. Then integrals in E412) are to be taken
overRP.

n<r=|r|<L, (13
in which the second-order moment of the increment
ovi(r,t)=[v;(r,t)—v;(0,t)] is given by

0
f d7(Svi(r,t)dv;(r,t+7))=2[V;;(0,t) = V;;(r,1)]
3 rir;
—opél o = U1
2o po1vg 12 )
(14)
with
0<é<2.

Here 5 is the characteristic length scale of the viscous sub-
range, whileL is that of energy containing eddies wfas

well asti and the forcind, so thatF;;(r) is almost constant,
say Cj;, independent of in the scaling rangd13). We
assume thak;; is almost isotropic so that;; = CJd; .

We further assume that there igquasjstationary state in
which the time dependence f;;(r,t) is negligible in the
scaling rangg13). The assumption is acceptable when the
correlation functionU;;(r,t) for the force-free case decays
with time and therefore unbounded growth of the fiédg-
namo effeck does not occur. If the dynamo effect does not
occur, the stationary state may be achieved by a large-scale-
correlated external forcing. Note that from the Cauchy-
Schwartz inequality, the absolute value of the correlation
function [Uj;(r,t)| at anyr is bounded by the value of the
trace|U;;(0,t)| atr =0 which is proportional to the energy of
the field per unit mass.

In the model with @, 8)=(0,0) (which is essentially the
same as the passive scalar mgdede right-hand-side of Eq.
(12) vanishes at= 0 and therefordJ;;(0,t) decays with time
due to the viscosity, which implies that there is no dynamo
effect. In the model with ¢, 8) = (0,1) (the model of passive
solenoidal vector without stretchinghe absence of dynamo
is shown in the same way. In the model witla,3)=
(—1,0) (the passive magnetic field modgleit is shown by
Vergassola that there is no dynamo effect in 2D for any
exponent, and in 3D for 0<£<1 [15].

The question whether the dynamo effect occurs or not in
the model with @,8)=(1,1) is not yet solved. In the force-
free case, we may rewrite E(R) for the trace of correlation
functionU;;(r,t) as

d
EUii(r:t):2{Lii[U](rrt)|(a,ﬁ):(l,l)+ vV2U;(r,t)}

=2{Li[U1(r,)](ap)=(-10+ PV2U;(r,1)

+Li[U1(r, 0}, (15

where the operatot ;[ -] is defined byL;[ 1|4, z-(11)

In the following, we assume that the random advecting—L”[-]I(a,ﬁ):(,llo). If the termL};[U] is absent, Eq(15) is
field v is statistically stationary, homogeneous, and isotropiddentical to the equation for the model witha(B)=

with zero mean, and has a scaling range sfich that

(—1,0) and there is no dynamo effect in the parameter re-
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gion noted above. If the underlined part of Efj5) is absent, equation. Although the analysis in 3D would be quite com-
it can be shown after some algebra théat;(0,t) plicated, the analysis can be considerably simplified in 2D
=sup|U;(r,t)| decays forD=2,3, and 6<{<2, therefore because the second-order tenslgr may be then expressed
no dynamo effect occurs. However, the absence of dynamim terms of only one scalar function. As a first step toward
in the full system(15) is not in general guaranteed by the the understanding on the scaling implied in the homogeneous
fact that each of the two separated parts in the right-handequation, we therefore consider the scaling in 2D in Sec. lIl.
side of Eq.(15) does not induce the dynamo effect when the

other is absent. The difficulty of the problem lies in the facts I1l. ANOMALOUS SCALING OF SECOND-ORDER

thatL;;[ U](0O,t) is non-negative for any correlation function MOMENTS IN 2D

Ujj(r,t) if the stretching term is present&& 1) and that the

operatorL;;[ - | contains not only derivatives but also inte- A. Formulation for 2D

grals(in space due to the pressurelike ternBE&1). By virtue of the incompressibility condition, the correla-
If Ujj(r,t) is the correlation function of the stationary tion U;; in 2D may be expressed in terms of a scalar func-
state, then tion, say®, as
L”[U]:_C(S” . (16) Uij(r)=eiaejb(9a(9b<b(r), (17)

Sincel is a linear operator, the solution of E4.6) may be

symbolically written as whereei,= — €z =1, €11= €,= 0, and®(—r)=(r).

Sincel is a linear operator, the homogeneous solution

U=u+u', may be expressed as a linear combination of the functions of
the form
whereU" andU' are the homogeneous and inhomogeneous |
solutions of Eq(16), respectively. The determination of the Uij (1) = €ia€jpdadp P (1),

scaling of the solution of Eq16) requires the knowledge of h
the scaling not only of the inhomogeneous solution but alsg' €€
those of h_omogeneous sol_uti_ons. _ Lij[U']=0 (19)

Regarding the former, it is readily shown by a power
counting that the isotropic inhomogeneous solution whos&nd
second-order moment scales as

Do(r)=Ro(r),
Ujj(r)ecréi .
®,(r)=Rf(r)cogl6)+Ry(r)sin(18) (when |#0).

has the scaling exponedf=2—¢. Here, we have omitted ) ) o )
writing the time argument for we are considering the station-1 "€ correlation functiot;; (r) satisfies;; (—r)=U;;(r) in
ary solution in the scaling rangé3). 2D so thatl is even. The isotropic part &f;;(r) is given by

However, such a power-counting method or dimensionalfj(1)- Since the scaling behaviors Bf(r) andR¥(r) are
consideration is insufficient to determine the scaling of thethe same, we discuss only the cosine part. WeRfgt) =0
homogeneous solutions. Its determination requires an analgnd denoteR{(r) by R(r) in what follows. From Eqs(12)
sis (the so-called zero-mode analysisf the homogeneous and(14), Eq. (18) can be written in terms dR,(r) as

1

Li[U']= 17 ¢

(r& ol ) {r*R" (1) +(2+ Hr3R"(N) +[£= 1122+ ) Ir?R{ (r) + (1+21%) (1= §)rR/ (r)
F[21%(6=2) 1A+ HIR(1N}H 20 — EP°RI(N) +E(1=Hr?RY(r) + £(1+1%) (6= DrR{(r)

+212E(1= R(N]+ PE(E+2)[IPRI(N+(E- VIR (N+12(1= HR(ND+2y(1+ a— y)é

%1n(q)
x JRz dp¥005(| 0:p){—3p*R""(p) +6(1—£)p°R"(p) +3(1-&)(§—21°~3)p®R/(p)

—2 ¢4
+3(1421%)(3-£)(1- PR/ () +[1(E+ 1)+ 1%(8£-29](1- HR()} +25{3+ (¢~ Dyale | dp®——

™

x{cog26,q)cog| 8;,)[—P?R{(p)+ PR/ (p) —12Ri(p)]+ 21 Sin(26,¢)sin(1 ,,)[PR (p) —Ri(p)]}) =0, (19
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whereq=r—p, 6,, and 6,4 denote the angles between two B. Scaling of the isotropic part
vec.tors_r, p andp, q, res_pectively, and the prime denotes the  £q; the model with &.B8)=(1,1), itis shown analytically
derivative of the function. The tensorial algebra was peryy, 4 {o=—¢ is a solution of Eq(22) as follows. Forl=0

formed by USINQMATHEMATICA . and7=— £ the intearal in EQ(23) i tional t
Let R, be given by { ¢, gral in Eq(23) is proportional to

1/(q\¢
R(r)=r?"¢ (20) fdeg(B €026y, (24)
in the scaling rangé13), thenU!j(r) is given by By introducing variablesd, «, 6,) defined as
r:r: _ p o 1 o
Ujj(n=rfcog19)| (£+2)({+1)8;—[({+2)¢+17] %) =y g %70
Faf rafi and noting that the triangle with the sides of lengtip,land
=sin(l16)I1({+1) Eiar_ZJJrEiar_z) . (22 k is similar to that with the lengtly, p, and 1, the integral

(24) is shown to be

From Egs.(19 . o0 27
gs.(19) and(20), Eqg. (18) reduces to fo dpfo depp*“lcos{zep)zo.
Li[U'T=Nei(Oré"4 2 cog16)=0,

The other part of the right-hand-side of E@3) also van-

ie., ishes wherl =0 and{=—¢&. Therefore,{o=—¢ is a solu-
tion of Eq.(22). The value\; o({) defined by Eq(23) may

Nei(0)=0, (22) be evaluated numerically in the parameter regionénf0
’ and —4<{<2—{ where the integral in Eq23) converges.

It is then found that there is a negative solutidf of Eq.

h
where (22) other than{y= — ¢ whose absolute value is larger than
1 & Therefore, the homogeneous equatitB) has a solution
Nea(0)= 1Tg [(2+0)2—12][2(L+ &) —12(1+ &)1+ in the scaling rang€13) whose trace is given by
) ) UH (N =Ayré +Aré, (25)
[—2afé+ a2+ HI[(2+ D (L+ ) +19(1-§)]
Ay(1+ a—y)E whereA, andA, are arbitrary constants ag"’= — £. Now
+i —((+£-2) [3L(2+(E+D(E+-2) assume that the trace of the correlation functidff(r) is of
the form(25) in the scaling rangé€l3) and that the two terms
+212(1—&)(2+ 322+ 2E+32&)+14(£2-1)] in the right-hand-side of Eq25) are of the same order at the
plg 4+ small scaley, that is,A,/A;~ 7747()1)‘5(()2). Then the term pro-

portional torggl) is much larger than the term proportional to
rggz) in the scaling rang€13) and therefore the dominant
scaling behavior iyﬁocrggl):r*? As mentioned in Sec. I,
_ _ the inhomogeneous solution with scaling exponénpt 2
—2I(1+)sin(l 9rp)3”‘(29pq)}) , (23)  —¢is to be added to the homogeneous solution given above.
For later use, we extend the assumption to determine the
i ) i dominant scaling behavior in the scaling rand®) to the
and g=r/r—p. The integral on the right-hand side of EqQ. c3se when there are more than two isotropic homogeneous
(23) converges whe>0 and—2—[l-2|<f<2—&+1. goutions of Eq(18) with different exponents 8 ¢{)> £{2)
_Therefore the scaling of the homogeneous solution IS, "\ye assume that the homogeneous part of the correla-
given by tion function UM is expressed as a linear combination of
| these scaling solutions of E¢L8) in the scaling rangél3)
Uij(r)“fgﬂ and that all the scaling solution are of the same order at
~ 7. It follows that the dominant scaling behavior in the
where(, is the solutions of E(22). Although¢, depends on scaling range is determined by the largest expog@“ﬁt
¢, we do not write it here explicitly. Because of the complex- The scaling exponents of the isotropic second-order mo-
ity of the integral, it is not easy to solve E@2) analytically.  ment in the model with other value of the parametersp)
However, it can be solved numerically. In what follows, in- are given in the following for the comparison. In the rest of
tegrals in computations are evaluated numerically by usinghis section,{;(«,8) denotes the scaling exponent of the
MATHEMATICA . homogeneous equatiofl8) with (a, B). The model with

~2yl(e-Da+3le | dp

)

X{[17+£(2+{)]cog1 6,,)cog 26,

016308-5
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(a,B)=(0,0) has the same scaling exponent as that of the 3

passive scalar model. Although the solenoidal condit®n 25 | G00) o]
is not applied for the model witha,8)=(0,0), it can be e

shown that we can formally apply Eq&2) and (23) to S &0.h ;
determine the scaling exponety by letting («,y)=(0,0) w15l !
and eliminating the zero’s coming from the coeffici¢(2 ' ©10 2‘2’(1 b
+£)2—12]. The exponents ar&,(0,0)=0,— ¢ and from the 1t P 2
assumption mentioned above, the exponent of the dominant 5

scaling is given by,(0,0)=0, that is, the homogeneous so- 051 P10 3

lution is nearly a constant. For the model with,3)= 0 ab s

(—1,0) (the passive magnetic field modghe scaling expo- 0 03 ! 15 2

nents of the homogeneous solutions are given by solving Eq. :
(22 with a=—-1 and y=0. Among the exponentg, FIG. 1. The scaling exponents of the homogeneous solutions
(—=1,00=—¢,—2,—&,— 2, the largest exponerdy(—1,0)= of the model equatiofi(a,8)=(1,1)] with 1=2. ¢ is the scaling

— ¢ dominates the scaling behavior in the scaling rafi@  exponent of the advecting fieldl; 5(£) changes its sign within the

from the assumption. The exponefy( —1,0)=— & is con-  error bars and the circle symbols denote zero’s obtained by a linear

sistent with the result if15]. For the model with &,8)  interpolation. For comparison, the scaling exponetisof the

=(0,1), the scaling exponents of the homogeneous solution@odel with other choices of the values of the parameterg) are

are given by solving Eq(22) with =0 andy=1/2. It is also given by the solid, dashed, and dot-dashed lines.

easily seen that,(0,1)=0 is a solution. In a similar way as

for (a,8)=(1,1), it can be proved thaf,(0,1)=—¢ is a fgct is in.agreement with the lempirical “law qf isotropiza-

solution. It is found numerically that there exist negativetion,” which states that the anisotropy of the higher dedree

exponents/,(0,1) whose absolute values are larger tifan decays faster with the scale. ' .

and there is no positive exponent in the parameter region of The scaling exponents of the anisotropic part for the

¢ and £ where the integral in Eq23) converges. Therefore Mmodel with the other values of parameteds 8) are given in

the exponent of the dominant scaling behavior is determinethe following for comparison. For the model with ()

to be £,(0,1)=0. Note that the inhomogeneous solution of =(0,0), it can be shown that

Eq. (16) with the scaling exponerd=2— ¢ is to be added to 1

thbe homogeneous solutions in all the case$agfB) shown 4(0,00= E[_§+ 2141+ 8)17), (26)

above.

The scaling exponerify(«,B) of the homogeneous solu-

tion of Eq. (18) is 0 if the stretching term is absent£0) by using the same procedure as for the isotropic case to Eq.

and —¢ if it is present @==*1) andg is irrelevant to the (23). Only the positive exponent that matches the small scale

exponento(a,8). Therefore the scaling of the isotropic part limit is shown. The exponen;(0,0) is the same as that of

is determined by whether the stretching is present or not anthe passive scalar model which is given by Fairlealal.[9].

is not affected by the pressurelike term. The exponent,(0,0) is also plotted in Fig. 1. For the model
with (a,8)=(—1,0) (the passive magnetic field moge¢he
scaling exponents of the homogeneous solutions are given by

C. Scaling of the anisotropic part solving Eq.(22) with a=—1 andy=0,
Since the constant ter@d;; in Eq. (16) is zero except for
=0, we have only to consider the homogeneous equation 1) 1 [T AT or
(18). Equation(22) with (a,B8)=(1,1) is solved numerically 4 (-10= E[_§+ E+al+9I7]-2,
for |=2. The solution is shown in Fig. 1. It suggests that (27)

there is a critical valug$ such that\ ; ,({)=0 has no real
zero for £é<£5, but has real zero'g$)(1,1) andZ(1,1)

1) (2) c
su_c_h that eig? £1’1)<§2 (1,1)<2 for £>¢; . and th_e where negative exponents are omitted for the same reason as
crlltlcal values |s_§2~1.3_‘. Note that_the correlation function ¢, iha case & B8)=(0,0). The exponents are shown in Fig.
Uj; (r) for the anisotropic parti#0) is O atr=0and thatthe 1 oy |=2 for comparison. For the model witha(3)

exponent/; which matches the small scale limit is positive. —(q 1), it is easily seen tha,(0,1)=2 is a solution of Eq.

If there is more than one scaling solution with positive ex-(23) for all 0<¢<2 as follows. The integrand in E(3) is
ponents{;, then the one with the smallest exponent decaysyroportional to p2q 4" ¢cos(¥,) when (=2 and|=2.

slowest with the scale and dominates the scaling in the Sincep?=1+q2— 2q cos(,y), the integral is shown to be 0.
scaling rang€13). Therefore in the case fo=2, the expo- |, the case for &,8)=(0,1), the other part of Eq23) also
nent of the dominant scaling i (1) It is found for =4 vanishes forz=2 andl = 2. Therefore/,(0,1)=2 is a solu-
numerically that the two real zero's<2/{(1,1)<{{?(1,1)  tion of Eq.(22) for all 0< £<2. It is shown numerically that
<4 of Eq. (22) which take nontrivial values exist fof  there is no other positive solutiaf3(0,1) of Eq.(22) in the
> £ where £;<1/3. Therefore, the homogeneous solutionsrange of¢ and £ where the integral in Eq23) converges. It
for =4 decay with the scale faster than thoselfer2. The is not easy to solve Eq22) analytically forl=4, but it is

{2(-1,0=—¢+1,
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shown numerically that there exist two zero's<25(0,1) X Gpd X—Yi1,8)Qej(Zt,8)} +{(r,i)=(—1,))},
<7{2)(0,1)<6— & of Eq. (22) with nontrivial values for¢ (28)
>¢£,¢ where,°<1/3.

From the comparison of the models with different values
of parameterqa,B), it is found that the scaling exponent
{(a,B) of the homogeneous solution of Ed.8) is affected
by the pressurelike term for the anisotropic palri£Q),
while it is not the case for the isotropic pattH0). It is seen
from Fig. 1 that £,(0,1)<{»(0,0) and ¢$(1,1)
<$3(-1,0) if ¢(1,1) exists, which suggests that the
presence of the pressurelike terf=€ 1) lowers the scaling
exponent/, of the anisotropic homogeneous solution of Eq.
(18).

where we have omitted writing the viscous and forcing term.
Mijk(x,y) is that of Eq.(8) with «=1 andy=1. The two
time functionsQ;;(r;t,s) and G;;(r;t,s) are to be under-
stood as appropriately defined two-time correlation and re-
sponse functions. For example, they are Eulerian two-time
functions in the DIA, whereas they are Lagrangian functions
in the ALHDIA and the LRA.

Let us suppose that the turbulence is weakly anisotropic,
and we may write

IV. A SIMPLIFICATION OF THE TWO-POINT CLOSURE

EQUATION Qi (r;t, )=V, (r;t,8)+U;(rit,s), (29

In various two-time two-point closure approximations in-
cluding the direct interaction approximatidblA), as well
as the ALHDIA and the LRA, the evolution of a single time whereV;; is the two-time two-point correlation for a certain
momentU;;(r,t) of the fluid velocity in homogeneous tur- isotropic state of turbulence, atj; represents the perturba-
bulence obeying the Navier-Stokes equatig@nis given by tion from the isotropic state. By substituting Eg9) into Eq.

the equation of the form (28) and collecting only the terms first order ldj;, and
5 . further introducing a bold simplification that the characteris-
—U~-(r,t)=f dxd dzf dS{2M.p(1,X)M eed Z,Y) tic time scale ofV is very small so that one may put
at ! Y to S(2Miav ecd 2Y Vij(r;t,s)=8(t—s), we obtain
X Qac(X—Y;t,8)Qpd(X—Y;t,5)Gje( — Z;t,9)
+4Miab(raX)Mdce(yaZ)Qac(x_y;tys)
d . .
EUij(r,t)=|Lu[U]+4f dXJ dyMiap(r, X)Mped(X,Y)Uac(X— Y, D) Vgj(y,t) t +{(r,i) = (—r1,])}, (30)
|
where We assume the existence of a statistically stationary state for

this equation, too. Now one can estimate in 2D the anoma-
. lous scaling in the rangel3) in the same way as in Sec. Ill.
; : |
Vij(r;t):f Vii(rit,s)ds, Uy (r,)=Ug(ritt). In particular, if we pu_tViJ- as Eq.(14) andU;; as Eq.(2_1)
—w then we have a relation for the homogeneous solution that
may be written in the form similar to E¢22), say

Comparison between Eq§30) and (10) shows that the N (£)=0 32)
simplified two-point closure equatiai30) and the equations &l '
derived by the modeld) have some similarity to each other.
Both have the same operatorand the only difference is the Where
existence of the underlined extra term in E8Q).
The equation for the second-order moment is given by Hgm2te

: ! p?
MDD+ g | ap B e ®

d _ 2 _ g2

2 0in=2| LU+ 2 dplL2,6 (D 7n7Var @) (207 NEzT 204~ E)cos205)}
+(4—312= %) (8—6£+ £2)cog46,4))cog 1 6,p)

HI(E= 22017 (2+ 0212+ OSin20,9

<70} (31 H(A-17-30) (4 E)sinA0,q)sinl 0,,)]. (33

X[acubd(p)] + [aaG(p)][(?aadVbc(q)]
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3 - ' ' shown that such nontrivial scaling exponents do exist. There
is an isotropic homogeneous solution with the scaling expo-
nent{y=—&. For the angular wave numbés 2, two real
exponentsz$t) and ¢§2) which take nontrivial values in the

- I ] range(0, 2) exist for &< €< 2 where&5~1.3. A preliminary

' analysis fol =4 shows that there are two scaling exponents
1} 1 2< V<D< 4 of the homogeneous solutions which are in

0s | ] agreement with “the law of isotropization.”
From the comparison of the models with the parameters
o 05 ; pye ) (a,8)=(0,0) (passive scalyy (a,8)=(—1,0) (passive
£ magnetic field, (a,B8)=(0,1) (passive solenoidal vector

_ _ without stretching, and (@,8)=(1,1), it is seen that the

FIG. 2. The scaling exponents of the homogeneous solutions  scaling exponent,, of the isotropic part is not affected by
with angular wave numbdr=2 of the simplified two-point closure the pressurelike term but depends alone on whether the
equation.¢ is the scaling exponent of the advecting field.({)  stretching term is present. However, the scaling expongnts
changes its sign within the error bars and the circle symbols denotg¢ anisotropic (#0) homogeneous solutions are affected by
zera's obtained by a linear interpalation. the pressurelike term and it is suggested from the analysis for

_ . _ | =2 that the pressurelike term lowers the exponénts the

Ngi(£) in Eq. (33) is that of Eq.(23) with a=y=1. The  anisotropic part, i.e., the decay of anisotropy with the scale is

integral in Eq.(33) converges wheg>0 and —|I—2|<¢  slower under the existence of the pressurelike term.
<2-§&+1. Figure 2 shows the solution for<0§<2 and| The anisotropy of the second moment is also studied for a
=2. The zeroZ; of Eq. (32) is seen to be slightly smaller simplified two-point closure equation. The scaling exponent
than 2 in the range € ¢<2. 5 of the anisotropy of =2 is slightly smaller than 2 for 0
<¢<2 and is smaller than that of Kraichnan’s passive scalar
V. CONCLUSIONS model. Finally we note that the statistically stationarity of the

_ ) model with parameterd, 8)=(1,1) is not yet solved and is
In this paper we proposed a model equation of a randomlyeft a5 a future problem.

advected solenoidal field that can be formally derived as a

linearization of the Navier-Stokes equatifthe model with
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