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Anisotropic spectrum of homogeneous turbulent shear flow
in a Lagrangian renormalized approximation
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An analytical study of the anisotropic velocity correlation spectrum tensor in the inertial subrange
of homogeneous turbulent shear flow is performed using a Lagrangian renormalized spectral closure
approximation. The analysis shows that the spectrum in the asymptotic limit of infinitely large
Reynolds numbers Re is determined by two nondimensional universal constants; theoretical
estimates for the constants are provided. The anisotropic component of the spectrum at finite Re is
more sensitive to large-scale turbulence structures than the isotropic component. A preliminary
analysis of the effect of finite Re or the width of the inertial subrange is in qualitative agreement
with direct numerical simulations. @003 American Institute of Physics.
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I. INTRODUCTION their values are in good agreement with those reported by
IYK.

According to the Kolmogorov hypothesisturbulence It is a challenging problem to theoretically derive the
statistics far from flow boundaries are locally homogeneousinisotropic spectrum of turbulent shear flow. In this paper,
and isotropic at sufficiently large Reynolds numbers Re angve attempt to do so using a spectral closure approximation.
at scales sufficiently smaller than the characteristic lengtialthough extensive closure approximations have been pro-
scaleL of the energy containing eddies. This hypothesis isposed, there are very few that do not contain adyhoc
widely accepted in literature. However, both Re dnchust  adjusting parameters, and are consistent not only with the
be finite, and the energy-containing eddies must be anisaolmogorov energy spectrur (k) =K ,e?*k>? of homo-
tropic in real flows, so that turbulence cannot be isotropic ingeneous and isotropic turbulence, whitgis the Kolmog-

a strict sense. Little is known about the degree of anisotropyrov constant, but also with tHe %3 scaling of the charac-

in small-scale statistics. In this regard, recent experimentakristic time in the inertial subrange of fully developed
and numerical studiesee, for example, Refs. 2 and Qug-  turbulence. To the authors’ knowledge, there are only three
gest that the anisotropy may be substantial. The anisotroposure approximations that have these properties and whose
appears not only at higher order moments, but also agstimates oK, are in fairly good agreement with the results
second-order moments, which are the main concern of pragrom experiments and DNS. They are: the abridged Lagrang-
tical turbulence modeling. The study of anisotropy is there{an history direct interaction approximati¢ALHDIA ),° the

fore not only of theoretical but also of practical interest.  strain-based abridged Lagrangian history direct interaction

Recently, the authotghereafter referred to as IYKde-  approximation(SBALHDIA),X and the Lagrange renormal-
rived a form of the velocity correlation spectrum tensor forized approximation(LRA)* (hereafter referred to as K81
small scales in homogeneous turbulent shear flow using aj| of these are Lagrangian spectral closures.
simple perturbation analysis. The anisotropic part of the ten- |t seems worthwhile to make here a few remarks. The
sor was determined by the rate of strain tenSgrof the fjrst concerns the so-called intermittency corrections to the
mean flow, the mean energy dissipation rafger unit mass,  forms of the velocity correlation spectra. If the energy spec-
the wave vectok, and two nondimensional constaftgand  trym E(k) is to be modified tdE (k) <k %3~ # with ©#0, the
A (denoted byA andB, respectively in IYK. The scaling  kolmogorov constank, loses its meaning. Similarly, if the
(ock™**) of the anisotropic part of the velocity correlation scajingock 133 of the anisotropic part of the velocity corre-
spectrum is consistent with previous studies based on dimefytion spectrum is to be modified, the constaftsand A,
sional analysis including the one by Lumfeynd the experi- |ose their meaning. The present status of our understanding
ments by Wyngaard and CStéhereatter referred to as WC o the inertial subrange spectruii(k) seems to be well
and those by Saddoughi and Veeravdltiereafter referred to g, mmarized by the statement “There is a general bétief
as SVJ. The form of the tensor was verified, and the two thqoygh contested often enougthat the spectral exponent
constants were estimated from direct numerical smulaﬂorbets slightly modified by small-scale intermittency. This
(DNS) data. Tsuff also obtained estimates of the two con- pgification, even if exists, is small and cannot be accom-
stants in the wall boundary layers of wind tunnel turbulence;,qqated in a consistent and satisfactory way given other
uncertainties in the data” by SreenivasarThis also seems
dElectronic mail: kyo@cse.nagoya-u.ac.jp to be the case regarding the anisotropic part of the velocity
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correlation; although there have been pioneering studies bipirbulence. The latter assumption is supported in part by the
experiments$®** and DNS'*® on the scaling of the aniso- good quantitative agreement of the spectrum by LRA for
tropic components based on @pdecomposition, the uncer- isotropic turbulence at large Re with experiments as shown
tainties do not seem small enough to fix the modification, ifin Fig. 1 of Ref. 31. It is therefore tempting to apply closures
it exists. also to anisotropic turbulences. However, there have been
Although the uncertainties may be better controlled inonly few studies on anisotropic turbulences, in contrast to
DNS than in experiments, it is still difficult to fix by DNS the isotropic turbulence, on the basis of spectral closufBEsey
modification in the limit of large Reynolds number, becauseinclude studies on axisymmetric turbulence by Herrhg,
of the limitation of the attainable resolution or the Reynoldsand on turbulent shear flow by Lesfi2,Cambonet al,**
number, which implies the limitation of the width of the Bertoglio?® Rubinsteiret al,* and Yoshizawd!) In particu-
realized inertial subranggRecent high resolution DN$s lar, to our knowledge, no analytical studies have been per-
with the number of grid points up to 4096suggesty. ~ formed on anisotropic turbulence using any of the above-
~0.10, where the highest Taylor microscale Reynolds numnoted Lagrangian closures. This is presumably because of
ber R, achieved in the DNSs is 1201. This valueofis a  the complexity of the equations that must be analyzed. For-
little larger than the value- 0.03< u=<0.03 suggested from tunately, the recent study by IYK suggests that the analysis
measurement$in the atmospheric surface layer turbulencesmay be greatly simplified by properly taking into account the
over the range oR, =2800-12700.) symmetry of the problem. These considerations encourage us
The second remark concerns the capability of spectraio analyze the Lagrangian turbulence closure equations for
closures to describe intermittency effects. Spectral closuregomogeneous turbulent shear flow. We consider in the fol-
have so far made contributions to the understanding of tudowing the LRA because its equations are the simplest
bulence such as quantitative predictions of energy spectr@mongst the three closures. The analysis is based on a sys-
the derivation of the eddy viscosity based on the Navier-tematic perturbation method, and introducesatbhoc pa-
Stokes equations, etc., but also have shortcomings includin@meters in the analysis of the asymptotic limit of infinitely
the one associated with the intermittency of small scées, large Re.
for example, the review by Kraichn#h. Regarding high-
order velocity moments, it is not surprising that spectral clo-
sures such as the ALHDIA and LRA do not capture intermit—#UE%%ES#?TSISE‘:RFEFOCVOMOGENEOUS
tency effects on them, because the closures concern only the
second-order velocity moments. Regarding the second-order In this paper, we consider an ensemble of the turbulent
moments, little progress has been made so far by spectraklocity fieldsu(x,t) for an incompressible fluid obeying the
closures on the intermittency. One might therefore think thatNavier—Stokes equations,
they are incapable of predicting anomalous scaling. It is

2
however to be recalled that exact closure equations for —— ,,a_) ui(x,t)= —um(x,t)ﬂ(x,t)
simple models such as randomly advected passive scalar and |9t 9%i9X IXm
vectors with or without pressure have solutions, the so-called ap
zero modes, that exhibit anomalous scalifsge, for ex- — —(Xx,t), D

ample, Refs. 19-26 The above spectral closure equations %

for turbulence obeying the Navier—Stokes equations are du;
similar in a sense to the exact closure equations for these TXi(X’t):O* @
models which have solutions exhibiting anomalous scaling ) ) o ) . o
[see the discussion after EqS0)—(52)]. It is therefore dif- wherev is the klne_mat|c viscosity coefficient, the densny is
ficult to exclude at present the possibility that spectral clo-2SSumed to be unity, arulis the pressure. The summation
sure equations may yield anomalous scaling. However, theonvention is used for repeated indices. The statistical aver-
so-called zero-mode analysis of the closure equations is n&d€ taken over the ensemble for a quaniitys denoted by
easy, and is outside the scope of the present paper. (X). Le_t us decompose the velocity fialdinto its mean and
The above-mentioned spectral closures for second-orddfuctuating terms  as u(x,t) = (u(x,t)) +T(x,t), ~where
moments are obtained by truncating certain renormalize§U(x.t)) is the mean flow an@(x,t) is the fluctuation. Then
perturbation(RP) series at the lowest nontrivial order. It (u) andT obey
would be of theoretical interest to know the consequence of » 92
continuing the RP series to higher orders, or applying the R%E_ Vax|ax|)<ui(x’t)>
approach to higher order moments. However only few stud-

ies have made of the consequefioet see Refs. 27—30The Hui(x,t))
present authors think that the issue remains disputable, and ~ —(Un(X,1)) X
to be studied further, but it is again outside the scope of the < >
present paper. 9 - _ p(x.t)
In this paper, we assume that the intermittency correc- 0Xm(um(x,t)u|(x,t)> ax; ®

tion, if it exists, is small, in accordance with Sreeniva&an,
and that Lagrangian spectral closures may be applicable {Ui(x.1)) =0 (4)
obtain an approximation of the energy spectrum for isotropic ~ 7Xi
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and
d 32 )
E 0"X|0"X| U( t)
= —Um(x,t) (x t)+ (um(x tT;i(x,1))
Jp
_ﬁ_Xi(Xt —(Um(x, t)) (X t)

a(ui(x, t))~

T Tk Un(X,t), 5
Ju;
ax,(Xt) 0, (6)

respectively, wher®=p—(p). Equation(3) for the mean
flow (u) contains single-time second-order momentstipf
which are determined in principle by Eq%) and (6).

In the derivation of the LRA equations, use of the so-

called Lagrangian position functio# plays a key rolgsee
K81). The function is defined by

Py, tx,t)=d8y—

wherea(x,t’;t) is the position at timé of the fluid element,
which was atx at timet’. In terms of ¢, the generalized
velocity v(x,t’;t) defined as the velocity fluctuation at tirhe
of the fluid particle that was at positionat timet’, is given

by

axt’;t)],

V(x,t’;t)Ef dy ¢(y,t;x,t")U(y,t). (7)
The functionys obeys
J
SR = = [(Un(Y, D) + T (y,1)]
(9 . !
Xmlﬂ(y,t.x,t ). 8

Equation(7) implies that the evolution of(x,t";t) with re-
spect to timet is known from those ofu(x,t)), T(x,t) and
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field, ov(x,t’;t) is the response of(x,t’;t) at timet=t’,
and P(SX) is the operator that projects a vector field»oto its
solenoidal component.

The LRA procedure proposed in K81 may be applied to
the field obeying Eqg5) and(6). This yields a closed set of
equations foKu), Q, andG. Hereafter, these are referred to
as the LRA equations. Although the LRA is applicable to
turbulence in an arbitrary domain and mean flow in prin-
ciple, we consider here the simplest but nontrivial case in
which the flow domain is unbounded in each of the three
Cartesian coordinate directions, aud is given by a linear
function of the position vectox,

<Um(X)>= SXn s

whereS,,,, is a time independent tensor. The incompressibil-
ity and stationarity ofu) requires thatS,,,,,=0 andS,,,S
=S,,S\m, respectively. The LRA equations are then compat-
ible with the homogeneity o andG, i.e., if Q(x,tg;x’,tg)
depends onx andx’ only throughx—x’ at an initial instant

to, then it is also true foQ(x,t;x’,t") andG(x,t;x’,t") for
t=t'=t,. We assume here th&@ and G are statistically
homogeneous. It is then convenient to introduce the Fourier
transforms ofQ andG with respect tox—x’,

11)

~ 1
Qij(k,t,t")= W.f d*(x—x")

><Qij(X,t;X',t')e‘ik'(x—x’)7 (12)
éij(ki,t’):f d3(x—x")Gyj(x,t;x’ ") e K xx),
(13

respectively’® The tensoQ will be referred to as the veloc-
ity correlation spectrum tensor, and we will omit the héor
convenience.

The LRA equations in Fourier space representation are
given as follows:

(%+2vk2)Qij(k,t,t)= Dy (K,) + Kijmn(K,t) S (14)

¥y, t;x,t"), which are given by Eqd3)—-(6) and(8). jt+ vk? | Qij(k,t,8)=JIR(K,t,5) + L1 (K,t,5)Spyn,
In general, the performance of an approximation may
depend crucially on the choice of quantitieslled “repre- (15
sentatives” in K8} in terms of which the approximation is J
constructed. It is therefore important to choose proper repre- | -+ vk? | Gij(k,t,8) = J;(K,t,5) + Lijmn(K,t,5) S,

sentatives, as stressed in K81. The LRA uses the following

16
representatives: the Lagrangian two-time and two-point ve- 18
locity correlationQ and the Lagrangian response funct®n Gjj(k,t,t)=Pj;(k), (17
defined as
where
- v 1y — p(X) . . Y
QIJ(Xltlx ,t )_PS <[U|(X,t ’t)]vJ(X ’t )>’ (9) Dij(k,t):Hij(k.t)+Hji(_k:t), (18)
A

dx’ G;;(x,t;x",t")dvi(x',t";t") v, ,
f N . Hij(kvt):;1 ‘ ds [_Piab(k)Pcde(p)Gac(pitvS )

=PY([50,(xt";:1)]), (10 S

kvt!S, ) + % Piab(k) Pecd( k)
(19

X Qpd(,t,8") Qje( =
XGje(_ k:tis')Qac(p'tvsl)de(qias,)],

wheredv(x,t’;t") is an infinitesimal disturbance field at time
t’ that is statistically independent of the disturbed velocity
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d ~ A
Kijmn(kat):kaQij(kat)_[Pim(k)_kikm]an(kyt)

—[Pjm(K) = kikm1Qni( =k, 1), (20)
A
HUSEOEEDY 'ds Pin(— k)ka%gﬂ
p.g Js p
cha(_qltiS,)Qlj(krt’S)r (21)
Li?mn<k,t,s>=—Pim<k>Qn,-(k,t,s>, (22)
Jij(k,t,8) = E ds Pi(— k)ka%gﬂ
XQca(_q!t!S,)Glj(k!trs)! (23)
Lijmn(kvtvs):_Pim(k)an(k!t!S)u (24)
.k o
k=|k|, k=i Pyo=5;—kk.

Pimn(K)=KmPin(K) +knPim(k),

A
p% EJ d®pdiqs(k—p—q),

to is the initial time, and=s=t,. From Eqs(15—(17) and
(21)—(24), we have

Qij(krtas):Gia(kvt!S)Qaj(kvsrs)' (25)
The LRA equations, Eqg14)—(24), are therefore a closed
set for Q;(k,t)=Q;;(k,t,t) and Gjj(k,t,s). Hereafter,
wheneverQ appears without time indices, it will denote the
one-time correlatiorQ;; (k,t) and not the two-time correla-
tion Qjj(k,t,s). The LRA equations, Eqs(14)—(24), are
compatible with the reflection symmetry & and G, i.e.,
Q”(_k,t):Q”(k,t) and Gij(_k,t,s):Gij(k,t,S) Where
the former is equivalent to

Qji(k,t)=Qjj(k,t).

We assume the reflection symmetry@fandG.

(26)

IIl. INERTIAL RANGE ANALYSIS OF THE LRA
EQUATIONS

The inertial subrange solution® and G of the LRA
equations, Eq914)—(24), for S,,,,=0 were obtained in Ref.
39. They are

Qij(k,t)=Q{M(k; e)——emk Wp, (k), (27)

Gij(k.t,5)=G{)(k,7;€)=G (&) P;(k), (28)

where é=7/T (k),7=t—s, T (K)=e¢ Y% 23 K, is the
Kolmogorov constant, an@(®) is a universal function. The

LRA gives
Ko=1.72. (29

The dependence @& on the normalized time difference
is shown in Fig. 1. The functio®(®) monotonically decays

Yoshida,
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FIG. 1. Isotropic Lagrangian response functiaf®) as a function of the
normalized time differencé= 7/T (k).

with £ and G(®—exp(—cé) asé—x, wherec is a nondi-
mensional constant of order unity.

In the inertial subrange of homogeneous turbulent shear
flow, Q andG can be written as

Qi (k,)=Q(k; e(1))+QM(k, 1),
Gij(kt+7,0)=G{(k, 71 e(t)) + G (k,t+ 71),

(30
(31)

where €(t) may depend on timé. In the present problem,
there are at least three types of time scales that may be dis-
tinguished from each othe(i) the time scal€eT g associated
with the mean shear rate and given By=1/S where S
=mayx;|S;|, (ii) the time scaleT,(k) characterizing the time
dependence of the single-time correlati@p(k,t), and(iii)
the time scaldl (k) characterizing the decay with respect to
the time differencer of the two-time correlationss;; (k,t
+ T,t) and Qij(k,t+ T,t).

In this paper, we assume that in the inertial subrgnge
the entire wavenumber range

(A-1) the correction®Q™) and G*) are small enough that
we may discard terms second or higher order in
(QM,GM) in the LRA equations;

(A-2) the mean shear rate is small enough that the time

scaleTs=1/S is much larger tharT (k), i.e., 8(k)

=T (k)/Tg=ST.(k)<1;

the time scaléeT,(k) is also much larger thafm (Kk),

i.e., w(k)=T(k)/T(k)<1;

(A-4) the response functiorG;;(k,t+7,t) is negligibly
small for the time difference>T (k).

(A-3)

The consistency of these assumptions with the resuffing
andG will be discussed at the end of this section (Ar1)—
(A-3) and in Sec. IV for(A-4).

For|s’ —s|<T(k), we have

Qlj(ks) Qlj(k S)+(S _S) Qlj(k s), (32)
Gij(k,t,s/):Gij(k,S/"r‘(t_S/),S,)
"“Gij(k,S‘l‘(t_S,),S)
+(s’—s)aisGij(k,er(t—s’),s), (33
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from the definition of T;(k). Assumption(A-4) combined
with (A-3) implies that the main contribution in tr& inte-
grals of Eqs(19) and(23) comes front —s’ <T,(k). Taking
this into account, substituting Eq§30) and (31) into the
LRA equations with Eq(25), and discarding the second- or
higher-order terms in@™®,GW) by virtue of assumption

(A-1), we obtain the following closed set of equations for

QW andG™:

—K©

Di[QM,GM](k,t) =~ K (K1) Syt %Qﬁ’kk,t), (34)

M][Q(l)!G(l)](krs+ T,S)
J
=—-G{(k,s+7,5-F;[QW.GW](k,s+s)

=L{D(k,5+7,5)Spat 3 (k,5+7,5), (35)
GM(k,s,9)=0, (36)

where we have discarded terms containidgk)Q®,
S(K)GW, u(k)QW, or u(k)G®), because of assumptions
(A-2) and (A-3). The functionalsD, 7, and A/ are linear in
(QM,GM)y. The expressions oD, J, andJ are rather
lengthy, and are given in Appendix A. The symb&I€’ and
L are the same as$ in Eq. (20) andL in Eq. (24), respec-
tively, but with Q andG replaced byQ(® and G(®.
Equations(34)—(36) are satisfied by

QMW(k,1)=Q%k,t) +QT(k,t), (37

GO(k,t+7,t)=GS(k,t+ 7,t) + GT(k,t+ 7,t), (39
where Q5,G®) and @Q',G") satisfy

D[ Q5 G%)(k, 1) = — K (K,) Sy, (39)

Ni[QS,G8I(k, t+ 7,t) =L (K, t+ 7,) S, (40)
and

J
Di[Q".GM(k.t) = QP Lk, e(t)], (41
Ni[QT,GTI(k,t+ 7,t) =J;;(k,t+ 7,1), (42

respectively.

By considering the isotropy d®® andG(® as well as
the involved operators, one can show that E§8) and(40)
are satisfied by

Qﬁ(kvt)zxijmn(kvt)smn’
Gh (Kt 7,8) = Yijmn(K,t+7,1) Sy,

(43
(44)

Anisotropic spectrum of homogeneous turbulent flow 2389

Here we have used E@6) to derive Eq.(45).
We will attempt to find a solution fora,(k,t) and
bg(k,t) in the following similarity forms:

a (k) =A, ki,
ba(K,t+ 7,t) = X3k V4B g Xsko7),

where e=¢(t), andA, andBg(-) are constants and func-
tions, respectively. Here, the Greek indieeand B represent
{1,2} and{1,2,3, respectively. By substituting the similarity
forms of QS and G® into Egs.(39) and (40), we can verify

that thep, q integrals inD and A/ converge in the limit of
both large and small wavenumbers, and the terms on the left-
and right-hand sides of each equation have the same scaling
if and only if

X1:1/3, X2:_13/3, X3:_1/3,
X4:_2/3, X5:1/3, X6:2/3
Therefore, we have

a,(k,t)=A,eYk 133 bs(k,t+7,1)=Bgz(§)TL(K),
(47)

in the inertial subrange, wher& (k)=¢ Y% 2? and ¢
=7/T,(K).

Similarly, it can be shown that Eq$41) and (42) are
satisfied by Q',G") in the following form:

Qij(k,)=ATe 1331 1P} (k), (48)

Gii(kt+7t) =BT T (KT Py(k), (49)

whereT .= e/(de/dt), andAT andBT(-) are a constant and
function, respectively. A comparison of E@.8) and Eq.(43)
with Egs.(45) and(47) suggests tha®/QS=0(Tg/T,). In
this paper, we consider quasi-stationary turbulence, in the
sense thatT, is much larger thanTg, so that Q/QS
=0(Ts/T,)<1. We may therefore negle’. Furthermore,
Q" andGT are isotropic tensors and do not contribute to the
anisotropic part ofQ and G, which is the subject of this
paper.

If there exists a homogeneous solutic@{,G") satis-
fying Eqgs.(34)—(36), i.e.,

Dij[QHIGH](kIt) :01 (50)
MJ[QH,GH](k,t,S):O, (51)
GH(k,s,s)=0, (52)

then the right-hand sides of Eq&7) and(38) with Q" and
GH added, respectively, also satisfy E¢34)—(36). Equa-
tions similar to Eqs{(50)—(52) have been known, but pre-

whereX andY are isotropic fourth-order tensors, and may besymably because of its difficulty, the analyise so-called

written without loss of generality in the form
Xijmn(K,t) =a3(K,1)[ Pim(K) Pja(K) + Pin(K) Pjm(k)]

+ay(k, 1) Py (K) Kk, (45)
Yiimn(K,t+7,8)=by(K,t+ 7,t) Piy(K) P (K)
+by(k,t+ 7,t) Pin(K)Pjm(K)
+ba(k,t+ 7,0 Py (K) Kk, (46)

zero-mode analysisias been mostly limited to equations for
simple models including randomly advected passive scalar,
and vectors with or without pressut&.?Recently, the zero-
mode analyses of equations derived by certain linearization
of turbulence closures were performed by Yoshida and
Kaned&® and L'vov et al*° The equations analyzed by them
are different from each other, and discard the corredB6i

to the response function, but their structure is similar to that
of Eq. (50). These studies suggest that the homogeneous so-
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lutions (zero modesmay yield anomalous scalings that can- 02 T T T T T T T
not be derived by simple dimensional argument. We cannot l(éng(@
at present exclude the possibility of the existence of the zero- 0

mode @Q",G") which may affectQ(*). However, the facts
that(i) the scalingc**?3in the inertial subrange given ly°

in Eq. (43) with Egs.(45) and(47) is in good agreement with 02y BlG=2 \B%(é):B%(ﬁ) 1
DNS in IYK and experiments by WC, SV, and T<Ugind (i)

the tensor fornQS is also in good agreement with the DNS, 04 T
suggest that the possible effect of the zero mode in the BYO)

present problem is not very significant. -0.6 . . . ' . . .

In the following, we confine ourselves to the analysis of

QS and GS. The tensor form and scaling 6¥° in Eq. (43) ¢

with Egs. (45) and (47) are the same as those obtained in 0.2 T . T T T o

IYK. [The constant®\ and B in IYK are equivalent toA; N

andA, in Eq.(47).] Thek **®dependence dp®is in agree- Y I N—————

ment with previous studies based on dimensional analysis, BY®

including that by Lumley. sl |
In concluding this section, let us consider the consis- ‘

tency of assumption@-1)—(A-3) with the resulting solution

(Q(l) G(l)) (QS,GS). For (Q(l) G(l)) (QS,G9), we may 04 107'% Bi(§) .

redefineT (k) and Ty(k) asT(k)=T (k) and T,(k)=T,,

respectively, so thats(k)=T, (k)/Ts=Se Y*k % and 06 S S S

w(K) =T (K)/T.=(de/dt)e 4323 Consequently, o 05 1 15 2 25 3 35 4

QWIQ=0(s(k)), GHIG@D=0(s(k)). This suggests
that at sufficiently large wavenumbekssuch thats(k) <1 FIG. 2. Universal functions33(£) that define the anisotropic correction
and u(k)<1 in the inertial subrange of turbulence at suffi- G™ of the Lagrangian response function as functions of the nondimension-
C|ently Iarge Re, assumptlomA 1) (A-3) are well satisfied. alized time differencé=7/T_(k). Values ofBJ 2(8) anst(g) are rescaled.

IV. ESTIMATE OF THE UNIVERSAL CONSTANTS Wheregg represents the homogeneous solutions of Exf.
and(54) with A;=A,=0, while §g represents the solutions
of Eq. (53) for the initial conditions Bg(0)=0 and

/dg(O) 0; BB represents the solutions féy,=1, A,

The constantsA, and functionsBg(§) that determine
QW andG®, respectwely, can be estimated from the LRA
equations. For this purpose, it is convenient to introduce nord By

malized functions, defined by =0, andBﬁ represents the solutions fé; =0, A,=1. It can
_ be shown thatUz;;=Ug,, U,=Uy,, Vi=V,, and W,

B =B /G(O) B B 7 Y
p(§)=By(EIGT(E). —W2 Therefore, we hav@l=B} and B?=B2. However,

From Eq.(40) with Eqs.(43)—(47), we obtaini closed set of Blsé 82 because of the differences between their initial con-
integral differential equations for the functioBg, after per-  ditions, see Eq(54).

forming some algebra, in the following form: _ Figure 2 shows the functioB;(¢) defined byBj(¢)
42 _ B =B}(9G(9), wherea and B represen{0,1,2 and{1,2,3,
d_§28,8(§):f Ldp dq Us,(p,q,€)B,(9%%) respectively, an@(£) is obtained numericallySee Appen-
dix B for details of the numerical methodsThe functions
+ AV () +AWg(8), (53) Bj(§) for all @ and 8 decay with respect to the nondimen-

- sionalized time difference for £>2. Figure 2 suggests
dBs($) _s 4 that Bg(&)~exp(-cé) as £é—, where ¢ is a positive
dé g=0_ sl (54 constant of order unity. This implies thas; [(k,t+7,0)
~exp(—cT(K) for 7—o, becauses;(k,t+ 7, t) is given
where by a linear combination ofl (k)BB(T/T,_(k)) Thus, as-
1+q sumption(A-4) is consistent with the resultinG.
[ f oo

B4(£)=0,

. | P, In general,D;;[ Q%,G®](k) may be written in the form
q

 TOS GS =D..
B and y represen{1,2,3, and the summation convention is Dyl Q% G1(k) =Dijmn(K) Smn, (56
used fory. The expressions of the functiobs V, andW are ~ where Dj;n(K) is an isotropic fourth-order tensor and the

given in Appendix A. time indext is suppressed for brevity. We therefore have
The solution to Egqs(53) and (54) can be written in the  from Eq. (39)

form_ Tijmn(k)smn: 0, (57)
B(£)=BY(&) +ABL(£) +ABS(9), (55 for any tracelesS,,,, where

Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 8, August 2003 Anisotropic spectrum of homogeneous turbulent flow 2391

= 0
Tiimn(k)=Diimn(k)+Ki(Jr%n(k)' where the shear rat8,,, in Eq. (43) is given by the local

_ value of Sy,(X) = d(um(x) )/ dx,, which may depend on the
By settingSmn= 0madmp— (1/3)8mndan. ONe can show that  measurement position (see the brief discussion in Sec.

VIIC).
Tijab(K) = 3Tiji (k) 825=0, (58 In wind tunnel experiments and atmosphere observa-
tions, the one-dimensional cross spectriafh™ satisfying
for anyi, j, a, andb.
Equation(58) for various combinations of indices results %
in equations that are linear i, andA,, among which only f dk ESP(Ke) = (uyuy),

two are linearly independent. This yields, for example, the

following set of linearly independent equations #§ and has the similarity form

A,:
Tijij (K)— 3 Tiij; (k) =0, (59) Ef5(ky) = —Cae¥%; S, (66)
o n . - wherex; andx, are in the directions of the mean stream and
KaKp Tiian(K) = 5 T (k) =0, (60 velocity gradient, respectively, i.65y,,% Sém16n2. Accord-
. ) ) ing to the experiments by Wyngaard and Cdteferred to as
which may be written in the form WC) and Saddoughi and Veeravalireferred to as SY
MA+c=0, (61) C,;~0.14. (67)

. oA t o _ _ _ _
where M is a constant X2 matrix, A=(Ay,Az)’, Cis &  Thek; " dependence is consistent with the present analysis,
constant vector, anddenotes the transpose of the matrix or 55 \well as with IYK’s DNS and Tsuji's experiments. Equa-

vector. By using numerical solutions f&; and integrating tjons(43), (45), and(47) imply that the constar€, is related

numerically, we have to A; andA, as
-3.11 -0.73 -0.36 36m
M :( ~3.39 _0.223’ C:(—o.4oj- (62) Ci=70g( 33T 7A,). (689)
The solution of Eq(61) with Eq. (62) is given by Substituting Eqs(64) and (65) into Eq. (68) gives
A;=-0.120+0.002, A,=0.009+0.014, (63) C,=0.16+0.07, C,~0.16, (69)

where the error estimates0.002 and+=0.014 are obtained respectively, which is in fairly good agreement with Egj7).
by considering that there may be relative errors of roughlyThe theoretical estimate from E¢(63) gives

1% in the numerical values in E¢2), as discussed in Ap-

pendix B. The Appendix also gives the details of the numeri- ¢, =0.26+0.008. (70)
cal methods used to integrate over wave vector space. Since

the error estimate-0.014 in Eq.(63) for A; is large com-  The theoretical estimates Eq§3) and (70) are not in very

pared to its expected value 0.009, it is difficult to determinegood agreement with the DNS or experimental values, al-
from the present calculations wheth&; is identically 0 or  though the order of magnitude is similar.

small but finite. At present, no constraint that givles=0 is Among the possible sources of the discrepancy between
known. the theoretical estimate and DNS/experiments are

(0) the inadequacy of the LRA,
(i)  the use of the simplifying assumptiofs-1)—(A-4),

V. COMPARISON WITH DNS AND EXPERIMENTS (i)  finiteness of Re, and
iii) the neglect of the homogeneous solutigaro mode
The tensor form oR™ in the DNS of IYK is consistent (i) Q" G%) [See the disc%ssion after E(q§0)—(52) ]B
with Egs. (43), (45), and(47) and the constantd, and A, ' ' ’
are estimated to be Here (i) implies that(ii-a) the scaling range, if it exists, can
be only finite, and thatii-b) the scaling itself may be influ-
A;=-0.16+0.03, A,=-0.40+0.06, (64)  enced by the statistics outside the range if Re is not large

enough. The validity ofi) may be affected byii), because
while the wind tunnel boundary layer experiments by Fsuiji S(k) and w(k) used in the assumptiori&-2) and(A-3) are

give k-dependent, so that the conditions(#2) and (A-3) may
be not well satisfied in a wide enough range, if the scaling
A;~—0.17, A,~—0.45, (65  range is too narrow.

Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2392 Phys. Fluids, Vol. 15, No. 8, August 2003 Yoshida, Ishihara, and Kaneda

Regarding(ii), it is to be recalled that the theoretical with Egs. (45) and (47), andGS is given by Eq.(44) with
LRA values given by Eqs(63) and (70) are valid only for  Egs. (46) and (47). This model will be referred to as the
the asymptotic limit of Re»x, i.e., the case in which the cutoff model. For simplicity, we assume the similarity forms
inertial subrange is infinitely or sufficiently wide, while the (27) and(28) for Q(® andG(?, respectively, throughout the
Reynolds number of the DNS in IYK is only modes®,(  entire wavenumber range. The®;[Q™,GM](k) with
=284). The experimental Reynolds number is oriy Egs.(71) and(72) can be written as
~420 in Tsujf andR, ~ 1450 in SV.(The Reynolds numbers

ol g =D.. .
of the experiments in WC are not given explicitlit is also Dy[QY,GH](K) = Djjmn(K;Kp ,Kt) Sy (73
to be noted that the slope @™k ** is much steeper \hereD;;na(k;ky,k;) is an isotropic fourth-order tensor.
thanQ(@ock =113 at smallk, so that the integral in EqA2) Let {,=ky/k and {=k/k. It can be shown that

may be sensitive to the exact form @) at smallk, or the D (k; Zvk.ky) —D(k;0k,) converges to 0 as £5in the limit
width of the inertial subrange. A closer inspection of theof /, .0, whileD(k;k, k) — D(K;ky,,) converges to 0 as
integrals in Eq(A2) shows that with substitution of the simi- ~ ¢ *® in the limit of {,—. Since the convergence of the
larity forms Q® andG® of Egs.(43)~(47) into Q™ andG™,  former is slower, it is expected that a small wavenumber
the integral in Eq.(A2) does converge at small wavenum- ¢ toff for Q) has a more significant effect on the dynamics
bers, but the convergence is much slower than that in Ecpf Q%) than a large wavenumber cutoff. Thus, we will con-
(19) for isotropicQ [see the analysis after EGZ2)]. Thus, it sider only a small wavenumber cutoff. Hereafter, we will set
is not surprising that the inertial subrange in real turbulencg — . omit writing k, explicitly, and denote,, by ¢.

with finite Re is sensitive to the exact form of the spectra at  gquation(57) is now modified to

small wavenumbers, and in particular to the width of the

inertial subrange. y . _

Regarding(iii), the modification of the exponents of Timn(K:ko)Smn=0. (74
QW andES™ from —13/3 and—7/3, respectively, may be
significant, if the zero modes are not negligible. Similarly, it
may be also significant, if0) is not negligible. The above Tijmn(k;kb)EDijmn(k;kb)+Ki(jon)m(k)-
estimates of\;, A,, andC, from DNS and experiments are
obtained by ignoring the modification. As discussed in Sec. |as in the derivation of Eq(61), we have linear equations of
it seems that the modification, if it exists, is small, and can-a, andA, that may be written in the form
not be detected at present in a consistent way by experiments
and DNS.

In order to obtain better estimates 1Qf*) or A; andA,
e e e 2 Mo Manerec st same s en n EG2, The 2¢2 mati
in the analysis, or to solve numerically the LRA equations asM(g) depends ork andks, but only throughi=k,/k. The

an initial value problem in the entire wavenumber rangeg dependence d¥l implies thatA, andA, may depend ok

: . o . through(, i.e., A;=A4({) and A,=A,({), unlike the solu-
(1) (1) 1 1 2 2
without assuming specific forms fQy : andG_ by which tions for Eq.(61), and that the cutoff model of@®),G™)
one may avoid the problems associated wijk(iii ). How- does not satisfy Eq39) in a strict sensgWe assumed
ever, it is not easy to fully analyze the effects of any of : L

(0)—ii) or to solve numerically the LRA equations for an- A, to be constant in Eq71).] This is an inevitable penalty

. . . of the cutoff model simplification. In the following analysis,
isotropic turbulence. In Sec. VI, we try to get some idea on :

- L . : we assume that thedependence throughis weak, and that
the effect of(ii), especially(ii-a), by using a simple model.

a,(k) anda,(k) may be approximated by E¢7) in which

A; and A, are certain typical values o&;(¢) and A,(¢),

VI. EFFECT OF THE FINITENESS OF THE WIDTH respectively. _

OF THE INERTIAL SUBRANGE The matrixM({) can be evaluated numerically for any
EBO by applying methods similar to those described in Ap-

where

M({)A+c=0, (75

In order to get some idea on the effect of the finiteness opendix B. They may also be evaluated using their Taylor

range are simply discarded:

QD). (ke=k=k) 0 —3.11-0.449%® —0.738+1.91,%3 -
i IAVE] =A== ) M g = . 76
Wk ty=1{ ° ‘ 71 ~3.39+458% —0.225-1.37%2°
Pk.t) |0’ PR (7D & z
s In the following, we will denote the solutions of E{75)
SOk t4 7.0)= Gij(kit+7),  (kpsks<ky), (72 With Eq.(76) as (A1(0) A5 () to distinguish them from
e 0, (k<kp,k>k), the exact solutions of Eq75), (A1(),A5(2)).

Figure 3 shows numerically estimated valuesAqf¢)
wherek;, andk; are the bottom and the top wavenumbers ofandA,(¢) for several. It also shows the approximate values
the inertial subrange, respectivelp® is given by Eq.(43) A} () and A% () for small Z. It is evident thatA} () and
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— T T - experimental values should be compared with the estimates
02 for the limited width of the inertial subrange. In this respect,
R ] the estimates in E(.77) are in fairly good agreement with
0 A;‘(QMI | the DNS and experimental values in E¢84) and (65).

ol To understand the anisotropy of small scale statistics at

02 F * - . . . .

A very large Re, it is desirable to realize or simulate turbulence
04l \A;@ _ with much larger Re. However, such realizations or simula-
] tions are not possible at present due to the limitations of the

06 | Ay + available facilities. In this context, it is worthwhile to note

Ag( ><
' L L . that we have recently performed a DNS of homogeneous
0 0.1 0.2 0.3 0.4 0.5

turbulence for a simple mean shear flow using a spectral
method that is free from alias error. The method of DNS is
FIG. 3. CoefficientsA;(¢) andA,(¢) of the anisotropic spectrum tensor in - Similar to that used by IYK, but the number of grid points
the cutoff model, as functions af=k/k. The symbols show the values N3=1024 and Reynolds numbeR, =480, as well as the
cc:mputed from di.rect.numerical integration. The ques shai(¢) and maximum Wavenumbeh(maX=483, are larger than those in
A3 (), the approximations of\1({) andA,(¢), respectively, forf~0. YK ( N3=5123, R, =284 andeaX:241).

The new DNS data are consistent with Q& spectrum
derived in Sec. Ill as well as in IYK, and give

A;=-0.15+0.01, A,=-0.48+0.02. (78

: . . The value ofA; in Eq. (78) is almost equal to that in Eq.
(i) A1(¢) andA,(¢) agree well with the asymptotic val- ) 1 . o
uésAl andA%z for Re— given by Eq.(63) only for (64), while the value ofA, in Eq. (78) is slightly smaller than
£<0.05: that in Eq.(64). The decrease d&, with Re is in agreement
i) A0 aHdAz(g) are sensitive ta for Z~0.05: with result(iv) noted above. The weak dependencé\pfon
(i) the dependence @,(¢) andA,(Z) on ¢ is we:':lk for Re is also consistent with resuiti ) and with the data shown

0.1=¢=0.5; typical values in this range are in Fig. 3.
~ _Og_l andAZE)N ~-0.3: g 1(0) Recall that the estimate in EG7) is based on the sim-

. : : plified cutoff model spectrum, Eq$71) and (72), which

(iv) ilé(i)ot?l:creases andy(¢) increases withy over 0.1 does not satisfy Eq.39) in a strict sense as noted after Eq.
(75). One might be interested in treatiGgmore realistically

Result (i) implies that a;(k)/(e¥*1¥) and than the simple cutoff model, Eqé/1) and (72), by using

a,(K)/(€* 133 may be approximated by the constants the DNS data oRW for k<k, instead of discarding it. But,
the analysis is lengthy and it turned out not to provide much

Ar~—01, A;~-03, (77) improvement to the estimates &f or A,. It is therefore

respectively, when Re is moderate so thaltk, is less than omitted from this paper. For further improvement of the es-

approximately 10. Furthermoréii) and(iv) suggest thaf,  timate, one needs to develop better analytical or numerical

andA, have weak Re dependence such thaincreases and treatment of the closure equations taking account of the dis-

A, decreases slowly with increasing Re oves/k, cussion at the end of Sec. V. Such analytical or numerical

=<10. Result (i) indicates that a weak dependence oftreatment is left for a future problem.

A1(0),A,(2) onis not well justified for{~0.05, and result

(i) suggests that it would not be surprising if the asymptotic

value for A; and A, could be achieved only by realizing a v|I. SUMMARY AND DISCUSSIONS

wide enough inertial subrange whekesatisfying =k, /k

<0.05 can exist.

The valuez=k, /k, in the DNS of IYK is estimated to be In this paper, we analyzed the anisotropic velocity cor-

only 4.0, and it is less than 5.0 in Tsuiji's experiments. Figurerelation spectrunQ) in the inertial subrange of homoge-

1 (left) of WC and Fig. 19bottom of SV suggest~14 and  neous turbulent shear flow by using the Lagrange renormal-

z~16 for the corresponding experiments, respectively, proized approximation(LRA). The basic assumptions of the

vided thatk, andk; are given by the bottom wavenumbers of analysis are the fundamental symmetrijaemogeneity and

the scaling ranges and the top wavenumbers of the spectraflection invariance of Q and G and the smallness of

data given in the figures, respective(fhe bottom and the &(k)=T.(k)/Ts and u(k)=T_.(k)/Ty(k) in the inertial sub-

top wavenumbers of the similarity scaling range ofrange as described H-1)—(A-4). A theoretical estimate is

E(llz'D)(kl) are not given explicitly in WC and SV.The given for the universal constanfs; and A, that determine

above-mentioned analysis suggests that the inertial sut®® and the universal functior8j(a=0,1,2;3=1,2,3) that

ranges of the DNS and experiments are too narrow, i.e., théetermineG*) in Sec. III.

Reynolds numbers are not large enough, to compare their The analysis in Sec. VI suggests that Re must be large

QW with the one calculated for the asymptotic limit of Re enough so thak, /k,>20 in order thaQ®) is approximated

—o0, i.e., to compare the DNS or experimental valuef\pf by its universal form in the limit of infinitely large Re. The

and A, with those in Eq.(63) for Re—x. The DNS and analysis also gives rough estimates @) and its Re de-

G=ky/k

5(¢) agree well withA;(¢) and Ay(¢) for {<0.5. The
implications of the figure may be summarized as follows:

A. Summary
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pendence in turbulence at moderate Re. They are consistemhere (< j,k« —k) denotes the term obtained by exchang-

with DNS and experiments. ing the indiced andj and also the wave vectoksand —k
in the preceding terniThe comment on Leslie®® in IYK
B. Anisotropic components of the response function was incorrect; hisQ®) satisfies QM(k)=Q{(k).] The

To the authors’ knowledge, the present study is the ﬁrs{ynctions G=®) and Q=) are the Eulerian isotropic two-

attempt to analytically derive the anisotropic components OFme response and \E/%IOCity COQ(? lation spectra, r'espectively.
the Lagrangian response functi®{') using a spectral clo- The def_|n|t|on of GE®) and Q! ) used by Yc_>sh|zawa IS
sure approximation without introducing aayl hocadjusting slightly different from those used in other studies, but, to the

parameters. One might hope that the correc@éh is small authors’ understanding, &= andQ=) are also Eulerian
and thatQ(l). could be estimated by ignorirg). However response and correlation functions, because the velocity field

if G is replaced by 0 in the Sec. IV analysis, we obtain used in.the definitions ot.)eys. exactly the same equations as
P y y the Navier—Stokes equatiofwithout the shear termsn the

A;=-0.21+0.003, A,=0.58+0.02, (79 Eulerian frameworK.The symbolC,;,,{k) denotes a non-
dimensional fourth-order tensor, the form of which differs in
each study. It may contain differential operators with respect
to k that act on the functions on the right-hand side. In the
inertial subrangeG”(k) andQf”(k) are given by

C. Application to inhomogeneous turbulent shear GEO(k,t,8)=P;; (k) GEO[ 7/ Te(k)1, (82)
flow

which are significantly different from the values given by Eq.
(63). This shows the importance of treatif@(* properly
instead of just discarding it.

_ _ _ Q5 V(k,t,5)=Q{(k, )R 7/ Te(k)], (83)
In this paper, we considered a simple mean shear flow,
where the shear rate, i.65,,(X)=dUn(X)}/d%,, is con- Where G=()(.) andR(-) are nondimensional functions,
stant in space and time for the sake of simplicity. However=t—s, andTg(k) is the Eulerian time scale of the eddies of
this is not an essential assumption. The perturbational anal}ﬁiZENK_l-

sis of Q(x,x’,t) and G(x,t;x’,t") is applicable in principle It is assumed in the above-mentioned studies that
even if S, depends on a position vecterand timet, pro- ~ Te(K)=k™? However, the original Eulerian DIA by
vided that Kraichnarf! gives Tg(k)ck™%, and this scaling has been
_ IR verified by several studies based on DNS analyses, for
0¢=Smae <1, (80 example, Ref. 42 Hence, it is difficult to justify the scaling

where € =|x—x’| and Sy, is the maximunsS,,, in the flow TE(k)o‘k_m-_ If one use_sQi(jO)(k) given by Eq.(27) and
domain and the time interval under consideration. FurtherTe(k)~k ' in the inertial subrange, then Eq81)-(83)
more, we conjecture that if, in addition to E@0), the char-  Yield Q®(k)xk™** which contradicts the experiments by
acteristic length scalég of S,,, is much larger tharf, then WC, SV, Tsuji, and the DNS reported in IYK and the present
the leading order terms @(x,x’,t) andG(x,t;x’,t) in the  Study.

perturbation expansion for smdll € 5 are the homogeneous

parts whose Fourier transforms are given by H§) and

(31), respectively. HereQ™) andG") are given byQS and  ACKNOWLEDGMENTS

GS in Egs. (43) and (44), respectively, and,,= Syn(X)-

Data from wind tunnel experimeritsupport this conjecture, The authors are grateful to R. Rubinstein, Y. Tsuji, and F.
since they are consistent with the tensor form of HgS), Hamba for stimulating and useful discussion. The DNS was
(45), and(47) whenS,,, is replaced by the local value. Also, performed on a Fujitsu VPP5000/56 system at the computer
the measured constants, and A, are in good agreement center of Nagoya University. This work was supported by the
with those obtained by the DNS of homogeneous turbulentResearch for the Future” program of the Japan Society for
shear flow reported in IYK and in the present paper. Thethe Promotion of Scienc€JSP$ under project No. JSPS-
above-given conjecture could be examined in the frameworlRFTF97P01101, a grant-in-aid for Scientific Research
of the LRA for inhomogeneous turbulence. This is left for (B)14340033 from JSPS, and grants-in-aid for Exploratory

future study. Research 14654073 and for Young Scienti@$13750059
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Previous studies of the anisotropic p&t* of the ho-
mogeneous turbulent shear flow spectrum, including those
by Leslie®® Rubinsteinet al,*® and Yoshizawd’ have used APPENDIX A: EXPRESSIONS OF FUNCTIONALS AND
the Eulerian direct interaction approximatitBIA). In these ~FUNCTIONS IN EQS. (34)-(36) AND (53)

studies, Q) is given in the following form: , . ,
The functionalsD, J and the function] are given as

follows:
D;[QM,GM](k,t)=H;[QM,GM](k 1)
XQJ-Eb(O)(—k,t,S)Smn‘l‘(iHj,k<—>—k), (81 +Hji[Q(l),G(l)](—k,t), (A1)

Qb= ft dsGZ*(k,,9) Capmi( k)
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A t—t
H[QW,GW](k,t)=2> f "dr (GQ(p,t+ 7 DG+ 7 HED(—K,t+ 7 1) Piap(K)
0

p.q

X{QRN(A, D = Prae ) QLR(— K, 1) + 3 Phed K)Q{R(p,1)]
+QUH(a,0[ = Prae ) QIL(— K, 1)+ 3 Pped(K)Q{X(p, 1) 1}
+HGQP(pt+ 7 )G(qt+ 7 )GE(—kt+7 1)+ GP(p,t+ 7 ,1)G{(q,t+7',1)

XGP(—k,t+7,0)+GH(p,t+ 7 ) GR(a,t+ 7 )G (—k,t+ 7, t)}

xP.ab<k>o<°><q,t>[—Pfde<p>Q£°>< K,)+ 3 Phed K)QIP(p,0)]), (A2)
Ji,-[c:>“>,e(1>]<l<,s+r,s>=—;1 | ar Ptk PP <68~ a5+ 7 91Q a6k 5+ 7.9
+G(—q,5+7,9Q(—q,5)G{V(k,s+7,5)
+G(—a,5+7,9QR(— 0,96 (k,s+7,5)], (A3)
3 (k,s+ 7,85)=— fdr Pin(—K)ka pbp°p'[ ©(—q,s+7,5QY(—q,s) ic3|<j°>(|<,s+r,s)
p.q p J
+GR(—aq,5+7,9) SQ&‘?(—q,s) G (k,s+7,59)
<°>( q,5+7',5) |QE(—a,5)G{V(k,s+ T’,s)]. (A4)
[
The functionsU,(p.q,£), Vg(€), andWg(§) where 8,y Wl(g):%[3Wi'i'(l2;§)_wi"i(l2;§)
=1,2,3, are given as follows: ) A“ ) ! )
+ KnKnWiimn(K; &) = Wiij5 (K3 6) 1, (A11)
U1,(p.,0,€)=3[3U7; (k.,p,q;€) — U7 (k,p,g; €) A R
Wo(€)= 5[ —Wijij (K; &)+ 3Wij; (k; &)
+ KknU i (K,P, ) — U T (R,p, 3 6)1, SR e
(A5) + KinKnWiimn(K; &) — W5 (K; €)1, (A12)
Usy(p.0,8)= 5[~ U7 (R,p,0:€)+3U7; (K,p,g;©) Wl &) =5l Wi (I &)+ Wiy (ki)
o s 7Kook Wiimn(K: €) = 3Wii1: (K; Al
+kmk ||mn(k p q g) U““(k,p,q;g)], + m™n ||mn( 15) 3 II]]( vg)]i ( 3)
(A6) where
pbpcpl _13/3
UBy(p!qag) 8[U|J|J(k p q §)+U|“|(kxp!q;§) |Imn(k p q g) 2 qu|b( k)k
+ Tk Uifmn(K,p. 0 6) ><G<°><q2’3§>Pda<q>Pcm(q>Pdn(q>,
—3U7; (k,p,g;9)]1, (A7) (A14)
Va(6)=3[8Vigy (ki) — Vi (ki) UK., =~ 52paP — R0k, 5P 250
+kinknViimn(k; &) = Viij; (k; €)1, (A8) X GO(q23) P yo( @) Per( Q) Par( Q).
V(€)= 5[ = Vijij (k; &) +3V,j;i (k; €) (A15)
+kmknViimn(K: €) = Vi (K; €)1, (A9) U3, (k.p.; 5)__K_pqpm( Rk, Pbgcpqulg,g
V(&)= 5[ Vijij (K;€) + Vijji (K ) % GO(G3) Py @) P oo D) Bl
+ Tk Viimn(k: £) = 3V (k; 6)1, (A10) (A16)
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pbpcpl

Vimn(k; €)=~ EP.b( K)kq

><q‘13’3G(°)(q2’3§) Ped(Q)

X[Pam(A)Pan(Q) + Pan(a)Pam(a) ],
(A17)

2 F)|b( k

X G(O)(q2/3§) Pcd(q) Pda(q)qmqn-

Here,k is an arbitrary unit vector, antp,q) in Egs. (A5)—
(A18) are an arbitrary pair of vectors satisfyihg|=p, |q|
=q, andp+q=Kk.

-133
q

pbp P
|Imn k f pc

(A18)

APPENDIX B: NUMERICAL METHODS

We obtained the funcuonBﬁ in Eg. (55 numerically

Yoshida, Ishihara, and Kaneda

and(c) g;<q<<, and performed the numerical integrations
in each subdomain separately. Each numerical integration in
domain(a) was performed as followsi) the integrations in
the p direction for some fixedy were evaluated using a
trapezoidal quadrature with variable transformatithéij)
the data were fitted to a function of the foapg©2, and then
(iii) the fitted function was integrated analytically in the
direction. Domain(b) was further divided into additional
subdomains; the integrations in each were evaluated using
the trapezoidal quadrature with respect to hpthndqg. The
integrals in domain(c) were simply neglected because the
integrands decay a6(?(q%%¢)xexp(—g?®) for g—o and
are therefore negligible ifj; is sufficiently large.

We used

Ema—4, N=80 (A=0.05, m=10,

qo=1/32, q;=1024,

using a finite difference technique and an iteration methodin the present computation. The number of points inghe

In the following, @ and B represent0,1,2 and{1,2,3, re-
spectively. We approximated the infinite interJ@leo) of &
by N+ 1 points¢=iA (i=0,1,..,N) whereA = ¢,,../N, and

the functionsgg(g) on the interval by the values of the func-

tions at theN points, B4(£;).

The zeroth approximationB5® of B were given by
their Taylor series expansions abaut 0 to the second or-
der:

BYO (&) =—&84, BRO(E)=3V4(0)€,
B5 (&)= 3W,(0)&.

The (m+ 1)th approximations were obtained from theh
approximations in the following manner:

(B1)

Cy(&)=Bg™(&), (=0, (B2)
CH(£)=2CH(&-1)—Ch(& o)
+A2ffAdpquﬁy(p,q,§ifl)
XBAM Q%% _ 1) + SaAVp(&i-1)
+6012A2WB(§i—1) ’ (|:21!N)! (83)

BE™ (&)= 3B M (&) +CH&], (i1=1...N),
(B4
whereBg(™ (&) at £#£(i=0,1,...N) were defined by the
linear interpolations of the points&(,B3™(¢)) for &
< &max and Bg(m)@): Bz(m)(gmax) for £> &max-

We computed th@, g integrals on the right-hand side of

Eq. (B3) by (i) symmetrizing the integrands with respecipto
andq, (ii) integrating them numerically over the domain

A ={(p,9)|g>0,maxX1—q,q)<p<1l+q},

and then(iii) multiplying them by 2. We divided the domain

A" into three subdomainga) 0<q<q, (b) qo=q=q;,

integrals were chosen so that the order of the relative numeri-
cal errors was at most 0.3%. The relative errors due to the
finite differencing in the¢ direction were estimated to be
~0.6%. The numerical errors due to theq integration and
finite differencing in the¢ direction were estimated from the
difference between the results of a computation with half of
the resolution in either the andq, or the ¢ direction, re-
spectively. The relative numerical errors due to the trunca-
tion of B3(§) at {ma=4.0 were estimated to be 0.1% us-

ing the difference between the computations &,,=4.0

and &,,,x=8.0, both with a lower resolution ig direction,
A=0.2. The relative error due to the iterations0.3%, was
estimated from the difference between the results of the cur-
rent iteration and those of the preceding iteration.

The p,q integrals inT of Egs.(59) and(60) were com-
puted in a manner similar to the one described above. The
difference was that the integrations in domaias and (c)
were performed with a fitting function, since the integrands
decay~q°® for g—0 and~q °2 for q—o, wherec,; and
C, are positive constants. We chagg=1/128 andy; =32 in
the present computation. The numbers of points inghg
integrals were chosen so that the order of the relative errors
was at most 0.1%. The relative numerical errors due to the
truncation of the universal function8(¢)(«=0,1,2,8
=1,2,3) até= ¢haxare~0.1%:; these are estimated from the
difference between the present results and those obtained us-
ing the extrapolated functiong*(g) defined by

BA(E), (0<&<E&mad,
B (£)=1 Bi(£madC (8, (max<E=<2£ma,
0, (>2&ma0,

instead ofB;(§), which are truncated &= &y

Since all of the errors in the present numerical methods
as well as the error introduced by the estimatKgfin Eq.
(29 (=0.5%) were smaller than 1%, we expect that the
order of the relative errors in the numerical values given by
Eq. (62) were smaller than-1%.
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