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Anisotropic spectrum of homogeneous turbulent shear flow
in a Lagrangian renormalized approximation

Kyo Yoshida,a) Takashi Ishihara, and Yukio Kaneda
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Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
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An analytical study of the anisotropic velocity correlation spectrum tensor in the inertial subrange
of homogeneous turbulent shear flow is performed using a Lagrangian renormalized spectral closure
approximation. The analysis shows that the spectrum in the asymptotic limit of infinitely large
Reynolds numbers Re is determined by two nondimensional universal constants; theoretical
estimates for the constants are provided. The anisotropic component of the spectrum at finite Re is
more sensitive to large-scale turbulence structures than the isotropic component. A preliminary
analysis of the effect of finite Re or the width of the inertial subrange is in qualitative agreement
with direct numerical simulations. ©2003 American Institute of Physics.
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I. INTRODUCTION

According to the Kolmogorov hypothesis,1 turbulence
statistics far from flow boundaries are locally homogene
and isotropic at sufficiently large Reynolds numbers Re
at scales sufficiently smaller than the characteristic len
scaleL of the energy containing eddies. This hypothesis
widely accepted in literature. However, both Re andL must
be finite, and the energy-containing eddies must be an
tropic in real flows, so that turbulence cannot be isotropic
a strict sense. Little is known about the degree of anisotr
in small-scale statistics. In this regard, recent experime
and numerical studies~see, for example, Refs. 2 and 3! sug-
gest that the anisotropy may be substantial. The anisotr
appears not only at higher order moments, but also
second-order moments, which are the main concern of p
tical turbulence modeling. The study of anisotropy is the
fore not only of theoretical but also of practical interest.

Recently, the authors4 ~hereafter referred to as IYK! de-
rived a form of the velocity correlation spectrum tensor
small scales in homogeneous turbulent shear flow usin
simple perturbation analysis. The anisotropic part of the t
sor was determined by the rate of strain tensorSi j of the
mean flow, the mean energy dissipation ratee per unit mass,
the wave vectork, and two nondimensional constantsA1 and
A2 ~denoted byA andB, respectively in IYK!. The scaling
(}k213/3) of the anisotropic part of the velocity correlatio
spectrum is consistent with previous studies based on dim
sional analysis including the one by Lumley5 and the experi-
ments by Wyngaard and Cote6 ~hereafter referred to as WC!
and those by Saddoughi and Veeravalli7 ~hereafter referred to
as SV!. The form of the tensor was verified, and the tw
constants were estimated from direct numerical simula
~DNS! data. Tsuji8 also obtained estimates of the two co
stants in the wall boundary layers of wind tunnel turbulen

a!Electronic mail: kyo@cse.nagoya-u.ac.jp
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their values are in good agreement with those reported
IYK.

It is a challenging problem to theoretically derive th
anisotropic spectrum of turbulent shear flow. In this pap
we attempt to do so using a spectral closure approximat
Although extensive closure approximations have been p
posed, there are very few that do not contain anyad hoc
adjusting parameters, and are consistent not only with
Kolmogorov energy spectrumE(k)5Koe

2/3k25/3 of homo-
geneous and isotropic turbulence, whereKo is the Kolmog-
orov constant, but also with thek22/3 scaling of the charac-
teristic time in the inertial subrange of fully develope
turbulence. To the authors’ knowledge, there are only th
closure approximations that have these properties and w
estimates ofKo are in fairly good agreement with the resul
from experiments and DNS. They are: the abridged Lagra
ian history direct interaction approximation~ALHDIA !,9 the
strain-based abridged Lagrangian history direct interac
approximation~SBALHDIA !,10 and the Lagrange renorma
ized approximation~LRA!11 ~hereafter referred to as K81!.
All of these are Lagrangian spectral closures.

It seems worthwhile to make here a few remarks. T
first concerns the so-called intermittency corrections to
forms of the velocity correlation spectra. If the energy sp
trum E(k) is to be modified toE(k)}k25/32m with mÞ0, the
Kolmogorov constantKo loses its meaning. Similarly, if the
scaling}k213/3 of the anisotropic part of the velocity corre
lation spectrum is to be modified, the constantsA1 and A2

lose their meaning. The present status of our understan
on the inertial subrange spectrumE(k) seems to be well
summarized by the statement ‘‘There is a general belief~al-
though contested often enough! that the spectral exponen
gets slightly modified by small-scale intermittency. Th
modification, even if exists, is small and cannot be acco
modated in a consistent and satisfactory way given ot
uncertainties in the data’’ by Sreenivasan.12 This also seems
to be the case regarding the anisotropic part of the velo
5 © 2003 American Institute of Physics
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correlation; although there have been pioneering studies
experiments13,14 and DNS3,15 on the scaling of the aniso
tropic components based on SO~3! decomposition, the uncer
tainties do not seem small enough to fix the modification
it exists.

Although the uncertainties may be better controlled
DNS than in experiments, it is still difficult to fix by DNS th
modification in the limit of large Reynolds number, becau
of the limitation of the attainable resolution or the Reyno
number, which implies the limitation of the width of th
realized inertial subrange.~Recent high resolution DNSs16

with the number of grid points up to 40963 suggestm
;0.10, where the highest Taylor microscale Reynolds nu
ber Rl achieved in the DNSs is 1201. This value ofm is a
little larger than the value20.03&m&0.03 suggested from
measurements17 in the atmospheric surface layer turbulenc
over the range ofRl52800– 12 700.)

The second remark concerns the capability of spec
closures to describe intermittency effects. Spectral closu
have so far made contributions to the understanding of
bulence such as quantitative predictions of energy spe
the derivation of the eddy viscosity based on the Navie
Stokes equations, etc., but also have shortcomings inclu
the one associated with the intermittency of small scales~see,
for example, the review by Kraichnan18!. Regarding high-
order velocity moments, it is not surprising that spectral c
sures such as the ALHDIA and LRA do not capture interm
tency effects on them, because the closures concern onl
second-order velocity moments. Regarding the second-o
moments, little progress has been made so far by spe
closures on the intermittency. One might therefore think t
they are incapable of predicting anomalous scaling. It
however to be recalled that exact closure equations
simple models such as randomly advected passive scala
vectors with or without pressure have solutions, the so-ca
zero modes, that exhibit anomalous scaling~see, for ex-
ample, Refs. 19–26!. The above spectral closure equatio
for turbulence obeying the Navier–Stokes equations
similar in a sense to the exact closure equations for th
models which have solutions exhibiting anomalous sca
@see the discussion after Eqs.~50!–~52!#. It is therefore dif-
ficult to exclude at present the possibility that spectral c
sure equations may yield anomalous scaling. However,
so-called zero-mode analysis of the closure equations is
easy, and is outside the scope of the present paper.

The above-mentioned spectral closures for second-o
moments are obtained by truncating certain renormali
perturbation~RP! series at the lowest nontrivial order.
would be of theoretical interest to know the consequence
continuing the RP series to higher orders, or applying the
approach to higher order moments. However only few st
ies have made of the consequence~but see Refs. 27–30!. The
present authors think that the issue remains disputable,
to be studied further, but it is again outside the scope of
present paper.

In this paper, we assume that the intermittency corr
tion, if it exists, is small, in accordance with Sreenivasan12

and that Lagrangian spectral closures may be applicabl
obtain an approximation of the energy spectrum for isotro
Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AI
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turbulence. The latter assumption is supported in part by
good quantitative agreement of the spectrum by LRA
isotropic turbulence at large Re with experiments as sho
in Fig. 1 of Ref. 31. It is therefore tempting to apply closur
also to anisotropic turbulences. However, there have b
only few studies on anisotropic turbulences, in contrast
isotropic turbulence, on the basis of spectral closures.~They
include studies on axisymmetric turbulence by Herring32

and on turbulent shear flow by Leslie,33 Cambonet al.,34

Bertoglio,35 Rubinsteinet al.,36 and Yoshizawa.37! In particu-
lar, to our knowledge, no analytical studies have been p
formed on anisotropic turbulence using any of the abo
noted Lagrangian closures. This is presumably becaus
the complexity of the equations that must be analyzed. F
tunately, the recent study by IYK suggests that the analy
may be greatly simplified by properly taking into account t
symmetry of the problem. These considerations encourag
to analyze the Lagrangian turbulence closure equations
homogeneous turbulent shear flow. We consider in the
lowing the LRA because its equations are the simpl
amongst the three closures. The analysis is based on a
tematic perturbation method, and introduces noad hocpa-
rameters in the analysis of the asymptotic limit of infinite
large Re.

II. LRA EQUATIONS FOR HOMOGENEOUS
TURBULENT SHEAR FLOW

In this paper, we consider an ensemble of the turbul
velocity fieldsu(x,t) for an incompressible fluid obeying th
Navier–Stokes equations,

S ]

]t
2n

]2

]xl]xl
Dui~x,t !52um~x,t !

]ui

]xm
~x,t !

2
]p

]xi
~x,t !, ~1!

]ui

]xi
~x,t !50, ~2!

wheren is the kinematic viscosity coefficient, the density
assumed to be unity, andp is the pressure. The summatio
convention is used for repeated indices. The statistical a
age taken over the ensemble for a quantityX is denoted by
^X&. Let us decompose the velocity fieldu into its mean and
fluctuating terms as u(x,t)5^u(x,t)&1ũ(x,t), where
^u(x,t)& is the mean flow andũ(x,t) is the fluctuation. Then
^u& and ũ obey

S ]

]t
2n

]2

]xl]xl
D ^ui~x,t !&

52^um~x,t !&
]^ui~x,t !&

]xm

2
]

]xm
^ũm~x,t !ũi~x,t !&2

]^p~x,t !&
]xi

, ~3!

]^ui~x,t !&
]xi

50, ~4!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and

S ]

]t
2n

]2

]xl]xl
D ũi~x,t !

52ũm~x,t !
]ũi

]xm
~x,t !1

]

]xm
^ũm~x,t !ũi~x,t !&

2
] p̃

]xi
~x,t !2^um~x,t !&

]ũi

]xm
~x,t !

2
]^ui~x,t !&

]xm
ũm~x,t !, ~5!

]ũi

]xi
~x,t !50, ~6!

respectively, wherep̃5p2^p&. Equation~3! for the mean
flow ^u& contains single-time second-order moments ofũ,
which are determined in principle by Eqs.~5! and ~6!.

In the derivation of the LRA equations, use of the s
called Lagrangian position functionc plays a key role~see
K81!. The function is defined by

c~y,t;x,t8![d@y2a~x,t8;t !#,

wherea(x,t8;t) is the position at timet of the fluid element,
which was atx at time t8. In terms ofc, the generalized
velocity v(x,t8;t) defined as the velocity fluctuation at timet
of the fluid particle that was at positionx at timet8, is given
by

v~x,t8;t ![E dy c~y,t;x,t8!ũ~y,t !. ~7!

The functionc obeys

]

]t
c~y,t;x,t8!52@^um~y,t !&1ũm~y,t !#

3
]

]ym
c~y,t;x,t8!. ~8!

Equation~7! implies that the evolution ofv(x,t8;t) with re-
spect to timet is known from those of̂u(x,t)&, ũ(x,t) and
c(y,t;x,t8), which are given by Eqs.~3!–~6! and ~8!.

In general, the performance of an approximation m
depend crucially on the choice of quantities~called ‘‘repre-
sentatives’’ in K81! in terms of which the approximation i
constructed. It is therefore important to choose proper re
sentatives, as stressed in K81. The LRA uses the follow
representatives: the Lagrangian two-time and two-point
locity correlationQ and the Lagrangian response functionG,
defined as

Qi j ~x,t;x8,t8![PS
(x)^@v i~x,t8;t !#v j~x8,t8!&, ~9!

E dx8 Gi j ~x,t;x8,t8!dv j~x8,t8;t8!

[PS
(x)^@dv i~x,t8;t !#&, ~10!

wheredv(x,t8;t8) is an infinitesimal disturbance field at tim
t8 that is statistically independent of the disturbed veloc
Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AI
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field, dv(x,t8;t) is the response ofv(x,t8;t) at time t>t8,
andPS

(x) is the operator that projects a vector field onx to its
solenoidal component.

The LRA procedure proposed in K81 may be applied
the field obeying Eqs.~5! and~6!. This yields a closed set o
equations for̂ u&, Q, andG. Hereafter, these are referred
as the LRA equations. Although the LRA is applicable
turbulence in an arbitrary domain and mean flow in pr
ciple, we consider here the simplest but nontrivial case
which the flow domain is unbounded in each of the thr
Cartesian coordinate directions, and^u& is given by a linear
function of the position vectorx,

^um~x!&5Smnxn , ~11!

whereSmn is a time independent tensor. The incompressib
ity and stationarity of̂ u& requires thatSmm50 andSmnSnl

5SlnSnm , respectively. The LRA equations are then comp
ible with the homogeneity ofQ andG, i.e., if Q(x,t0 ;x8,t0)
depends onx andx8 only throughx2x8 at an initial instant
t0 , then it is also true forQ(x,t;x8,t8) andG(x,t;x8,t8) for
t>t8>t0 . We assume here thatQ and G are statistically
homogeneous. It is then convenient to introduce the Fou
transforms ofQ andG with respect tox2x8,

Q̂i j ~k,t,t8!5
1

~2p!3 E d3~x2x8!

3Qi j ~x,t;x8,t8!e2 ik"(x2x8), ~12!

Ĝi j ~k,t,t8!5E d3~x2x8!Gi j ~x,t;x8,t8!e2 ik"(x2x8),

~13!

respectively.38 The tensorQ̂ will be referred to as the veloc
ity correlation spectrum tensor, and we will omit the hatˆ for
convenience.

The LRA equations in Fourier space representation
given as follows:

S ]

]t
12nk2DQi j ~k,t,t !5Di j ~k,t !1Ki jmn~k,t !Smn, ~14!

S ]

]t
1nk2DQi j ~k,t,s!5Ji j

Q~k,t,s!1Li jmn
Q ~k,t,s!Smn ,

~15!

S ]

]t
1nk2DGi j ~k,t,s!5Ji j ~k,t,s!1Li jmn~k,t,s!Smn ,

~16!

Gi j ~k,t,t !5Pi j ~k!, ~17!

where

Di j ~k,t !5Hi j ~k,t !1H ji ~2k,t !, ~18!

Hi j ~k,t !5(
p,q

n E
t0

t

ds8@2Piab~k!Pcde~p!Gac~p,t,s8!

3Qbd~q,t,s8!Qje~2k,t,s8!1 1
2 Piab~k!Pecd~k!

3Gje~2k,t,s8!Qac~p,t,s8!Qbd~q,t,s8!#, ~19!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Ki jmn~k,t !5km

]

]kn
Qi j ~k,t !2@Pim~k!2 k̂i k̂m#Qn j~k,t !

2@Pjm~k!2 k̂ j k̂m#Qni~2k,t !, ~20!

Ji j
Q~k,t,s!52(

p,q

n E
s

t

ds8 Pib~2k!ka

pbpcpl

p2

3Qca~2q,t,s8!Ql j ~k,t,s!, ~21!

Li jmn
Q ~k,t,s!52Pim~k!Qn j~k,t,s!, ~22!

Ji j ~k,t,s!52(
p,q

n E
s

t

ds8 Pib~2k!ka

pbpcpl

p2

3Qca~2q,t,s8!Gl j ~k,t,s!, ~23!

Li jmn~k,t,s!52Pim~k!Gn j~k,t,s!, ~24!

k[uku, k̂[
k

k
, Pi j ~k![d i j 2 k̂i k̂ j ,

Pimn~k![kmPin~k!1knPim~k!,

(
p,q

n

[E d3pd3qd~k2p2q!,

t0 is the initial time, andt>s>t0 . From Eqs.~15!–~17! and
~21!–~24!, we have

Qi j ~k,t,s!5Gia~k,t,s!Qa j~k,s,s!. ~25!

The LRA equations, Eqs.~14!–~24!, are therefore a close
set for Qi j (k,t)[Qi j (k,t,t) and Gi j (k,t,s). Hereafter,
wheneverQ appears without time indices, it will denote th
one-time correlationQi j (k,t) and not the two-time correla
tion Qi j (k,t,s). The LRA equations, Eqs.~14!–~24!, are
compatible with the reflection symmetry ofQ and G, i.e.,
Qi j (2k,t)5Qi j (k,t) and Gi j (2k,t,s)5Gi j (k,t,s) where
the former is equivalent to

Qji ~k,t !5Qi j ~k,t !. ~26!

We assume the reflection symmetry ofQ andG.

III. INERTIAL RANGE ANALYSIS OF THE LRA
EQUATIONS

The inertial subrange solutionsQ and G of the LRA
equations, Eqs.~14!–~24!, for Smn50 were obtained in Ref
39. They are

Qi j ~k,t !5Qi j
(0)~k;e![

Ko

4p
e2/3k211/3Pi j ~k!, ~27!

Gi j ~k,t,s!5Gi j
(0)~k,t;e![G(0)~j!Pi j ~k!, ~28!

where j[t/TL(k),t[t2s, TL(k)[e21/3k22/3, Ko is the
Kolmogorov constant, andG(0) is a universal function. The
LRA gives

Ko51.72. ~29!

The dependence ofG(0) on the normalized time differencej
is shown in Fig. 1. The functionG(0) monotonically decays
Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AI
with j, andG(0)→exp(2cj) as j→`, wherec is a nondi-
mensional constant of order unity.

In the inertial subrange of homogeneous turbulent sh
flow, Q andG can be written as

Qi j ~k,t !5Qi j
(0)~k;e~ t !!1Qi j

(1)~k,t !, ~30!

Gi j ~k,t1t,t !5Gi j
(0)~k,t;e~ t !!1Gi j

(1)~k,t1t,t !, ~31!

wheree(t) may depend on timet. In the present problem
there are at least three types of time scales that may be
tinguished from each other:~i! the time scaleTS associated
with the mean shear rate and given byTS[1/S where S
[maxij uSij u, ~ii ! the time scaleTt(k) characterizing the time
dependence of the single-time correlationQi j (k,t), and~iii !
the time scaleTt(k) characterizing the decay with respect
the time differencet of the two-time correlationsGi j (k,t
1t,t) andQi j (k,t1t,t).

In this paper, we assume that in the inertial subrange~not
the entire wavenumber range!:

~A-1! the correctionsQ(1) and G(1) are small enough tha
we may discard terms second or higher order
(Q(1),G(1)) in the LRA equations;

~A-2! the mean shear rateS is small enough that the time
scaleTS51/S is much larger thanTt(k), i.e., d(k)
[Tt(k)/TS5STt(k)!1;

~A-3! the time scaleTt(k) is also much larger thanTt(k),
i.e., m(k)[Tt(k)/Tt(k)!1;

~A-4! the response functionGi j (k,t1t,t) is negligibly
small for the time differencet@Tt(k).

The consistency of these assumptions with the resultingQ
andG will be discussed at the end of this section for~A-1!–
~A-3! and in Sec. IV for~A-4!.

For us82su!Tt(k), we have

Qi j ~k,s8!;Qi j ~k,s!1~s82s!
]

]s
Qi j ~k,s!, ~32!

Gi j ~k,t,s8!5Gi j ~k,s81~ t2s8!,s8!

;Gi j ~k,s1~ t2s8!,s!

1~s82s!
]

]s
Gi j ~k,s1~ t2s8!,s!, ~33!

FIG. 1. Isotropic Lagrangian response functionG(0) as a function of the
normalized time differencej5t/TL(k).
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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from the definition ofTt(k). Assumption~A-4! combined
with ~A-3! implies that the main contribution in thes8 inte-
grals of Eqs.~19! and~23! comes fromt2s8!Tt(k). Taking
this into account, substituting Eqs.~30! and ~31! into the
LRA equations with Eq.~25!, and discarding the second- o
higher-order terms in (Q(1),G(1)) by virtue of assumption
~A-1!, we obtain the following closed set of equations f
Q(1) andG(1):

Di j @Q(1),G(1)#~k,t !52Ki jmn
(0) ~k,t !Smn1

]

]t
Qi j

(0)~k,t !, ~34!

Ni j @Q(1),G(1)#~k,s1t,s!

[
]

]t
Gi j

(1)~k,s1t,s!2Ji j @Q(1),G(1)#~k,s1t,s!

5Li jmn
(0) ~k,s1t,s!Smn1 J̃i j ~k,s1t,s!, ~35!

G(1)~k,s,s!50, ~36!

where we have discarded terms containingd(k)Q(1),
d(k)G(1), m(k)Q(1), or m(k)G(1), because of assumption
~A-2! and ~A-3!. The functionalsD, J, andN are linear in
(Q(1),G(1)). The expressions ofD, J, and J̃ are rather
lengthy, and are given in Appendix A. The symbolsK (0) and
L (0) are the same asK in Eq. ~20! andL in Eq. ~24!, respec-
tively, but with Q andG replaced byQ(0) andG(0).

Equations~34!–~36! are satisfied by

Q(1)~k,t !5QS~k,t !1QT~k,t !, ~37!

G(1)~k,t1t,t !5GS~k,t1t,t !1GT~k,t1t,t !, ~38!

where (QS,GS) and (QT,GT) satisfy

Di j @QS,GS#~k,t !52Ki jmn
(0) ~k,t !Smn , ~39!

Ni j @QS,GS#~k,t1t,t !5Li jmn
(0) ~k,t1t,t !Smn , ~40!

and

Di j @QT,GT#~k,t !5
]

]t
Qi j

(0)@k,e~ t !#, ~41!

Ni j @QT,GT#~k,t1t,t !5 J̃i j ~k,t1t,t !, ~42!

respectively.
By considering the isotropy ofQ(0) andG(0) as well as

the involved operators, one can show that Eqs.~39! and~40!
are satisfied by

Qi j
S~k,t !5Xi jmn~k,t !Smn , ~43!

Gi j
S~k,t1t,t !5Yi jmn~k,t1t,t !Smn , ~44!

whereX andY are isotropic fourth-order tensors, and may
written without loss of generality in the form

Xi jmn~k,t !5a1~k,t !@Pim~k!Pjn~k!1Pin~k!Pjm~k!#

1a2~k,t !Pi j ~k!k̂mk̂n , ~45!

Yi jmn~k,t1t,t !5b1~k,t1t,t !Pim~k!Pjn~k!

1b2~k,t1t,t !Pin~k!Pjm~k!

1b3~k,t1t,t !Pi j ~k!k̂mk̂n . ~46!
Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AI
Here we have used Eq.~26! to derive Eq.~45!.
We will attempt to find a solution foraa(k,t) and

bb(k,t) in the following similarity forms:

aa~k,t !5Aaex1kx2,

bb~k,t1t,t !5ex3kx4Bb~ex5kx6t!,

wheree5e(t), and Aa and Bb(•) are constants and func
tions, respectively. Here, the Greek indicesa andb represent
$1,2% and $1,2,3%, respectively. By substituting the similarit
forms of QS andGS into Eqs.~39! and ~40!, we can verify
that thep, q integrals inD andN converge in the limit of
both large and small wavenumbers, and the terms on the
and right-hand sides of each equation have the same sc
if and only if

x151/3, x25213/3, x3521/3,

x4522/3, x551/3, x652/3.

Therefore, we have

aa~k,t !5Aae1/3k213/3, bb~k,t1t,t !5Bb~j!TL~k!,
~47!

in the inertial subrange, whereTL(k)[e21/3k22/3 and j
[t/TL(k).

Similarly, it can be shown that Eqs.~41! and ~42! are
satisfied by (QT,GT) in the following form:

Qi j
T ~k,t !5ATe1/3k213/3Te

21Pi j ~k!, ~48!

Gi j
T ~k,t1t,t !5BT~j!TL~k!Te

21Pi j ~k!, ~49!

whereTe[e/(de/dt), andAT andBT(•) are a constant and
function, respectively. A comparison of Eq.~48! and Eq.~43!
with Eqs.~45! and~47! suggests thatQT/QS5O(TS /Te). In
this paper, we consider quasi-stationary turbulence, in
sense thatTe is much larger thanTS , so that QT/QS

5O(TS /Te)!1. We may therefore neglectQT. Furthermore,
QT andGT are isotropic tensors and do not contribute to t
anisotropic part ofQ and G, which is the subject of this
paper.

If there exists a homogeneous solution (QH,GH) satis-
fying Eqs.~34!–~36!, i.e.,

Di j @QH,GH#~k,t !50, ~50!

Ni j @QH,GH#~k,t,s!50, ~51!

GH~k,s,s!50, ~52!

then the right-hand sides of Eqs.~37! and~38! with QH and
GH added, respectively, also satisfy Eqs.~34!–~36!. Equa-
tions similar to Eqs.~50!–~52! have been known, but pre
sumably because of its difficulty, the analysis~the so-called
zero-mode analysis! has been mostly limited to equations fo
simple models including randomly advected passive sca
and vectors with or without pressure.19–26Recently, the zero-
mode analyses of equations derived by certain lineariza
of turbulence closures were performed by Yoshida a
Kaneda26 and L’vov et al.40 The equations analyzed by the
are different from each other, and discard the correctionG(1)

to the response function, but their structure is similar to t
of Eq. ~50!. These studies suggest that the homogeneous
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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lutions ~zero modes! may yield anomalous scalings that ca
not be derived by simple dimensional argument. We can
at present exclude the possibility of the existence of the z
mode (QH,GH) which may affectQ(1). However, the facts
that~i! the scalingk213/3 in the inertial subrange given byQS

in Eq. ~43! with Eqs.~45! and~47! is in good agreement with
DNS in IYK and experiments by WC, SV, and Tsuji8 and~ii !
the tensor formQS is also in good agreement with the DNS
suggest that the possible effect of the zero mode in
present problem is not very significant.

In the following, we confine ourselves to the analysis
QS andGS. The tensor form and scaling ofQS in Eq. ~43!
with Eqs. ~45! and ~47! are the same as those obtained
IYK. @The constantsA and B in IYK are equivalent toA1

andA2 in Eq. ~47!.# Thek213/3 dependence ofQS is in agree-
ment with previous studies based on dimensional analy
including that by Lumley.5

In concluding this section, let us consider the cons
tency of assumptions~A-1!–~A-3! with the resulting solution
(Q(1),G(1))5(QS,GS). For (Q(1),G(1))5(QS,GS), we may
redefineTt(k) and Tt(k) as Tt(k)[TL(k) and Tt(k)[Te ,
respectively, so thatd(k)5TL(k)/TS5Se21/3k22/3 and
m(k)5TL(k)/Te5(de/dt)e24/3k22/3. Consequently,
Q(1)/Q(0)5O(d(k)), G(1)/G(0)5O(d(k)). This suggests
that at sufficiently large wavenumbersk such thatd(k)!1
andm(k)!1 in the inertial subrange of turbulence at suf
ciently large Re, assumptions~A-1!–~A-3! are well satisfied.

IV. ESTIMATE OF THE UNIVERSAL CONSTANTS

The constantsAa and functionsBb(j) that determine
Q(1) andG(1), respectively, can be estimated from the LR
equations. For this purpose, it is convenient to introduce n
malized functions, defined by

B̄b~j![Bb~j!/G(0)~j!.

From Eq.~40! with Eqs.~43!–~47!, we obtain a closed set o
integral differential equations for the functionsB̄b , after per-
forming some algebra, in the following form:

d2

dj2 B̄b~j!5E E
n

dp dq Ubg~p,q,j!B̄g~q2/3j!

1A1Vb~j!1A2Wb~j!, ~53!

B̄b~j!50,
dB̄b~j!

dj
U

j50

5db1 , ~54!

where

E E
n

dp dq[E
0

`

dqE
u12qu

11q

dp,

b andg represent$1,2,3%, and the summation convention
used forg. The expressions of the functionsU, V, andW are
given in Appendix A.

The solution to Eqs.~53! and ~54! can be written in the
form

B̄b~j!5B̄b
0~j!1A1B̄b

1~j!1A2B̄b
2~j!, ~55!
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whereB̄b
0 represents the homogeneous solutions of Eqs.~53!

and ~54! with A15A250, while B̄b
a represents the solution

of Eq. ~53! for the initial conditions B̄b(0)50 and
dB̄b /dj(0)50; B̄b

1 represents the solutions forA151, A2

50, andB̄b
2 represents the solutions forA150, A251. It can

be shown thatUb15Ub2 , U1g5U2g , V15V2 , and W1

5W2 . Therefore, we haveB̄1
15B̄2

1 and B̄1
25B̄2

2. However,
B̄1

0ÞB̄2
0 because of the differences between their initial co

ditions, see Eq.~54!.
Figure 2 shows the functionBb

a(j) defined byBb
a(j)

[B̄b
a(j)G(0)(j), wherea and b represent$0,1,2% and $1,2,3%,

respectively, andB̄b
a(j) is obtained numerically.~See Appen-

dix B for details of the numerical methods.! The functions
Bb

a(j) for all a andb decay with respect to the nondimen
sionalized time differencej for j.2. Figure 2 suggests
that Bb

a(j);exp(2cj) as j→`, where c is a positive
constant of order unity. This implies thatGi j

S(k,t1t,t)
;exp(2ct/TL(k)) for t→`, becauseGi j

S(k,t1t,t) is given
by a linear combination ofTL(k)Bb

a(t/TL(k)). Thus, as-
sumption~A-4! is consistent with the resultingG.

In general,Di j @QS,GS#(k) may be written in the form

Di j @QS,GS#~k!5Di jmn~k!Smn , ~56!

whereDi jmn(k) is an isotropic fourth-order tensor and th
time index t is suppressed for brevity. We therefore ha
from Eq. ~39!

Ti jmn~k!Smn50, ~57!

for any tracelessSmn , where

FIG. 2. Universal functionsBb
a(j) that define the anisotropic correctio

G(1) of the Lagrangian response function as functions of the nondimens
alized time differencej5t/TL(k). Values ofB2

0(j) andB3
1(j) are rescaled.
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Ti jmn~k![Di jmn~k!1Ki jmn
(0) ~k!.

By settingSmn5dmadmb2(1/3)dmndab , one can show that

Ti jab~k!2 1
3 Ti jl l ~k!dab50, ~58!

for any i , j , a, andb.
Equation~58! for various combinations of indices resul

in equations that are linear inA1 andA2 , among which only
two are linearly independent. This yields, for example,
following set of linearly independent equations forA1 and
A2 :

Ti ji j ~k!2 1
3 Tii j j ~k!50, ~59!

k̂ak̂bTiiab~k!2 1
3 Tii j j ~k!50, ~60!

which may be written in the form

MA1c50, ~61!

where M is a constant 232 matrix, A5(A1 ,A2) t, c is a
constant vector, andt denotes the transpose of the matrix
vector. By using numerical solutions forBb

a and integrating
numerically, we have

M5S 23.11 20.738

23.39 20.225D , c5S 20.366
20.404D . ~62!

The solution of Eq.~61! with Eq. ~62! is given by

A1520.12060.002, A250.00960.014, ~63!

where the error estimates60.002 and60.014 are obtained
by considering that there may be relative errors of roug
1% in the numerical values in Eq.~62!, as discussed in Ap
pendix B. The Appendix also gives the details of the nume
cal methods used to integrate over wave vector space. S
the error estimate60.014 in Eq.~63! for A2 is large com-
pared to its expected value 0.009, it is difficult to determ
from the present calculations whetherA2 is identically 0 or
small but finite. At present, no constraint that givesA250 is
known.

V. COMPARISON WITH DNS AND EXPERIMENTS

The tensor form ofQ(1) in the DNS of IYK is consistent
with Eqs. ~43!, ~45!, and ~47! and the constantsA1 and A2

are estimated to be

A1520.1660.03, A2520.4060.06, ~64!

while the wind tunnel boundary layer experiments by Tsu8

give

A1'20.17, A2'20.45, ~65!
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where the shear rateSmn in Eq. ~43! is given by the local
value ofSmn(x)5]^um(x)&/]xn , which may depend on the
measurement positionx ~see the brief discussion in Se
VII C !.

In wind tunnel experiments and atmosphere obser
tions, the one-dimensional cross spectrumE12

(1-D) satisfying

E
0

`

dk1E12
(1-D)~k1!5^u1u2&,

has the similarity form

E12
(1-D)~k1!52C1e1/3k1

27/3S, ~66!

wherex1 andx2 are in the directions of the mean stream a
velocity gradient, respectively, i.e.,Smn} Sdm1dn2 . Accord-
ing to the experiments by Wyngaard and Cote6 ~referred to as
WC! and Saddoughi and Veeravalli7 ~referred to as SV!,

C1'0.14. ~67!

Thek1
27/3 dependence is consistent with the present analy

as well as with IYK’s DNS and Tsuji’s experiments. Equ
tions~43!, ~45!, and~47! imply that the constantC1 is related
to A1 andA2 as

C15
36p

1729
~233A117A2!. ~68!

Substituting Eqs.~64! and ~65! into Eq. ~68! gives

C150.1660.07, C1'0.16, ~69!

respectively, which is in fairly good agreement with Eq.~67!.
The theoretical estimate from Eq.~63! gives

C150.2660.008. ~70!

The theoretical estimates Eqs.~63! and ~70! are not in very
good agreement with the DNS or experimental values,
though the order of magnitude is similar.

Among the possible sources of the discrepancy betw
the theoretical estimate and DNS/experiments are

~0! the inadequacy of the LRA,
~i! the use of the simplifying assumptions~A-1!–~A-4!,
~ii ! finiteness of Re, and
~iii ! the neglect of the homogeneous solution~zero modes!

(QH,GH). @See the discussion after Eqs.~50!–~52!.#

Here~ii ! implies that~ii-a! the scaling range, if it exists, ca
be only finite, and that~ii-b! the scaling itself may be influ-
enced by the statistics outside the range if Re is not la
enough. The validity of~i! may be affected by~ii !, because
d(k) andm(k) used in the assumptions~A-2! and ~A-3! are
k-dependent, so that the conditions in~A-2! and ~A-3! may
be not well satisfied in a wide enough range, if the scal
range is too narrow.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Regarding~ii !, it is to be recalled that the theoretic
LRA values given by Eqs.~63! and ~70! are valid only for
the asymptotic limit of Re→`, i.e., the case in which the
inertial subrange is infinitely or sufficiently wide, while th
Reynolds number of the DNS in IYK is only modest (Rl

5284). The experimental Reynolds number is onlyRl

'420 in Tsuji8 andRl'1450 in SV.~The Reynolds number
of the experiments in WC are not given explicitly.! It is also
to be noted that the slope ofQ(1)}k213/3 is much steeper
thanQ(0)}k211/3 at smallk, so that the integral in Eq.~A2!
may be sensitive to the exact form ofQ(1) at smallk, or the
width of the inertial subrange. A closer inspection of t
integrals in Eq.~A2! shows that with substitution of the sim
larity formsQS andGS of Eqs.~43!–~47! into Q(1) andG(1),
the integral in Eq.~A2! does converge at small wavenum
bers, but the convergence is much slower than that in
~19! for isotropicQ @see the analysis after Eq.~72!#. Thus, it
is not surprising that the inertial subrange in real turbule
with finite Re is sensitive to the exact form of the spectra
small wavenumbers, and in particular to the width of t
inertial subrange.

Regarding~iii !, the modification of the exponents o
Q(1) andE12

(1-D) from 213/3 and27/3, respectively, may be
significant, if the zero modes are not negligible. Similarly
may be also significant, if~0! is not negligible. The above
estimates ofA1 , A2 , andC1 from DNS and experiments ar
obtained by ignoring the modification. As discussed in Sec
it seems that the modification, if it exists, is small, and ca
not be detected at present in a consistent way by experim
and DNS.

In order to obtain better estimates forQ(1) or A1 andA2

for real turbulence at finite Re, we need to improve t
analysis. It would be interesting to take into account~0!–~iii !
in the analysis, or to solve numerically the LRA equations
an initial value problem in the entire wavenumber ran
without assuming specific forms forQ(1) andG(1), by which
one may avoid the problems associated with~i!–~iii !. How-
ever, it is not easy to fully analyze the effects of any
~0!–~iii ! or to solve numerically the LRA equations for a
isotropic turbulence. In Sec. VI, we try to get some idea
the effect of~ii !, especially~ii-a!, by using a simple model.

VI. EFFECT OF THE FINITENESS OF THE WIDTH
OF THE INERTIAL SUBRANGE

In order to get some idea on the effect of the finiteness
the width of the inertial subrange, let us consider a mo
spectrum in whichQ(1)(k) and G(1)(k) outside the scaling
range are simply discarded:

Qi j
(1)~k,t !5H Qi j

S~k,t !, ~kb<k<kt!,

0, ~k,kb ,k.kt!,
~71!

Gi j
(1)~k,t1t,t !5H Gi j

S~k,t1t,t !, ~kb<k<kt!,

0, ~k,kb ,k.kt!,
~72!

wherekb andkt are the bottom and the top wavenumbers
the inertial subrange, respectively,QS is given by Eq.~43!
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with Eqs. ~45! and ~47!, and GS is given by Eq.~44! with
Eqs. ~46! and ~47!. This model will be referred to as th
cutoff model. For simplicity, we assume the similarity form
~27! and~28! for Q(0) andG(0), respectively, throughout the
entire wavenumber range. Then,Di j @Q(1),G(1)#(k) with
Eqs.~71! and ~72! can be written as

Di j @Q(1),G(1)#~k!5Di jmn~k;kb ,kt!Smn , ~73!

whereDi jmn(k;kb ,kt) is an isotropic fourth-order tensor.
Let zb5kb /k and z t5kt /k. It can be shown that

D(k;zbk,kt)2D(k;0,kt) converges to 0 as;zb
2/3 in the limit

of zb→0, whileD(k;kb ,z tk)2D(k;kb ,`) converges to 0 as
;z t

24/3 in the limit of z t→`. Since the convergence of th
former is slower, it is expected that a small wavenumb
cutoff for Q(1) has a more significant effect on the dynami
of Q(1) than a large wavenumber cutoff. Thus, we will co
sider only a small wavenumber cutoff. Hereafter, we will s
kt5`, omit writing kt explicitly, and denotezb by z.

Equation~57! is now modified to

Ti jmn~k;kb!Smn50, ~74!

where

Ti jmn~k;kb![Di jmn~k;kb!1Ki jmn
(0) ~k!.

As in the derivation of Eq.~61!, we have linear equations o
A1 andA2 that may be written in the form

M ~z!A1c50, ~75!

wherec is the same as given in Eq.~62!. The 232 matrix
M (z) depends onk andkb , but only throughz[kb /k. The
z dependence ofM implies thatA1 andA2 may depend onk
throughz, i.e., A15A1(z) and A25A2(z), unlike the solu-
tions for Eq.~61!, and that the cutoff model of (Q(1),G(1))
does not satisfy Eq.~39! in a strict sense.@We assumedA1 ,
A2 to be constant in Eq.~71!.# This is an inevitable penalty
of the cutoff model simplification. In the following analysis
we assume that thek dependence throughz is weak, and that
a1(k) anda2(k) may be approximated by Eq.~47! in which
A1 and A2 are certain typical values ofA1(z) and A2(z),
respectively.

The matrixM (z) can be evaluated numerically for an
z>0 by applying methods similar to those described in A
pendix B. They may also be evaluated using their Tay
series expansions of theM matrix elements for smallz. For
example, if we discard terms ofo(z2/3) in M , we have

M ~z!5S 23.1120.449z2/3 20.73811.91z2/3

23.3914.58z2/3 20.22521.37z2/3D . ~76!

In the following, we will denote the solutions of Eq.~75!
with Eq. ~76! as (A1* (z),A2* (z)) to distinguish them from
the exact solutions of Eq.~75!, (A1(z),A2(z)).

Figure 3 shows numerically estimated values ofA1(z)
andA2(z) for severalz. It also shows the approximate value
A1* (z) and A2* (z) for small z. It is evident thatA1* (z) and
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



:

-

o

ti
a

ur

ro
of
c

o

su
th
h
e

ates
ct,

at
ce
la-
the
e
ous
tral
is

ts

n

.

t

-

q.

,
ch

s-
ical
dis-
ical

or-
-
al-

e

f

rge

e

n
s

2393Phys. Fluids, Vol. 15, No. 8, August 2003 Anisotropic spectrum of homogeneous turbulent flow
A2* (z) agree well withA1(z) and A2(z) for z,0.5. The
implications of the figure may be summarized as follows

~i! A1(z) andA2(z) agree well with the asymptotic val
uesA1 andA2 for Re→` given by Eq.~63! only for
z!0.05;

~ii ! A1(z) andA2(z) are sensitive toz for z;0.05;
~iii ! the dependence ofA1(z) andA2(z) on z is weak for

0.1&z&0.5; typical values in this range areA1(z)
;20.1 andA2(z);20.3;

~iv! A1(z) decreases andA2(z) increases withz over 0.1
&z&0.4.

Result ~iii ! implies that a1(k)/(e1/3k213/3) and
a2(k)/(e1/3k213/3) may be approximated by the constants

A1;20.1, A1;20.3, ~77!

respectively, when Re is moderate so thatkt /kb is less than
approximately 10. Furthermore,~iii ! and~iv! suggest thatA1

andA2 have weak Re dependence such thatA1 increases and
A2 decreases slowly with increasing Re over 3&kt /kb

&10. Result ~ii ! indicates that a weak dependence
A1(z),A2(z) on z is not well justified forz;0.05, and result
~i! suggests that it would not be surprising if the asympto
value for A1 and A2 could be achieved only by realizing
wide enough inertial subrange wherek satisfying z5kb /k
,0.05 can exist.

The valuez[kt /kb in the DNS of IYK is estimated to be
only 4.0, and it is less than 5.0 in Tsuji’s experiments. Fig
1 ~left! of WC and Fig. 19~bottom! of SV suggestz;14 and
z;16 for the corresponding experiments, respectively, p
vided thatkb andkt are given by the bottom wavenumbers
the scaling ranges and the top wavenumbers of the spe
data given in the figures, respectively.~The bottom and the
top wavenumbers of the similarity scaling range
E12

(1-D)(k1) are not given explicitly in WC and SV.! The
above-mentioned analysis suggests that the inertial
ranges of the DNS and experiments are too narrow, i.e.,
Reynolds numbers are not large enough, to compare t
Q(1) with the one calculated for the asymptotic limit of R
→`, i.e., to compare the DNS or experimental values ofA1

and A2 with those in Eq.~63! for Re→`. The DNS and

FIG. 3. CoefficientsA1(z) andA2(z) of the anisotropic spectrum tensor i
the cutoff model, as functions ofz5kb /k. The symbols show the value
computed from direct numerical integration. The lines showA1* (z) and
A2* (z), the approximations ofA1(z) andA2(z), respectively, forz'0.
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experimental values should be compared with the estim
for the limited width of the inertial subrange. In this respe
the estimates in Eq.~77! are in fairly good agreement with
the DNS and experimental values in Eqs.~64! and ~65!.

To understand the anisotropy of small scale statistics
very large Re, it is desirable to realize or simulate turbulen
with much larger Re. However, such realizations or simu
tions are not possible at present due to the limitations of
available facilities. In this context, it is worthwhile to not
that we have recently performed a DNS of homogene
turbulence for a simple mean shear flow using a spec
method that is free from alias error. The method of DNS
similar to that used by IYK, but the number of grid poin
N3510243 and Reynolds numberRl5480, as well as the
maximum wavenumberKmax5483, are larger than those i
IYK ( N355123, Rl5284 andKmax5241).

The new DNS data are consistent with theQS spectrum
derived in Sec. III as well as in IYK, and give

A1520.1560.01, A2520.4860.02. ~78!

The value ofA1 in Eq. ~78! is almost equal to that in Eq
~64!, while the value ofA2 in Eq. ~78! is slightly smaller than
that in Eq.~64!. The decrease ofA2 with Re is in agreemen
with result~iv! noted above. The weak dependence ofA1 on
Re is also consistent with result~iii ! and with the data shown
in Fig. 3.

Recall that the estimate in Eq.~77! is based on the sim
plified cutoff model spectrum, Eqs.~71! and ~72!, which
does not satisfy Eq.~39! in a strict sense as noted after E
~75!. One might be interested in treatingQ more realistically
than the simple cutoff model, Eqs.~71! and ~72!, by using
the DNS data ofQ(1) for k,kb instead of discarding it. But
the analysis is lengthy and it turned out not to provide mu
improvement to the estimates ofA1 or A2 . It is therefore
omitted from this paper. For further improvement of the e
timate, one needs to develop better analytical or numer
treatment of the closure equations taking account of the
cussion at the end of Sec. V. Such analytical or numer
treatment is left for a future problem.

VII. SUMMARY AND DISCUSSIONS

A. Summary

In this paper, we analyzed the anisotropic velocity c
relation spectrumQ(1) in the inertial subrange of homoge
neous turbulent shear flow by using the Lagrange renorm
ized approximation~LRA!. The basic assumptions of th
analysis are the fundamental symmetries~homogeneity and
reflection invariance! of Q and G and the smallness o
d(k)5Tt(k)/TS andm(k)5Tt(k)/Tt(k) in the inertial sub-
range as described by~A-1!–~A-4!. A theoretical estimate is
given for the universal constantsA1 and A2 that determine
Q(1) and the universal functionsBb

a(a50,1,2;b51,2,3) that
determineG(1) in Sec. III.

The analysis in Sec. VI suggests that Re must be la
enough so thatkt /kb@20 in order thatQ(1) is approximated
by its universal form in the limit of infinitely large Re. Th
analysis also gives rough estimates forQ(1) and its Re de-
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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pendence in turbulence at moderate Re. They are consi
with DNS and experiments.

B. Anisotropic components of the response function

To the authors’ knowledge, the present study is the fi
attempt to analytically derive the anisotropic components
the Lagrangian response functionG(1) using a spectral clo-
sure approximation without introducing anyad hocadjusting
parameters. One might hope that the correctionG(1) is small
and thatQ(1) could be estimated by ignoringG(1). However,
if G(1) is replaced by 0 in the Sec. IV analysis, we obtain

A1520.2160.003, A250.5860.02, ~79!

which are significantly different from the values given by E
~63!. This shows the importance of treatingG(1) properly
instead of just discarding it.

C. Application to inhomogeneous turbulent shear
flow

In this paper, we considered a simple mean shear fl
where the shear rate, i.e.,Smn(x)[]^um(x)&/]xn , is con-
stant in space and time for the sake of simplicity. Howev
this is not an essential assumption. The perturbational an
sis of Q(x,x8,t) andG(x,t;x8,t8) is applicable in principle
even if Smn depends on a position vectorx and timet, pro-
vided that

d,[Smaxe
21/3,2/3!1, ~80!

where,5ux2x8u andSmax is the maximumSmn in the flow
domain and the time interval under consideration. Furth
more, we conjecture that if, in addition to Eq.~80!, the char-
acteristic length scale,S of Smn is much larger than,, then
the leading order terms ofQ(x,x8,t) andG(x,t;x8,t) in the
perturbation expansion for small,/,S are the homogeneou
parts whose Fourier transforms are given by Eqs.~30! and
~31!, respectively. Here,Q(1) andG(1) are given byQS and
GS in Eqs. ~43! and ~44!, respectively, andSmn5Smn(x).
Data from wind tunnel experiments8 support this conjecture
since they are consistent with the tensor form of Eqs.~43!,
~45!, and~47! whenSmn is replaced by the local value. Also
the measured constantsA1 and A2 are in good agreemen
with those obtained by the DNS of homogeneous turbu
shear flow reported in IYK and in the present paper. T
above-given conjecture could be examined in the framew
of the LRA for inhomogeneous turbulence. This is left f
future study.

D. Analyses based on the DIA

Previous studies of the anisotropic partQ(1) of the ho-
mogeneous turbulent shear flow spectrum, including th
by Leslie,33 Rubinsteinet al.,36 and Yoshizawa,37 have used
the Eulerian direct interaction approximation~DIA !. In these
studies,Q(1) is given in the following form:

Qi j
(1)~k,t !5E

2`

t

dsGia
E(0)~k,t,s!Cabmn~k!

3Qjb
E(0)~2k,t,s!Smn1~ i↔ j ,k↔2k!, ~81!
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where (i↔ j ,k↔2k) denotes the term obtained by exchan
ing the indicesi and j and also the wave vectorsk and2k
in the preceding term.@The comment on Leslie’sQ(1) in IYK
was incorrect; hisQ(1) satisfies Qji

(1)(k)5Qi j
(1)(k).] The

functions GE(0) and QE(0) are the Eulerian isotropic two
time response and velocity correlation spectra, respectiv
@The definition ofGE(0) and QE(0) used by Yoshizawa is
slightly different from those used in other studies, but, to
authors’ understanding, hisGE(0) andQE(0) are also Eulerian
response and correlation functions, because the velocity
used in the definitions obeys exactly the same equation
the Navier–Stokes equations~without the shear terms! in the
Eulerian framework.# The symbolCabmn(k) denotes a non-
dimensional fourth-order tensor, the form of which differs
each study. It may contain differential operators with resp
to k that act on the functions on the right-hand side. In t
inertial subrange,Gi j

E(0)(k) andQi j
E(0)(k) are given by

Gi j
E(0)~k,t,s!5Pi j ~k!GE(0)@t/TE~k!#, ~82!

Qi j
E(0)~k,t,s!5Qi j

(0)~k,s!R@t/TE~k!#, ~83!

where GE(0)(•) and R(•) are nondimensional functions,t
[t2s, andTE(k) is the Eulerian time scale of the eddies
size;k21.

It is assumed in the above-mentioned studies t
TE(k)}k22/3. However, the original Eulerian DIA by
Kraichnan41 gives TE(k)}k21, and this scaling has bee
verified by several studies based on DNS analyses~see, for
example, Ref. 42!. Hence, it is difficult to justify the scaling
TE(k)}k22/3. If one usesQi j

(0)(k) given by Eq. ~27! and
TE(k);k21 in the inertial subrange, then Eqs.~81!–~83!
yield Q(1)(k)}k214/3, which contradicts the experiments b
WC, SV, Tsuji, and the DNS reported in IYK and the prese
study.
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APPENDIX A: EXPRESSIONS OF FUNCTIONALS AND
FUNCTIONS IN EQS. „34…–„36… AND „53…

The functionalsD, J and the functionJ̃ are given as
follows:

Di j @Q(1),G(1)#~k,t !5Hi j @Q(1),G(1)#~k,t !

1Hj i @Q(1),G(1)#~2k,t !, ~A1!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Hi j @Q(1),G(1)#~k,t !5(
p,q

n E
0

t2t0
dt8~Ga f

(0)~p,t1t8,t !Gbg
(0)~q,t1t8,t !Gjh

(0)~2k,t1t8,t !Piab~k!

3$Qgd
(0)~q,t !@2Pf de~p!Qhe

(1)~2k,t !1 1
2 Phcd~k!Qf c

(1)~p,t !#

1Qgd
(1)~q,t !@2Pf de~p!Qhe

(0)~2k,t !1 1
2 Phcd~k!Qf c

(0)~p,t !#%

1$Ga f
(0)~p,t1t8,t !Gbg

(0)~q,t1t8,t !Gjh
(1)~2k,t1t8,t !1Ga f

(0)~p,t1t8,t !Gbg
(1)~q,t1t8,t !

3Gjh
(0)~2k,t1t8,t !1Ga f

(1)~p,t1t8,t !Gbg
(0)~q,t1t8,t !Gjh

(0)~2k,t1t8,t !%

3Piab~k!Qgd
(0)~q,t !@2Pf de~p!Qhe

(0)~2k,t !1 1
2 Phcd~k!Qf c

(0)~p,t !# !, ~A2!

Ji j @Q(1),G(1)#~k,s1t,s!52(
p,q

n E
0

t

dt8Pib~2k!ka

pbpcpl

p2 3@Gcd
(0)~2q,s1t8,s!Qda

(0)~2q,s!Gl j
(1)~k,s1t,s!

1Gcd
(0)~2q,s1t8,s!Qda

(1)~2q,s!Gl j
(0)~k,s1t,s!

1Gcd
(1)~2q,s1t8,s!Qda

(0)~2q,s!Gl j
(0)~k,s1t,s!#, ~A3!

J̃i j ~k,s1t,s!52(
p,q

n E
0

t

dt8 Pib~2k!ka

pbpcpl

p2 H Gcd
(0)~2q,s1t8,s!Qda

(0)~2q,s!F ]

]s
Gl j

(0)~k,s1t,s!G
1Gcd

(0)~2q,s1t,s!F ]

]s
Qda

(0)~2q,s!GGl j
(0)~k,s1t,s!

1F ]

]s
Gcd

(0)~2q,s1t8,s!GQda
(0)~2q,s!Gl j

(0)~k,s1t8,s!J . ~A4!
The functionsUbg(p,q,j), Vb(j), and Wb(j) whereb,g
51,2,3, are given as follows:

U1g~p,q,j!5 1
8 @3Ui ji j

g ~ k̂,p,q;j!2Ui j j i
g ~ k̂,p,q;j!

1 k̂mk̂nUiimn
g ~ k̂,p,q;j!2Uii j j

g ~ k̂,p,q;j!#,

~A5!

U2g~p,q,j!5 1
8 @2Ui ji j

g ~ k̂,p,q;j!13Ui j j i
g ~ k̂,p,q;j!

1 k̂mk̂nUiimn
g ~ k̂,p,q;j!2Uii j j

g ~ k̂,p,q;j!#,

~A6!

U3g~p,q,j!5 1
8 @Ui ji j

g ~ k̂,p,q;j!1Ui j j i
g ~ k̂,p,q;j!

17k̂mk̂nUiimn
g ~ k̂,p,q;j!

23Uii j j
g ~ k̂,p,q;j!#, ~A7!

V1~j!5 1
8 @3Vi ji j ~ k̂;j!2Vi j j i ~ k̂;j!

1 k̂mk̂nViimn~ k̂;j!2Vii j j ~ k̂;j!#, ~A8!

V2~j!5 1
8 @2Vi ji j ~ k̂;j!13Vi j j i ~ k̂;j!

1 k̂mk̂nViimn~ k̂;j!2Vii j j ~ k̂;j!#, ~A9!

V3~j!5 1
8 @Vi ji j ~ k̂;j!1Vi j j i ~ k̂;j!

17k̂mk̂nViimn~ k̂;j!23Vii j j ~ k̂;j!#, ~A10!
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W1~j!5 1
8 @3Wi ji j ~ k̂;j!2Wi j j i ~ k̂;j!

1 k̂mk̂nWiimn~ k̂;j!2Wii j j ~ k̂;j!#, ~A11!

W2~j!5 1
8 @2Wi ji j ~ k̂;j!13Wi j j i ~ k̂;j!

1 k̂mk̂nWiimn~ k̂;j!2Wii j j ~ k̂;j!#, ~A12!

W3~j!5 1
8 @Wi ji j ~ k̂;j!1Wi j j i ~ k̂;j!

17k̂mk̂nWiimn~ k̂;j!23Wii j j ~ k̂;j!#, ~A13!

where

Uilmn
1 ~ k̂,p,q;j![2

Ko

2
pqPib~2 k̂!k̂a

pbpcpl

p2 q213/3

3G(0)~q2/3j!Pda~q!Pcm~q!Pdn~q!,

~A14!

Uilmn
2 ~ k̂,p,q;j![2

Ko

2
pqPib~2 k̂!k̂a

pbpcpl

p2 q213/3

3G(0)~q2/3j!Pda~q!Pcn~q!Pdm~q!,

~A15!

Uilmn
3 ~ k̂,p,q;j![2

Ko

2
pqPib~2 k̂!k̂a

pbpcpl

p2 q213/3

3G(0)~q2/3j!Pda~q!Pcd~q!q̂mq̂n,

~A16!
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Vilmn~ k̂;j!52(
p,q

n

Pib~2 k̂!k̂a

pbpcpl

p2

3q213/3G(0)~q2/3j!Pcd~q!

3@Pdm~q!Pan~q!1Pdn~q!Pam~q!#,

~A17!

Wilmn~ k̂;j!52(
p,q

n

Pib~2 k̂!k̂a

pbpcpl

p2 q213/3

3G(0)~q2/3j!Pcd~q!Pda~q!q̂mq̂n. ~A18!

Here, k̂ is an arbitrary unit vector, and~p,q! in Eqs. ~A5!–
~A18! are an arbitrary pair of vectors satisfyingupu5p, uqu
5q, andp1q5 k̂.

APPENDIX B: NUMERICAL METHODS

We obtained the functionsB̄b
a in Eq. ~55! numerically

using a finite difference technique and an iteration meth
In the following, a and b represent$0,1,2% and $1,2,3%, re-
spectively. We approximated the infinite interval@0,̀ ! of j
by N11 pointsj i5 iD ( i 50,1,...,N) whereD5jmax/N, and
the functionsB̄b

a(j) on the interval by the values of the func
tions at theN points,B̄b

a(j i).
The zeroth approximationsB̄b

a(0) of B̄b
a were given by

their Taylor series expansions aboutj50 to the second or-
der:

B̄b
0(0)~j i !52j idb1 , B̄b

1(0)~j i !5 1
2 Vb~0!j i

2 ,
~B1!

B̄b
2(0)~j i !5 1

2 Wb~0!j i
2 .

The (m11)th approximations were obtained from themth
approximations in the following manner:

Cb
a~j i !5B̄b

a(m)~j i !, ~ i 50,1!, ~B2!

Cb
a~j i !52Cb

a~j i 21!2Cb
a~j i 22!

1D2F E E
n

dp dq Ubg~p,q,j i 21!

3B̄g
a(m)~q2/3j i 21!1da1A1Vb~j i 21!

1da2A2Wb~j i 21!G , ~ i 52,...,N!, ~B3!

B̄b
a(m11)~j i !5 1

2 @B̄b
a(m)~j i !1Cb

a~j i !#, ~ i 51,...,N!,
~B4!

where B̄b
a(m)(j) at jÞj i( i 50,1,...,N) were defined by the

linear interpolations of the points (j i ,B̄b
a(m)(j i)) for j

<jmax and B̄b
a(m)(j)5B̄b

a(m)(jmax) for j.jmax.
We computed thep, q integrals on the right-hand side o

Eq. ~B3! by ~i! symmetrizing the integrands with respect top
andq, ~ii ! integrating them numerically over the domain

n85$~p,q!uq.0,max~12q,q!,p,11q%,

and then~iii ! multiplying them by 2. We divided the domai
n8 into three subdomains,~a! 0,q,q0 , ~b! q0<q<q1 ,
Downloaded 07 Aug 2003 to 133.6.71.93. Redistribution subject to AI
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and~c! q1,q,`, and performed the numerical integration
in each subdomain separately. Each numerical integratio
domain~a! was performed as follows:~i! the integrations in
the p direction for some fixedq were evaluated using a
trapezoidal quadrature with variable transformations,43 ~ii !
the data were fitted to a function of the formc1qc2, and then
~iii ! the fitted function was integrated analytically in theq
direction. Domain~b! was further divided into additiona
subdomains; the integrations in each were evaluated u
the trapezoidal quadrature with respect to bothp andq. The
integrals in domain~c! were simply neglected because th
integrands decay asG(0)(q2/3j)}exp(2q2/3) for q→` and
are therefore negligible ifq1 is sufficiently large.

We used

jmax54, N580 ~D50.05!, m510,

q051/32, q151024,

in the present computation. The number of points in thep, q
integrals were chosen so that the order of the relative num
cal errors was at most;0.3%. The relative errors due to th
finite differencing in thej direction were estimated to b
;0.6%. The numerical errors due to thep, q integration and
finite differencing in thej direction were estimated from th
difference between the results of a computation with half
the resolution in either thep and q, or the j direction, re-
spectively. The relative numerical errors due to the trun
tion of Bb

a(j) at jmax54.0 were estimated to be;0.1% us-
ing the difference between the computations forjmax54.0
and jmax58.0, both with a lower resolution inj direction,
D50.2. The relative error due to the iterations,;0.3%, was
estimated from the difference between the results of the
rent iteration and those of the preceding iteration.

The p,q integrals inT of Eqs.~59! and ~60! were com-
puted in a manner similar to the one described above.
difference was that the integrations in domains~a! and ~c!
were performed with a fitting function, since the integran
decay;qc1 for q→0 and;q2c2 for q→`, wherec1 and
c2 are positive constants. We choseq051/128 andq1532 in
the present computation. The numbers of points in thep,q
integrals were chosen so that the order of the relative er
was at most 0.1%. The relative numerical errors due to
truncation of the universal functionsBb

a(j)(a50,1,2,b
51,2,3) atj5jmax are;0.1%; these are estimated from th
difference between the present results and those obtaine
ing the extrapolated functionsBb

a* (j) defined by

Bb
a* ~j!5H Bb

a~j!, ~0<j<jmax!,

B̄b
a~jmax!G

(0)~j!, ~jmax,j<2jmax!,

0, ~j.2jmax!,

instead ofBb
a(j), which are truncated atj5jmax.

Since all of the errors in the present numerical metho
as well as the error introduced by the estimate ofKo in Eq.
~29! (&0.5%) were smaller than 1%, we expect that t
order of the relative errors in the numerical values given
Eq. ~62! were smaller than;1%.
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All the tensorial algebras and numerical computatio
were performed by usingMATHEMATICA .
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