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The structures of isotropic incompressible magnetohydrodynamic �MHD� turbulence in the inertial
subrange are studied within the Lagrangian renormalized approximation �LRA�. It is confirmed that
LRA derives the total energy spectrum which is consistent with the Iroshnikov-Kraichnan �IK�
spectrum. The residual energy spectrum in LRA is found to obey k−2 scaling law, where k is the
wave number. Given are the quantitative estimates of �i� the dimensionless constants in the total and
residual energy spectra, �ii� contribution of triad interactions to the energy flux, and �iii� the eddy
viscosity and the eddy magnetic diffusivity. A direct numerical simulation �DNS� of a forced
quasi-isotropic incompressible MHD turbulence is performed to find that the obtained total energy
spectrum is in good agreement with the one derived within LRA both in its scaling exponent and in
the dimensionless constant. The residual energy spectrum obtained in the DNS agrees with that
derived in LRA with respect to the scaling exponent and the sign of the dimensionless constant,
which is negative, although the magnitude of the dimensionless constant is about four times
larger. © 2007 American Institute of Physics. �DOI: 10.1063/1.2717687�

I. INTRODUCTION

Turbulence occurring in a conducting fluid interacting
with a magnetic field is described appropriately within the
framework of magnetohydrodynamics �MHD� �see, e.g., Ref.
1�. For incompressible MHD turbulence, the structure of an
energy spectrum within the inertial subrange has been dis-
cussed by many authors, however it is still an issue to be
debated.

Iroshnikov2 and Kraichnan3 �hereafter, IK� suggested
phenomenologically that the energy spectrum in the inertial
subrange of isotropic incompressible MHD turbulence
should be Eu�k�=EB�k�=A�1/2B0

1/2k−3/2 �hereafter, the IK
spectrum�. Here, Eu�k� and EB�k� are the kinetic and mag-
netic energy spectrum, k is a wave number, � is the total
energy dissipation rate per unit mass, B0 is the root mean
square of magnetic field along an arbitrary axis, and A is a
dimensionless constant. Note that, for purely hydrodynamic
turbulence, the energy spectrum in the inertial subrange is
given by the well-known Kolmogorov spectrum, i.e., Eu�k�
��2/3k−5/3, where a possible intermittency correction is ne-
glected. Pouquet and others4 developed a theory for MHD
turbulence by making use of the eddy-damped quasinormal
Markovian �EDQNM� approximation in order to be consis-
tent with the IK spectrum in the high-wave-number limit.
Within the framework, they obtained the correction to the IK
spectrum, that is, ER�k��k−2 and ER�k��0, where ER�k�
=Eu�k�−EB�k� is the residual energy spectrum. They also
treated both cases with nonzero magnetic helicity �VdxB ·A
�Ref. 4� and with nonzero cross helicity �Vdxu ·B �Refs. 5

and 6�, where u is the velocity field, B is the magnetic field,
and A is the vector potential.

Some authors claim that IK phenomenology should be
modified by taking into account the local anisotropy of the
magnetic field. Goldreich and Sridhar7–9 proposed three phe-
nomenological models for weak, intermediate, and strong
turbulences. In each model, they obtained the energy spec-
trum density as a function of k� and k�, where k��k�� denotes
the wave-vector component perpendicular �parallel� to the
local mean magnetic field b0 �see Ref. 10 for a review�.
Galtier et al.11 claimed that, for globally isotropic weak tur-
bulence, the local anisotropy yields k−2 scaling for the total
energy spectrum E�k�=Eu�k�+EB�k�, although the IK spec-
trum recovers for strong turbulence.

Biskamp and Müller12 �hereafter, BM� and Müller and
Grappin13 �hereafter, MG� obtained E�k��k−5/3 in their re-
cent direct numerical simulations �DNS� of decaying quasi-
isotropic incompressible MHD turbulence.

In this paper, we study the structures of isotropic incom-
pressible MHD turbulence in the inertial subrange by making
use of the Lagrangian renormalized approximation �LRA�.14

We found that the total energy spectrum E�k� is consistent
with the IK spectrum, which confirmed the suggestion raised
by Kaneda and Gotoh,15 and that the residual energy spec-
trum is given by the form ER�k�=AR�B0

−1k−2 with AR being a
dimensionless constant, which is consistent with the result in
Ref. 4. Furthermore, we obtained the numerical estimates of
�i� the dimensionless constants A and AR, �ii� contribution of
the triad interactions to the energy flux, and �iii� the eddy
viscosity and the eddy magnetic diffusivity, without intro-
ducing any ad hoc parameters. In addition to the theoretical
investigation, we performed DNS of a forced quasi-isotropica�Electronic mail: yoshida@sakura.cc.tsukuba.ac.jp
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incompressible MHD turbulence, and compared the energy
spectrum and the values of A and AR obtained in the DNS
with those derived in LRA.

LRA is one of the Lagrangian two-point closure approxi-
mations �LCAs�. Here, LCAs refer to the abridged Lagrang-
ian history direct interaction approximation �ALHDIA�16 and
the strain-based abridged Lagrangian history direct interac-
tion approximation �SBALHDIA�17 as well as LRA. The
equations within LCAs are derived from the basic equations
of fluids in systematic ways without any ad hoc parameters.
Note that, within the EDQNM approximation, one has to
introduce an ad hoc quantity, i.e., the eddy-damping rate. To
the authors’ knowledge, among various closure approxima-
tions, only three of the LCAs can provide the Kolmogorov
spectrum Eu�k�=CK�2/3k−5/3 for hydrodynamic turbulence
with the value of CK being in good agreement with those in
experiments and DNSs as well as the Kolmogorov scaling
k−2/3 for characteristic time in the inertial subrange. It is
known that the closure based on quasi-Lagrangian
variables18 also provides the Kolmogorov spectrum, how-
ever, to the authors’ knowledge, the value of CK within the
closure has not been estimated. Among LCAs, LRA is attrac-
tive in the sense that, for the hydrodynamic case, �i� the
two-time correlation function and the response function sat-
isfy the same equation of motion, which allows us to use
formally the fluctuation-dissipation relation, and �ii� the
structure of the equation of motion is simpler than the other
LCAs.

There are pioneering studies on application of LRA to
MHD turbulence by Kaneda and Gotoh15 and by
Nakayama.19,20 Kaneda and Gotoh derived the IK spectrum
for E�k� in isotropic MHD turbulence. Nakayama studied
MHD turbulence with strong uniform mean magnetic field
Bm. Under a simplification that fluctuating velocity and mag-
netic fields are perpendicular to Bm, it was shown that
E�k���k�

−3/2, where k� denotes the wave number perpen-
dicular to Bm. Quantitative analyses such as the estimate of
dimensionless constants were not made in these studies.

The DNS in the present study is of forced quasi-isotropic
MHD turbulence in contrast to BM and MG, in which DNSs
of decaying MHD turbulence were performed. Note that a
substantial inertial subrange is necessary, i.e., the Reynolds
number must be high enough, to test the present theoretical
prediction of the energy spectrum. We forced the system in
order to attain a Reynolds number as high as possible within
the limitation of available computational resource. Both u
and B were stirred at large scales by random force whose
correlation time scale is of the order of the large-eddy turn-
over time.

II. LRA EQUATIONS FOR MHD TURBULENCE

The basic equations of incompressible MHD are given
by

�tui + uj� jui = Bj� jBi − �iP + �� j� jui, �2.1�

�iui = 0, �2.2�

�tBi + uj� jBi = Bj� jui + �� j� jBi, �2.3�

�iBi = 0, �2.4�

where u�x , t� is the velocity field, B�x , t� is an appropriately
normalized magnetic field, P�x , t�ªp�x , t�+ �B�x , t��2 /2 is
the total pressure, p�x , t� is the normal pressure, � is the
kinematic viscosity, and � is the magnetic diffusivity. The
density of fluid is normalized to unity. Summation over
�1,2 ,3	 for repeated indices is applied. In the following, we
employ the notations

Xi
u
ª ui, Xi

B
ª Bi, �2.5�

for convenience.
Let us introduce the Lagrangian position function � de-

fined by

��x�,t;x,s� ª ��3�
„x� − y�x,s�t�… , �2.6�

where ��3� is the three-dimensional delta function and
y�x ,s � t� is the position of a fluid element at time t under the
condition that the element was at x at time s. The function �
obeys

�t��x�,t;x,s� = − ui�x�,t��i
�x����x�,t;x,s� , �2.7�

��x�,t;x,t� = ��3��x� − x� . �2.8�

The Lagrangian variables are defined by

Xi
��x,s�t� = 


D
d3x�Xi

��x�,t���x�,t;x,s� �t 	 s� , �2.9�

where D is the domain of fluid and the upper Greek indices
indicate �u ,B	.

The two-point Lagrangian correlation function Q and the
Lagrangian response function G are defined by

Qij
�
�x,t;x�,t�� ª ���PX��i�x,t��t�Xj


�x�,t��
 �t 	 t��

�Xi
��x,t��PX
� j�x�,t�t��
 �t � t��

� ,

�2.10�

��P�X��i�x,t��t�
 = Gij
�
�x,t;x�,t���P�X
� j�x�,t��t��

�t 	 t�� , �2.11�

where �Xj

�x� , t� � t�� is an infinitesimal disturbance added to

Xj

�x� , t� � t�� at time t�, �Xi

��x , t� � t� is the response of
Xi

��x , t� � t� to the disturbance at time t, and PA�x� is the
projection of a vector field A�x� to its solenoidal part. �Y

denotes the average taken over an appropriate statistical en-
semble for a quantity Y. Summation over �u ,B	 for repeated
upper Greek indices is applied.

We consider the case that the turbulence is statistically
homogeneous, i.e., the statistically averaged quantities are
invariant under the parallel translation �x�1� , . . . ,x�m��
→ �x�1�+r , . . . ,x�m�+r� of the reference points. When the tur-
bulence is statistically homogeneous, Q and G depend on
positions x and x� only through x-x� and it is convenient to
introduce the Fourier transforms of Q and G as
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Q̂ij
�
�k,t,t�� ª �2��−3

�
 d3�x − x��e−ik·�x−x��Qij
�
�x,t,x�,t�� ,

�2.12�

Ĝij
�
�k,t,t�� ª
 d3�x − x��e−ik·�x−x��Gij

�
�x,t,x�,t�� , �2.13�

respectively. In the following, the hat ∧ indicating the Fourier
components is omitted unless it is ambiguous.

Following similar procedures to those given in Ref. 14,
one obtains closed equations for Q and G as follows:

�tQij
�
�k,t,t� = 


p,q

�

�Hij
�
�k,p,q,t� + Hji


��− k,− p,− q,t��

− ��
k2Qij


�k,t,t� − �

k2Qij

�
�k,t,t� ,

�2.14�

�tQij
�
�k,t,s� = 


p,q

�

Iij
�
�k,p,q,t,s� − ��
k2Qij



�k,t,s�

�t 	 s� , �2.15�

�tGij
�
�k,t,s� = 


p,q

�

Jij
�
�k,p,q,t,s� − ��
k2Gij



�k,t,s�

�t 	 s� , �2.16�

Gij
�
�k,t,t� = Pij�k���
, �2.17�

where

Hij
�
�k,p,q,t� = 4Miab

�
��k�Mcde
����p�

� 

t0

t

dsGac

��p,t,s�Qbd

���q,t,s�Qje

��− k,t,s�

+ 2Miab
�
��k�Mecd

����− k�

� 

t0

t

dsQac

��p,t,s�Qbd

���q,t,s�Gje

��− k,t,s� ,

�2.18�

Iij
�
�k,p,q,t,s�

= 4Pil�k�Nlab
�
��k�Mcde

����p�

�

t0

t

ds�Gac

��p,t,s��Qbd

���q,t,s��Qej
�
�k,s�,s�

+ 2Pil�k�Nlab
�
��k�Mecd

����− k�

� 

t0

s

ds�Qac

��p,t,s��Qbd

���q,t,s��Gje

��− k,s,s��

+ 2Pil�k�Nlab
�
��p�Ac

u�− p�

�

s

t

ds�Qbc
�u�− q,t,s��Qaj



�k,t,s� , �2.19�

Jij
�
�k,p,q,t,s� = 4Pil�k�Nlab

�
��k�Mcde
����p�

� 

s

t

ds�Gac

��p,t,s��Qbd

���q,t,s��Gej
�
�k,s�,s�

+ 2Pil�k�Nlab
�
��p�Ac

u�− p�

� 

s

t

ds�Qbc
�u�− q,t,s��Ga j



�k,t,s� , �2.20�

with

Mimn
uuu�k� = −

i

2
�kmPin�k� + knPim�k�� , �2.21�

Mimn
uBB�k� =

i

2
�kmPin�k� + knPim�k�� , �2.22�

Mimn
BuB�k� =

i

2
��imkn − �inkm� , �2.23�

Mimn
BBu�k� =

i

2
�− �imkn + �inkm� , �2.24�

Mimn
uuB�k� = Mimn

uBu�k� = Mimn
Buu�k� = Mimn

BBB�k� = 0, �2.25�

Nimn
uuu�k� = i

kikmkn

k2 , �2.26�

Nimn
uBB�k� =

i

2
�kmPin�k� + knPim�k�� , �2.27�

Nimn
BuB�k� =

i

2
�imkn, �2.28�

Nimn
BBu�k� =

i

2
�inkm, �2.29�

Nimn
uuB�k� = Nimn

uBu�k� = Nimn
Buu�k� = Nimn

BBB�k� = 0, �2.30�

Ai
u�k� = − iki, �2.31�

�uu = �u = �, �BB = �B = �, �uB = �Bu = 0, �2.32�

and

Pij�k� ª �ij −
kikj

k2 , k ª �k� , �2.33�



p,q

�

ª
 d3p
 d3q��3��k − p − q� . �2.34�

Here, t0 is the initial time of the integration.

III. EQUATIONS FOR ISOTROPIC TURBULENCE

The MHD equations �2.1�–�2.4� are invariant under spa-
tial translations, rotations, and the parity transformations x
→−x, u→−u, B→ ±B. When statistically averaged quanti-
ties are invariant under all of these transformations, the
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MHD turbulence is called homogeneous and isotropic. In the
case of homogeneous and isotropic MHD turbulence, Q and
G may be written in the following forms:

Qij
uu�k,t,s� =

1

2
Qu�k,t,s�Pij�k� , �3.1�

Qij
BB�k,t,s� =

1

2
QB�k,t,s�Pij�k� , �3.2�

Qij
uB�k,t,s� = Qij

Bu�k,t,s� = 0, �3.3�

Gij
uu�k,t,s� = Gu�k,t,s�Pij�k� , �3.4�

Gij
BB�k,t,s� = GB�k,t,s�Pij�k� , �3.5�

Gij
uB�k,t,s� = Gij

Bu�k,t,s� = 0. �3.6�

Then, the LRA equations �2.14�–�2.17� reduce to

��t + 2��k2�Q��k,t,t� = 4�
 

�

dpdq
pq

k
H��k,p,q;t� , �3.7�

��t + ��k2�Q��k,t,s� = 2�
 

�

dpdq
pq

k
I��k,p,q;t,s� , �3.8�

��t + ��k2�G��k,t,s� = 2�
 

�

dpdq
pq

k
J��k,p,q;t,s� , �3.9�

G��k,t,t� = 1, �3.10�

where

Hu�k,p,q;t� = −
1

2
kp�xy + z3�

�

t0

t

dsGu�p,t,s�Qu�q,t,s�Qu�k,t,s�

−
1

2
kp�1 − y2�z

�

t0

t

dsGB�p,t,s�QB�q,t,s�Qu�k,t,s�

+
1

8
k2�1 + x2 + y2 + z2 − 4y2z2�

� 

t0

t

dsQu�p,t,s�Qu�q,t,s�Gu�k,t,s�

+
1

8
k2�1 + x2 + y2 + z2 − 4y2z2�

� 

t0

t

dsQB�p,t,s�QB�q,t,s�Gu�k,t,s� , �3.11�

HB�k,p,q;t� = −
1

2
kp�1 − x2�z

�

t0

t

dsGu�p,t,s�QB�q,t,s�QB�k,t,s�

−
1

2
kp�xy + z�

�

t0

t

dsGB�p,t,s�Qu�q,t,s�QB�k,t,s�

+
1

4
k2�3 − x2 − y2 − z2�

� 

t0

t

dsQu�p,t,s�QB�q,t,s�GB�k,t,s� , �3.12�

Iu�k,p,q;t,s� = −
1

2
kp�1 − y2�z

�

t0

t

ds�GB�p,t,s��QB�q,t,s��Qu�k,s�,s�

+
1

8
k2�1 + x2 + y2 + z2 − 4y2z2�

� 

t0

s

QB�p,t,s��QB�q,t,s��Gu�k,s,s��

−
1

2
k2�1 − y2��1 − z2�

�

s

t

ds�Qu�q,t,s��Qu�k,t,s� , �3.13�

IB�k,p,q;t,s� = −
1

4
kp�xy + z − x2z + z3�

� 

t0

t

ds�Gu�p,t,s��QB�q,t,s��QB�k,s�,s�

−
1

4
kpy�x + yz�

� 

t0

t

ds�GB�p,t,s��Qu�q,t,s��QB�k,s�,s�

+
1

8
k2�3 − x2 − 3y2 + z2�

� 

t0

s

ds�Qu�p,t,s��QB�q,t,s��GB�k,s,s��

−
1

8
p2�1 − x2 + y2 − z2�

�

s

t

ds�Qu�q,t,s��QB�k,t,s� , �3.14�
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Ju�k,p,q;t,s� = −
1

2
kp�1 − y2�z

� 

s

t

ds�GB�p,t,s��QB�q,t,s��Gu�k,s�,s�

−
1

2
k2�1 − y2��1 − z2�

�

s

t

ds�Qu�q,t,s��Gu�k,t,s� , �3.15�

JB�k,p,q;t,s� = −
1

4
kp�xy + z − x2z + z3�

� 

s

t

ds�QB�q,t,s��Gu�p,t,s��GB�k,s�,s�

−
1

4
kpy�x + yz�

� 

s

t

ds�GB�p,t,s��Qu�q,t,s��GB�k,s�,s�

−
1

8
p2�1 − x2 + y2 − z2�

�
s
tds�Qu�q,t,s��GB�k,t,s� , �3.16�

with

x ª −
p · q

pq
, y ª

q · k

qk
, z ª

k · p

kp
�3.17�

and


 

�

dpdq ª 

0

�

dp

�p−k�

p+k

dq . �3.18�

In the derivation, we used the identities

xyz =
1

2
�1 − x2 − y2 − z2�, p2�1 − x2� = k2�1 − y2� .

�3.19�

The tensorial algebras were performed by using MATH-

EMATICA. �Expressions equivalent to �3.7�–�3.16� were ob-
tained in Ref. 15 for the first time, but some geometric co-
efficients are given incorrectly.�

The kinetic energy spectrum Eu�k , t� and the magnetic
energy spectrum EB�k , t� are given, respectively, in terms of
Q by

Eu�k,t� = 2�k2Qu�k,t,t� , �3.20�

EB�k,t� = 2�k2QB�k,t,t� . �3.21�

The total energy flux ��k , t� flowing into wave numbers
larger than k may be written as

��k,t� =
1

2



k

�

dk�

0

�

dp�

�p�−k��

p�+k�
dq�T�k�,p�,q�;t� ,

�3.22�

where

T�k,p,q;t� = 16�2kpq�Hu�k,p,q;t� + HB�k,p,q;t��

�3.23�

�cf. �3.7� in Ref. 21�.
Let us introduce

Hij
�
��k,kc,t� ª 


p,q

��kc

Hij
�
�k,p,q;t� , �3.24�

where �p,q
��kc denotes the integral over p and q satisfying p

+q=k, and p and/or q�kc. With the assumptions that
Qij

�
�k , t ,s� and Gij
�
�k , t ,s� are isotropic for k�kc, and that

the amplitude of Q��k , t ,s� and the scales of characteristic
decay time for Q��k , t ,s� and G��k , t ,s� decrease sufficiently
fast as k increases, the asymptotic form of Hij

�
��k ,kc , t� for
k�kc is given by

Hij
�
��k,kc,t� = − ��
�kc,t�k2Qij



�k,t� , �3.25�

where

�uu�kc,t� =
2�

15



kc

�

dp

t0

t

ds�7p2�Gu�p,t,s��2Qu�p,s,s�

+ 7p2�GB�p,t,s��2QB�p,s,s�

+ p3�Gu�p,t,s��2� �

�q
Qu�q,s,s��

q=p

− p3�GB�p,t,s��2� �

�q
QB�q,s,s��

q=p
� , �3.26�

�BB�kc,t� =
4�

3



kc

�

dp

t0

t

dsp2Gu�p,t,s�GB�p,t,s�Qu�p,s,s� ,

�3.27�

�uB�kc,t� = �Bu�kc,t� = 0. �3.28�

Note that Q and G are not necessarily isotropic for k�kc.
The result �3.25� with �3.26�–�3.28� implies that the effect of
wave numbers higher than kc on the time evolution of
Qij

�
�k , t , t� given by �2.14� can be renormalized in the form
of the eddy viscosity �uu�kc , t� and eddy magnetic diffusivity
�BB�kc , t�, provided that k /kc�1.

When Q and G are isotropic in the entire wave-number
range under consideration, one may formally introduce
k-dependent eddy viscosity �u�k ,kc , t� and eddy magnetic
diffusivity �B�k ,kc , t� for k /kc�1 as

�u�k,kc,t� = −
Hii

uu��k,kc,t�
k2Qu�k,t�

, �3.29�
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�B�k,kc,t� = −
Hii

BB��k,kc,t�
k2QB�k,t�

, �3.30�

following Kraichnan’s definition of the eddy viscosity.22 We
see that �u�k ,kc , t���uu�kc , t� and �B�k ,kc , t���BB�kc , t� for
k /kc�1.

IV. INERTIAL SUBRANGE STRUCTURES

We assume that statistically averaged quantities are ho-
mogeneous, isotropic, and stationary in the inertial subrange.
In the following analysis, we put t0=−� in order to work
with the statistically stationary state and we put �=�=0
since viscosity and magnetic diffusivity in the closure equa-
tions may be neglected formally in the inertial subrange.

Let k0 be the lower-boundary wave number of the iner-
tial subrange. When

Qu�k,t,t� � kau
, QB�k,t,t� � kaB

�4.1�

are satisfied in the inertial subrange, it is easily seen that the
integrals on the right-hand sides of �3.8� and �3.9� diverge

like k0
3+aB

as k0 tends to 0 provided that

�D1� aB�−3, and that
�D2� the characteristic decay time of QB�k1 , t ,s� is much

larger than those of Q��k2 , t ,s� and G��k2 , t ,s���
=u ,B� for k1�k2.

Note that the conditions �D1� and �D2� are satisfied when the
Kolmogorov scaling is applied to Qu ,Gu ,QB and GB since
au=aB=−11/3 and the characteristic decay times of Qu�k�
and Gu�k� are proportional to k−2/3 in the Kolmogorov scal-
ing. The conditions are also satisfied for the IK phenomenol-
ogy in which au=aB=−7/2 and the characteristic decay
times of Qu�k� ,Gu�k� ,QB�k� and GB�k� are proportional to
k−1.

In the direct interaction approximation �DIA� for MHD
turbulence, both Qu and QB contribute to the divergence in
the integrals,3 while, in LRA, only QB contributes to the
divergence. Note that DIA is an Eulerian closure approxima-
tion. The divergence of the integrals due to Qu, which ap-
pears in DIA, is removed in LRA by closing the equations
with the Lagrangian variables, while the divergence due to
QB is not removed by the same procedure. The former diver-
gence can be attributed to the inclusion of the sweeping ef-
fect of the eddies in the energy containing range on the ed-
dies in the inertial subrange in the estimation of the energy
transfer among the latter eddies. This is inappropriate since
the sweeping effect can be removed by the Galilean transfor-
mation and the energy transfer should be evaluated on the
frame moving with each eddy. In the purely hydrodynamic
case, the closure equations result in an incorrect scaling
Eu�k��k−3/2 when there is the divergence due to Qu, whereas
they result in the Kolmogorov scaling Eu�k��k−5/3 when the
divergence is removed �see, e.g., Ref. 23�. On the other hand,
since there is no transformation of coordinate that removes a
uniform magnetic field, the large scales of magnetic field in
the energy-containing range may contribute reasonably to the
energy transfer between smaller scales in the inertial sub-
range.

The divergence of the integrals in �3.8� and �3.9� implies
that the main contribution of the integrals comes from small
p and q ��k0�. Therefore, the integrand of �3.8� and �3.9�
may be approximated by the leading orders in their Taylor
expansions around p=0 with respect to p /k and those around
q=0 with respect to q /k. Resulting equations are

�tQ
u�k,t,s� = − B0

2k2�

s

t

ds�GB�k,t,s��Qu�k,s�,s�

+ 

−�

s

ds��GB�k,t,s��Qu�k,s,s��

− Gu�k,s,s��QB�k,t,s���� , �4.2�

�tQ
B�k,t,s� = − B0

2k2�

s

t

ds�Gu�k,t,s��QB�k,s�,s�

+ 

−�

s

ds��Gu�k,t,s��QB�k,s,s��

− GB�k,s,s��Qu�k,t,s���� , �4.3�

�tG
u�k,t,s� = − B0

2k2

s

t

ds�GB�k,t,s��Gu�k,s�,s� , �4.4�

�tG
B�k,t,s� = − B0

2k2

s

t

ds�Gu�k,t,s��GB�k,s�,s� , �4.5�

where

B0 ª
��Bi

2
 =�2

3



0

�

dkEB�k� , �4.6�

with i being any of the coordinate indices �1,2 ,3	.
Equations �4.4� and �4.5� with �3.10� have a solution of a

similarity form

Gu�k,t,s� = GB�k,t,s� = g�B0k�t − s�� , �4.7�

with

g��� =
J1�2��

�
, �4.8�

where J1��� is the Bessel function of the first kind of the
order 1. The rescaled response function g��� is plotted in
Fig. 1. In the following, we will omit the superscripts u and
B on G.

It is convenient to introduce QE and QR defined by

QE�k,t,s� ª
1

2
�Qu�k,t,s� + QB�k,t,s�� , �4.9�

QR�k,t,s� ª Qu�k,t,s� − QB�k,t,s� . �4.10�

They are related to the total energy spectrum E�k , t� and the
residual energy spectrum ER�k , t� by

E�k,t� = 4�k2QE�k,t,t� , �4.11�
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ER�k,t� = 2�k2QR�k,t,t� . �4.12�

From �4.2�, �4.3�, �4.9�, and �4.10�, one obtains

�tQ
E�k,t,s� = − B0

2k2�

s

t

ds�G�k,t,s��QE�k,s�,s�

+ 

−�

s

ds��G�k,t,s��QE�k,s,s��

− G�k,s,s��QE�k,t,s���� , �4.13�

�tQ
R�k,t,s� = − B0

2k2�

s

t

ds�G�k,t,s��QR�k,s�,s�

+ 

−�

s

ds��G�k,t,s��QR�k,s,s��

+ G�k,s,s��QR�k,t,s���� . �4.14�

Equations �4.13� and �4.14� have a solution of similarity
forms

QE�k,t,s� = QE�k�rE�B0k�t − s�� , �4.15�

QR�k,t,s� = QR�k�rR�B0k�t − s�� , �4.16�

where

rE��� =
J1�2��

�
�=g���� , �4.17�

and rR��� is the solution of the equation

�tr
R��� = − 


0

�

d�g�� − ��rR���

− 

0

�

d��g�� + ��rR��� + g���rR�� + ��� ,

�4.18�

with rR�0�=1.
We assume that the total energy flux ��k� is constant in

the inertial subrange and put it equal to the energy dissipa-
tion rate � independent of k, i.e.,

��k� = � . �4.19�

Let us further assume that QE�k� and QR�k� in �4.15� and
�4.16�, respectively, are given by the similarity forms

QE�k� =
A

2�
�bE

B0
cE

kaE
, �4.20�

QR�k� =
AR

2�
�bR

B0
cR

kaR
, �4.21�

with

aE � aR, �4.22�

where A and AR are dimensionless constants. The assumption
�4.22� implies that QE�k��QR�k�, i.e., Qu�k��QB�k�, at suf-
ficiently high k. It will be checked later that the assumption
is consistent with the result.

By using �3.11�, �3.12�, �3.22�, �3.23�, �4.7�–�4.10�, and
�4.15�–�4.17�, the constant energy flux condition �4.19� re-
duces to

� = A2K�2bE
B0

−1+2cE
k7+2aE

+ O�k7+aE+aR
� �k → � � ,

�4.23�

where K is a constant. Note that, by virtue of the assumption
�4.22�, QR do not contribute to the leading order of the en-
ergy flux for sufficiently high k. By neglecting the terms of
O�k7+aE+aR

� in �4.23�, one obtains

aE = −
7

2
, bE =

1

2
, cE =

1

2
, A = K−1/2. �4.24�

The constant K is given by

K = 

0

1

dv ln�1

v
�


max�v,1−v�

v+1

dwT̃�1,v,w� , �4.25�

where T̃�k , p ,q� is obtained by substituting �3.11�, �3.12�,
�4.7�, �4.8�, �4.15�, �4.17�, and �4.20� and Qu�k , t ,s�
=QB�k , t ,s�=QE�k , t ,s� into T�k , p ,q� of �3.23�, and then
putting � ,B0, and A to unity.

To the leading order of k, we may write �4.19� with
�3.22� in the following form:

� = 

1

� d�

�
W��� , �4.26�

with

W��� = �−1ln �

1

min��,�/��−1��

d

−2T�1,
1

�
,
1



�

+ �

max�1,�−1�

�

d
�
−3ln 
�T�1,
1



,
�



� , �4.27�

where � represents the ratio of maximum to minimum wave
numbers, i.e.,

FIG. 1. Rescaled response function g, and rescaled two-time correlation
functions rE and rR.
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� ª

max�k�,p�,q��
min�k�,p�,q��

, �4.28�

of the triad �k� ,p� ,q�� satisfying k��k and k�=p�+q�. The
integrand in �4.26�, W���d ln �, can be interpreted as the
contribution of triad interactions to � from the domain be-
tween ln � and ln �+d ln � �cf. �40� and �41� in Ref. 24�.

The constant total energy flux condition �4.19� implies
the stationarity of Qu�k , t , t�+QB�k , t , t�. In order that each of
Qu�k , t , t� and QB�k , t , t� is stationary as well as their sum, it
is required that

H��0��k,t� + H��1��k,t� + H��2��k,t� = 0, �4.29�

where H��i��k , t� is the ith order term in the power expansion
of the right-hand side of �3.7� in QR. It can be shown that the
integral over the wave number in H��0��k , t� converges when
the similarity forms of Q and G are substituted and that

Hu�0��k,t� = − HB�0��k,t� = A2K1k−3� , �4.30�

where K1 is a constant. On the other hand, the integrals over
the wave number in H��1��k , t� and H��2��k , t� diverge as the
lower-boundary wave number k0 of the inertial subrange
tends to 0. A similar approximation to that in �4.2�–�4.5�
leads to

Hu�1��k,t� + Hu�2��k,t� = − HB�1��k,t� − HB�2��k,t�

= − 2B0
2k2


−�

t

dsG�k,t,s�QR�k,t,s� .

�4.31�

From �4.7�, �4.8�, �4.16�, �4.21�, and �4.29�–�4.31�, one ob-
tains

aR = − 4, bR = 1, cR = − 1, �4.32�

AR = �A2K1IGR
−1 , �4.33�

where

IGR ª 

0

�

d�g���rR��� . �4.34�

The results �4.24� and �4.32� are consistent with the assump-
tion �4.22�.

From �4.20�, �4.21�, �4.24�, and �4.32�, one gets
QR�k� /QE�k����k�, where

��k� ª �1/2B0
−3/2k−1/2. �4.35�

The present analysis is valid in the wave-number range
where ��k��1, i.e., k�kB with

kB ª �B0
−3. �4.36�

In this wave-number range, Qu�k��QB�k��QE�k� is satis-
fied and therefore we have au�aB�aE=−7/2. The similar-
ity forms �4.7�, �4.15�, and �4.16� imply that the characteris-
tic decay times of Qu�k� ,QB�k� ,Gu�k� and GB�k� are of the
order of �B0k�−1. Hence, the assumptions �D1� and �D2� of
the present analysis are consistent with the results.

The results of this section are summarized as

QE�k,t,s� =
A

2�
�1/2B0

1/2k−7/2g�B0k�t − s�� , �4.37�

QR�k,t,s� =
AR

2�
�B0

−1k−4rR�B0k�t − s�� , �4.38�

Gu�k,t,s� = GB�k,t,s� = g�B0k�t − s�� , �4.39�

for k�kB in the inertial subrange, where g is given explicitly
in �4.8� and rR is the solution of �4.18� with rR�0�=1. Note
that the form of Gu and GB in �4.39� is exactly the same as
that of Gu in DIA25 for hydrodynamic turbulence when B0 is
replaced by Uª��ui

2
. Equations �4.37� and �4.38� with
�4.11� and �4.12� imply

E�k,t� = 2A�1/2B0
1/2k−3/2, �4.40�

ER�k,t� = AR�B0
−1k−2, �4.41�

which may be rewritten as

Eu�k,t� = �1/2B0
1/2k−3/2�A +

AR

2
��k�� , �4.42�

EB�k,t� = �1/2B0
1/2k−3/2�A −

AR

2
��k�� . �4.43�

For sufficiently high k such that ��k��1, �4.42� and �4.43�
are consistent with the IK spectrum, Eu�k , t�=EB�k , t�
=A�1/2B0

1/2k−3/2. The scaling ER�k , t��k−2 in �4.41� is consis-
tent with that obtained in the analysis of the EDQNM ap-
proximation in Ref. 4.

V. NUMERICAL ESTIMATES

From �4.8�, one obtains



0

�

d�g��� = 1, 

0

�

d��g����2 � 0.849, �5.1�

where the former is the exact result, and � denotes a numeri-
cal estimate. The function rR is obtained by solving �4.18�
numerically and plotted in Fig. 1. An iterative method that is
similar to that in Ref. 26 is used in the numerical calculation.
We obtain from the numerical solution of rR that



0

�

d�rR��� � 0.495, IGR � 0.500. �5.2�

One can estimate that K�1.92 from �4.25�. Then �4.23�
implies

A � 0.722. �5.3�

From �4.30�, we obtain the numerical estimate K1

�−0.1172. By using �4.33�, �5.2�, and �5.3�, the estimate
results in

AR � − 0.384. �5.4�

Now, the functions W���, �uu�kc�, �BB�kc�, �u�k ,kc�, and
�B�k ,kc� can be completely determined, respectively, by
�4.27�, �3.26�, �3.27�, �3.29�, and �3.30� with the substitution
of the similarity forms of Q and G given by �4.37�–�4.39�
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with �5.3� and �5.4�. Since we are interested in the
asymptotic forms of the functions for sufficiently high k, we
will neglect the terms of O���k�� in the following. This is
formally equivalent to putting QR�k�=0.

The function W��� normalized by � is plotted in Fig. 2.
The corresponding function in the hydrodynamic case is also
plotted for reference �cf. Fig. 2 of Ref. 24�. One can see from
the figure that the value of W��� in MHD turbulence ex-
cesses slightly that in the hydrodynamic turbulence near the
peak ��2. This implies that the triad interactions that con-
tribute to the total energy flux in the MHD turbulence are
somewhat more local in wave-vector space than those in the
hydrodynamic turbulence.

The estimates of eddy viscosity �uu�kc� and eddy mag-
netic diffusivity �BB�kc� are given, respectively, as

�uu�kc� � 0.38�1/2B0
−1/2kc

−3/2, �5.5�

�BB�kc� � 0.27�1/2B0
−1/2kc

−3/2. �5.6�

It is found that �uu�kc���BB�kc�, which implies that the ki-
netic energy at low wave numbers ��kc� transfers more ef-
ficiently than the magnetic counterpart does to the region of
wave numbers larger than kc within the inertial subrange.
Note that each of kinetic and magnetic energy at low wave
numbers may transfer to either of kinetic and magnetic en-
ergy in the region of wave numbers larger than kc since ki-
netic energy Eu and magnetic energy EB may interchange
during the transfer process while the total energy E=Eu

+EB conserves.
The estimates of k-dependent eddy viscosity �u�k ,kc�

and eddy magnetic diffusivity �B�k ,kc� are given, respec-
tively, as

�u�k,kc� = �1/2B0
−1/2kc

−3/2fu� k

kc
� , �5.7�

�B�k,kc� = �1/2B0
−1/2kc

−3/2fB� k

kc
� , �5.8�

where fu and fB are functions plotted in Fig. 3. The figure
shows that �u�k ,kc� is larger than �B�k ,kc� in the entire wave-
number range, 0�k�kc, where �u�k ,kc� and �B�k ,kc� are
defined.

VI. DNS

A. Setup

In order to verify the universal energy spectra �4.40� and
�4.41� with �5.3� and �5.4�, we performed DNS of a forced
quasi-isotropic MHD turbulence. Periodic boundary condi-
tions are applied with period 2� in each of the Cartesian
coordinates and an alias-free spectral method is used. The
fourth-order Runge-Kutta method is used for the time march-
ing.

Let Xi
��k , t� ��=u or B, i=1,2, or 3, k= �k1 ,k2 ,k3�, t

=m�t� be the simulated velocity and magnetic field in the
Fourier space, where �k1 ,k2 ,k3� is a set of integers satisfying
�k � =k1

2+k2
2+k3

2�kmax, kmax is the maximum resolved wave
number, m is 0 or a positive integer, and �t is the minimum
increment of time step. The kinetic energy Eu�t�, magnetic
energy EB�t�, cross helicity EC�t�, magnetic helicity HM�t�,
kinetic energy dissipation rate �u�t�, and magnetic energy
dissipation rate �B�t� per unit mass at time t are given, re-
spectively, by

Eu�t� =
1

2�
k

Q̃ii
uu�k,t�, EB�t� =

1

2�
k

Q̃ii
BB�k,t� , �6.1�

EC�t� = �
k

Q̃ii
uB�k,t�, HM�t� = �

k
i� jmn

kj

k2Q̃mn
BB�k,t� ,

�6.2�

�u�t� = �u�
k

k2Q̃ii
uu�k,t�, �B�t� = �B�

k
k2Q̃ii

BB�k,t� ,

�6.3�

where

Q̃ij
�
�k,t� ª Xi

��k,t�Xj

�− k,t� , �6.4�

and �ijk is the third-order antisymmetric tensor with �123=1.
The spectra associated with Eu�t�, EB�t�, EC�t�, and HM�t� are
given, respectively, by

Eu�k,t� =
1

2 �
k�=k

Q̃ii
uu�k�,t� , �6.5�

FIG. 2. Function W��� /� for the MHD turbulence. The function for the
hydrodynamic �HD� case is also plotted for reference.

FIG. 3. Rescaled eddy viscosity fu�k ,kc� and eddy magnetic diffusivity
fB�k ,kc� as functions of k /kc.
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EB�k,t� =
1

2 �
k�=k

Q̃ii
BB�k�,t� , �6.6�

EC�k,t� = �
k�=k

Q̃ii
uB�k�,t� , �6.7�

EH�k,t� = �
k�=k

i� jmn
kj

k
Q̃mn

BB�k�,t� , �6.8�

where k=1, . . . ,kmax and �k�=k denotes the summation with
respect to k� over the shell k−1/2� �k� � �k+1/2. The total
energy flux ��k , t� flowing into wave numbers larger than k
is given by

��k,t� =
1

2 �
k��k

�� �ui�k�,t�
�t

�
�=�=0

ui�− k�,t�

+ � �Bi�k�,t�
�t

�
�=�=0

Bi�− k�,t�� , �6.9�

where the time derivatives are computed by neglecting dis-
sipation terms.

In the present DNS, random external forces fu�k , t� and
fB�k , t� are applied to u�k , t� and B�k , t�, respectively, in a
low-wave-number range in order to achieve statistical qua-
sistationarity in a high-wave-number range. For k�kf,
fu�k , t� and fB�k , t� satisfy �f��k , t�
=0,

�f i
��k,t + ��f j

��− k�,t�
 = F�Pij�k��k,k�e
−���/Tf , �6.10�

�f i
u�k,t + ��f j

B�− k�,t�
 = 0, �6.11�

� jmnkj�fm
B�k,t + ��fn

B�− k�,t�
 = 0, �6.12�

where �·
 denotes a random average �see the Appendix for
the method used to generate such random forces�. For k
�kf, the forcings are not applied, i.e., f��k , t�=0. Equations
�6.11� and �6.12� imply that fu and fB do not inject cross
helicity EC and magnetic helicity HM into the system on
average. We set Fu=FB=F, i.e., kinetic energy and magnetic
energy are injected at the same rate. The correlation time Tf

of the external forces is set to Tf =2.0, which is of the order
of the large-eddy turnover time Lu /u0, where u0

ª ��u�2 /3�1/2= �2Eu /3�1/2 is the typical amplitude of the ve-

locity fluctuation with X̄ denoting the spatial average of a
quantity X, and Lu

ª �� /2u0
2��0

kmaxdkk−1Eu�k� is the integral
length scale. We set �=� and the value of � is chosen to
satisfy kmax�IK�2, where �IKª ��2B0 /��1/3 is IK micro-
scale, B0ª ��B�2 /3�1/2= �2EB /3�1/2 is the typical amplitude of
the magnetic field fluctuation, and �ª�u+�B is the total en-
ergy dissipation rate.

B. Results

We performed two runs, RUN256 and RUN512. Basic
parameters of the runs are listed in Table I, where N is the
number of grid points along each Cartesian axis. The initial
fields of u and B for RUN256 are generated randomly under
the constraints

Eu�k,0� � EB�k,0� � Ck4exp�− 2
k2

kp
2� , �6.13�

EC�k,0� � EH�k,0� � 0, �6.14�

where we put kp=2 and the constant C is determined to
satisfy Eu�0��EB�0��0.5. RUN256 was performed up to t
=8.0, at which �u and �B, the quantities characterizing the
behavior of small scales, have already been in a quasistation-
ary state �figure omitted�. The final state �t=8.0� of RUN256
was used as the initial condition of RUN512. RUN512 was
performed up to t=2.8. The total energy dissipation rate �
reaches its peak value at t�2.3 and changes moderately af-
terward �figure omitted�.

We expect that the small scales in the final states of
RUN256 and RUN512 represent statistically quasistationary
states of MHD turbulence. Characteristics of turbulence at
the final states are given in Tables II and III. Here, LB

ª �� /2B0
2��0

kmaxdkk−1EB�k� is the integral scale associated
with B, �u

ª �15�uu0
2 /�u�1/2 and �B

ª �15�BB0
2 /�B�1/2 are, re-

spectively, the Taylor microscales associated with u and
B, and �ª ��3 /�u�1/4 is the Kolmogorov microscale.
R�

u
ªu0�u /�u= �20/3�u�u�1/2Eu and R�

B
ªB0�B /�B

= �20/3�B�B�1/2EB are the Taylor microscales Reynolds num-
bers associated with u and B, respectively, and R�

M

ª �20EuEB /3���1/2 is the Taylor microscale Reynolds num-
ber for MHD turbulence introduced in Ref. 12. All results
given in the following are those of the final states.

Figure 4 shows the total energy flux ��k� normalized by
�. Note that ��k��� should be satisfied in the inertial sub-
range. One can see from the figure that the upper bound of
the inertial subrange is k�0.1�IK

−1. Considering that kf is
smaller than the lower-boundary wave number of the inertial
subrange, one may conclude that RUN512 has quite a nar-
row inertial subrange �less than one decade� and that

TABLE I. Basic parameters of DNS.

N kmax ���10−3� �t��10−3� F��10−3� kf Tf

RUN256 256 120 0.6/1.3a 4.0 0.9 2.5 2.0

RUN512 512 241 0.45 1.0 0.9 2.5 2.0

aThe value of � in RUN256 is 0.6 for t=0.0−4.0 and 1.3 for t=4.0−8.0.

TABLE II. Characteristic quantities of the final states of RUN256 �t=8.0�
and RUN512 �t=2.8�.

Eu EB B0 � �u �B EC HM��10−3�

RUN256 0.578 0.893 0.772 0.260 0.105 0.155 0.0530 0.789

RUN512 0.574 1.08 0.848 0.260 0.109 0.150 0.0597 38.3

TABLE III. Length scales and Reynolds numbers of the final states of
RUN256 �t=8.0� and RUN512 �t=2.8�.

Lu LB �u �B ���10−3� �IK��10−3� R�
u R�

B R�
M

RUN256 1.31 1.10 0.267 0.274 12.0 17.1 128 162 101

RUN512 1.19 1.32 0.154 0.180 5.38 8.71 211 339 188
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RUN256 has almost none. In the following, the data from
RUN512 are used to examine the spectra in the inertial sub-
range, and the data from RUN256 are shown only for refer-
ence. We call the wave-number range 0.03�IK

−1�k�0.1�IK
−1

in RUN512 “inertial subrange” for the sake of convenience.
Note that kB is smaller than the lower-boundary wave num-
ber of the “inertial subrange” �see Fig. 4�, which implies that
��k��1 is satisfied in the entire “inertial subrange.”

The spectra Eu�k�, EB�k�, EC�k�, and EH�k� of RUN512
are shown in Fig. 5. The spectra EC�k� and EH�k� decease
with respect to k much faster than Eu�k� and EB�k�. The
values of EC�k� and EH�k� are typically about 10 times
smaller than those of Eu�k� and EB�k� in the “inertial sub-
range.” This is consistent with the assumption �3.1�–�3.3� of
isotropy. There is a systematic deviation from the equiparti-
tion Eu�k�=EB�k� throughout the entire wave-number range.
The IK spectrum Eu�k�=EB�k�=A�1/2k−3/2 with the LRA
value of A ��5.3�� is also plotted in the figure. The spectrum
Eu�k� in the “inertial subrange” has a smaller amplitude and
a slightly more gentle slope than the IK spectrum with �5.3�.

On the other hand, EB�k� has a larger amplitude and a
slightly steeper slope than the IK spectrum with �5.3�.

The total energy spectrum E�k� and the residual energy
spectrum ER�k� of RUN512 are given in Fig. 6. It is found
that E�k� in RUN512 is consistent with the IK scaling k−3/2

predicted by LRA. Furthermore, ER�k� in RUN512 is consis-
tent with the prediction of the LRA regarding the scaling k−2

and the sign ER�k��0. The scalings of the spectra E�k�
�k−3/2 and ER�k��k−2 shown in LRA and the present DNS
suggest that the relative deviation from the equipartition
eR�k�ª �ER�k� � /E�k� decreases with respect to k like ��k�
�k−1/2 and that the equipartition Eu�k�=EB�k� may be as-
ymptotically realized in the universal wave-number range,
i.e., the sufficiently high-wave-number range in MHD turbu-
lence at very high Reynolds numbers. The deviation of Eu�k�
and EB�k� from the equipartition in the present DNS can be
explained by the narrowness of the “inertial subrange,” i.e.,
��k�=�B0

−3/2k−1/2 is not small enough in the “inertial sub-
range.” The decrease of eR�k� is similar to that of anisotropy
in hydrodynamic turbulences �see, e.g., Ref. 27 and refer-
ences therein� in the sense that both eR�k� and anisotropy
decrease with the increase of k and tend to vanish in the
universal scale range, however they remain for finite wave
number in the turbulence at a finite Reynolds number.

For a close examination of the scaling exponent of E�k�
and the universal constant A, the compensated spectrum
k3/2E�k� / �B0

1/2�1/2� is plotted in Fig. 7, together with the com-
pensated spectra associated with Eu�k� and EB�k�. The slope
of k−1/6 that corresponds to E�k��k−5/3 is also given in the
figure for reference. The compensated spectrum associated
with E�k� of RUN512 is almost constant in the “inertial sub-
range” and thus it is evident that the scaling of E�k� is closer
to k−3/2 than to k−5/3. The constant 2A estimated by averaging
the compensated spectrum associated with E�k� in the “iner-
tial subrange” is

2A = 1.47 ± 0.09, �6.15�

where ±0.09 is the standard deviation. The estimate is in
good agreement with the LRA estimate 2A�1.44 from �5.3�.

FIG. 4. Total energy flux ��k� normalized by the total energy dissipation
rate �.

FIG. 5. Energy spectra Eu�k�, EB�k� EC�k�, and EH�k� of RUN512. IK spec-
trum, Eu�k�=EB�k�=AB0

1/2�1/2k−3/2, with the LRA estimate, A=0.722, is
given in line. The slope k−5/3 is shown for reference.

FIG. 6. Total energy spectrum E�k� and residual energy spectrum ER�k� of
RUN512. The slopes k−3/2 and k−2 of the LRA prediction are given in lines.
The slope k−5/3 is shown for reference.
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The compensated spectra associated with E�k� ,Eu�k� and
EB�k� of RUN256 are also plotted in the figure for reference.
One can observe a tendency that E�k� approaches the univer-
sal spectrum �4.40� and Eu�k� and EB�k� approach the equi-
partition with the increase of the Reynolds number.

The compensated residual energy spectrum
−k2ER�k� / ��B0

−1� is plotted in Fig. 8. The spectrum of
RUN512 is nearly constant in the “inertial subrange,” which
implies that ER�k��k−2. The constant AR estimated by aver-
aging the compensated spectrum over the “inertial subrange”
is

AR = − 1.49 ± 0.25, �6.16�

where ±0.25 is the standard deviation. The estimate from the
DNS is about four times larger in its magnitude than the
LRA estimate �5.4�.

Possible sources of the discrepancy between the values
of AR in LRA and the DNS are �i� the insufficient width of
the “inertial subrange” in the DNS, and �ii� the inadequacy of
LRA.

Regarding �i�, note that the estimates based on LRA in
Sec. V are obtained in the limit of very large width of the
inertial subrange, i.e., very high Reynolds number. There is a
possibility that the convergence of the value of AR with the
increase of Reynolds number is much slower than that of A,
and that the estimate AR�−1.49 in RUN512 does not ap-
proximate the limiting value. Comparison between the spec-
tra of RUN256 and RUN512 gives a partial support to this
scenario. One can observe from Figs. 7 and 8 that the differ-
ence in the compensated spectrum associated with ER�k� be-
tween RUN256 and RUN512 is much larger than that in the
compensated spectrum associated with E�k�. In the present
setting of DNS, the magnitude of the compensated spectrum
associated with ER�k� decreases in the “inertial subrange”
and increases in the dissipation range with the increase of the
Reynolds number. It is desirable to perform DNS with a
larger number of grid points in order to examine the depen-
dence of ER�k� on the Reynolds number in the higher Rey-
nolds number regime.

Regarding �ii�, the quality of closure approximations de-
pends on the choice of the variables in terms of which the
renormalized expansions are constructed. The variables are
called representatives in Ref. 14. The estimate of AR may be
improved with some alternative choice of representatives. A
candidate for such representatives are two-point correlation
functions and two-point response functions associated with
the variables measured in the coordinates moving with u±B,
i.e., moving, relative to the fluid, in the parallel and antipar-
allel direction of the local magnetic field with the local
Alfvén velocity. Such variables were introduced in Ref. 3.
However, to the authors’ knowledge, the closure analysis that
corresponds to the present study based on these variables has
not been done yet and this is left for a future challenge.

VII. DISCUSSION

Within IK phenomenology, the Alfvén waves with wave
numbers in the inertial subrange are propagating at speed of
the order of B0 in the coordinate system moving with the
local velocity of fluid, while the coherence length of each
wave is of the order of its own wavelength due to the strong
nonlinearity. Consequently, the time scale of the decorrela-
tion associated with two-time Lagrangian correlation func-
tions is of the order of �B0k�−1. This result is derived within
the framework of LRA by itself, as was shown in Sec. IV.
The total energy spectrum E�k� obtained by the present DNS
is in good agreement with LRA not only in its scaling k−3/2

but also in its universal constant A as shown in Sec. VI. This
suggests that the turbulence in the present DNS is a strong
turbulence and that LRA provides an appropriate theoretical
framework for strong MHD turbulence, as well as for purely
hydrodynamic turbulence.

The present situation is quite different from that for
weak turbulence.11 Within the theory of weak turbulence, it
is assumed that the nonlinearity is weak and that the coher-
ence length of each wave is much larger than its own wave-
length. Therefore, the decorrelation time of the two-time La-
grangian correlation functions is much larger than �B0k�−1.

FIG. 7. Compensated energy spectra k3/2�E�k� ,Eu�k� ,EB�k�	 / �B0
1/2�1/2�. A

�0.722 and 2A�1.44 are the LRA estimates. The slope k−1/6 corresponds to
E�k��k−5/3.

FIG. 8. Compensated residual energy spectrum −k2ER�k� / ��B0
−1�. AR

�−0.384 is the LRA estimate and AR�−1.49 is obtained from the fit of the
DNS data of RUN512.
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The time scale �B0k�−1 provides the order of the inverse of
the frequency of the wave with wave number k.

It is known that the so-called “bump” of the energy spec-
trum is observed in the near-dissipation range in DNS of the
hydrodynamic turbulence �see, e.g., Ref. 28�. Although there
is a possibility that the scaling E�k��k−3/2 in the present
DNS is a spurious effect of the “bump,”29 we draw a sce-
nario that the ‘bump’ is negligibly small, if it exists, in the
isotropic incompressible MHD turbulence and that E�k�
�k−3/2 is the universal scaling, since E�k� in the DNS agrees
with that in LRA not only with respect to the scaling expo-
nent but also to the universal constant A. The “bump” in
MHD turbulence should be investigated further by using
DNS with higher Reynolds numbers, which is beyond the
scope of the present study.

The scaling of E�k��k−3/2 found in the present DNS is
different from E�k��k−5/3 observed in DNSs by BM and MG
for the decaying quasi-isotropic MHD turbulence. The dis-
crepancy may be attributed to the difference of the regimes
of wave number in which DNSs are performed. The analysis
in Sec. IV suggests that E�k��k−3/2 and Eu�k��EB�k� are
satisfied in the wave-number regime k�kB within the iner-
tial subrange where kB=�B0

−3. The scaling of E�k� may be
different and Eu�k��EB�k� may not hold in the wave-number
regime k�kB. Let k0 be the bottom wave number of the
scaling ranges in the DNSs. In the present DNS, k0 /kB�1 is
satisfied as shown in Fig. 4. The values of � and B0 are not
given explicitly and thus the values of kBare not available for
DNSs by MG and BM. Let us examine the relative deviation
from the equipartition eR�k�= �ER�k� � /E�k� in the DNSs in-
stead of kB. The relative deviation eR�k� in DNSs both of MG
and of the present study decreases with respect to k �see Fig.
1 in MG and Fig. 6 in this paper. The corresponding figure is
not given in BM�. The deviation eR�k0��0.3 in RUN512 of
the present study is smaller than eR�k0��0.7 in MG. Hence,
we conjecture that k0 /kB in RUN512 is larger than that in
MG, which implies that the range of wave number simulated
in RUN512 is nearer to the universal regime of wave num-
ber, i.e., the sufficiently high-wave-number range in MHD
turbulence at very high Reynolds numbers, in comparison
with that in MG.

In performing DNS of the universal regime of wave
number in MHD turbulence, we omitted the simulation of
the lower wave numbers outside of the universal regime due
to the limitation of the computational resource. The random
force applied, in the present DNS, at low wave numbers
within the range of the simulation may be interpreted as a
model of energy transfer from the omitted lower wave num-
bers to those in the range of the simulation. Hence, it is
reasonable for us to set the scale of correlation time for the
forcing to the order of the turnover time of the largest eddy
within the range of the simulation. We set the ratio of injec-
tion by the forcing for Eu to that for EB to unity in order to
keep eR�k� small in the low-wave-number range where the
forcing is applied. This is because, in decaying MHD turbu-
lence by MG, eR�k� is small for high k, say higher than k*,
and because the target of the present DNS is the range of
wave number “higher” than k* for turbulence at a “higher”
Reynolds number.

One of the candidates of the physical situation that cor-
responds to the present analysis would be sufficiently small
scales in the solar wind turbulence. Note that, for the purely
hydrodynamic case, wind tunnel turbulence may be regarded
as a forced quasistationary turbulence when the region of the
measurement is fixed in the laboratory system, since turbu-
lent fluctuation generated in the upwind region is continu-
ously flowing into the region of the measurement. It is well
accepted that the statistics of wind tunnel turbulence far from
the wall is almost isotropic at small scales when the Rey-
nolds number is high. Turbulence in the solar wind measured
at a fixed distance from the Sun can be the MHD analog of
the wind tunnel turbulence. Hence, the forced quasi-isotropic
MHD turbulence can be an appropriate approximation for
the small scales of the turbulence in the solar wind. Note that
a quasi-k−3/2 spectrum is obtained in the high-frequency re-
gion �i.e., at small scales� of the observation of the solar
wind turbulence �e.g., see Fig. 1 in Ref. 30�. The solar wind
turbulence is actually anisotropic in the large scales. Quanti-
tative estimates on the effect of the anisotropy on the statis-
tics of the small scales is an interesting problem.

The present analysis using LRA equations �3.7�–�3.10� is
restricted to the isotropic MHD turbulence. In MHD turbu-
lence with a finite Reynolds number, components of the
spectrum tensor Qij

�
�k�, which are related to cross helicity
EC, magnetic helicity HM, and other anisotropies, would re-
main for finite k due to the effect coming from the large
scales. If there is a strong mean magnetic field at the large
scales, the effect from it on the anisotropy in small scales is
of particular interest. The divergence of the integral due to
QB in the analysis in Sec. IV suggests that the large scales of
the magnetic field influence the statistics of the small scales
more strongly than those of the velocity field. Hence, the
universal spectrum in the inertial subrange of the MHD tur-
bulence is possibly less robust than that of the purely hydro-
dynamic turbulence. In principle, the helical or anisotropic
components of Qij

�
�k� can be analyzed by using the LRA
equations �2.14�–�2.17�. Pioneering analyses using LRA of
anisotropic MHD turbulence under a strong uniform mean
magnetic field were made by Nakayama �see Sec. I�. For the
purely hydrodynamic case, LRA was applied to the aniso-
tropic spectrum of homogeneous turbulent shear flow in Ref.
26, where the equations were simplified by taking into ac-
count the symmetry of the problem. By using a similar
method, the LRA equations �2.14�–�2.17� for MHD turbu-
lence may be simplified into forms that are convenient for
the analyses of helical or anisotropic components of the
spectrum tensor. Such analyses are left for future studies.
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APPENDIX: METHOD TO GENERATE THE RANDOM
FORCES

Let W�i��k , t��i=1,2� be random variables that take val-
ues 1 or −1 with the equal probability and satisfy

�W�i��k,t�
 = 0, �W�i��k,t�W�j��k�,t��
 = �k,k��t,t��ij .

�A1�

Let ��k , t� be a random variable that is uniformly distributed
in �−� ,�� and satisfies

���k,t�
 = 0, ���k,t���k�,t��
 =
�2

3
�k,k��t,t�. �A2�

Provided that �t�Tf, the random forces fu�k , t� and fB�k , t�
with desired statistical properties �6.10�–�6.12� can be gen-
erated from W�i��k , t� and ��k , t� by

fu�k,0� = �Fuei��k,0�k

k
� W�k,0� , �A3�

fB�k,0� = �FBW�k,0� , �A4�

fu�k,t + �t� = 
fu�k,t� + �uei��k,t���t
k

k
� W�k,t� , �A5�

fB�k,t + �t� = 
fB�k,t� + �B��tW�k,t� , �A6�

for the cases �i� k3�0, �ii� k2�0, and k3=0, and �iii� k1

�0, k2=0, and k3=0, and

fu�k,t� = fu*�− k,t�, fB�k,t� = fB*�− k,t� , �A7�

otherwise. Here,


 ª e− �t
Tf , �u

ª�2Fu

Tf
, �B

ª�2FB

Tf
, �A8�

e�1��k� ª
i3 � k

�i3 � k�
, e�2��k� ª

k � e�1��k�
�k � e�1��k��

, �A9�

W�k,t� ª W�1��k,t�e�1��k� + W�2��k,t�e�2��k� , �A10�

and i3 is the unit vector along the x3 axis.
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