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The Gross-Pitaevskii equation describes the dynamics of quantum fluids such

as superfluids and Bose-Einstein condensates. Numerical simulations of

turbulence obeying the Gross-Pitaevskii equation with forcing and dissipa-

tion are performed. The interaction energy spectrum obeys the scaling law

Eint(k) ∝ k−3/2, which is consistent with the weak turbulence analysis. How-
ever, in contradiction to the assumptions in the weak turbulence analysis, it

is found that the density fluctuation is not small and that the frequency spec-

trum does not have narrow peaks. Another possibility to explain the scaling

law is discussed.

PACS numbers: 47.27.Gs, 47.37.+q, 67.40.Vs

1. INTRODUCTION

Dynamics of low-temperature superfluids and Bose-Einstein conden-
sates are described by the Gross-Pitaevskii (GP) equation1,2 (also called
the nonlinear Schrödinger equation),

ih̄
∂

∂t
ψ = −

(

h̄2

2m
∇2 + µ

)

ψ + g|ψ|2ψ, (1)

under a certain approximation. Here, ψ := 〈ψ̂〉 is the order parameter, the
average of a boson field ψ̂, m is the mass of the boson, µ is the chemical
potential, and g is the coupling constant. The chemical potential µ may
be related to n := |ψ|2 by µ = gn where the bar ¯ denotes the spatial
average. Equation (1) may be interpreted as the equations of motion for
fluid with density ρ and velocity v by the use of Madelung’s transformation
ψ =

√

ρ/m eiϕ with v := (h̄/m)∇ϕ. Here, we call the fluid quantum fluid.
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The quantum fluid is in some aspects different from the conventional
classical fluid which obeys the Navier-Stokes equations. For example, the
quantum fluid has no vorticity ω := ∇×v wherever v is defined, i.e. ρ 6= 0,
and the vorticity must be concentrated in lines where ρ = 0. The circulations
around such lines are quantized due to the uniqueness of the phase ϕ up to
modulus of 2π. On the other hand, circulation can take an arbitrary value
in classical fluid.

In spite of such differences between quantum and classical fluids, it
has been known from recent studies that there are some similarities between
quantum and classical fluid turbulence. It is well accepted from experiments3

and direct numerical simulations4 that the energy spectrum E(k) in the ho-
mogeneous and isotropic classical fluid turbulence at high Reynolds number
obeys Kolmogorov’s k−5/3 law within some accuracy. Recent experiments
of turbulence in superfluid phase of liquid 4He are showing some evidence
that the energy spectrum obeys the same Kolmogorov’s k−5/3 law5,6. The
Kolmogorov energy spectrum is also observed in numerical simulations of
the GP equation7–9. These experimental and numerical results suggest that
there is an energy cascade process not only in classical fluid turbulence but
also in quantum fluid turbulence.

Details of the cascade process and the turbulence statistics should de-
pend on the governing equation, especially on the form of its nonlinear terms.
In order to investigate the cascade process and the statistics in quantum
fluid turbulence in detail, we performed numerical simulations of homoge-
neous and quasi-isotropic turbulence obeying the GP equation with forcing
and dissipation. In this paper, we will report some results obtained from the
simulations.

2. BASIC EQUATION AND STATISTICAL QUANTITIES

For the sake of convenience in the numerical simulation, we introduce
a normalization, x̃ := x/`, t̃ := (gn̄/h̄)t, ψ̃ := (1/

√
n̄)ψ, which yields a nor-

malized GP equation,

i
∂ψ̃

∂t̃
= −ξ̃2∇̃2ψ̃ − ψ̃ + |ψ̃|2ψ̃, (2)

with ξ̃ := ξ/` where ξ := h̄/
√
2mgn̄ is the healing length, and ` is an

arbitrary unit length scale. In the following of this paper, we will deal with
the normalized variables and the normalized equation (2), and the tilde ˜
will be omitted.

The density field and the velocity field of the quantum fluid are given by
ρ := |ψ|2 and v := 2ξ2∇ϕ, respectively, in the present normalization. The
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density fluctuation is given by δρ := ρ− ρ, where ρ = 1. Note that when ψ
is almost uniform and its relative fluctuation from the mean is small, i.e.,

ψ = ψ0 + δψ, |δψ| ¿ |ψ0| = 1, (3)

Eq. (2) admits the wave solution δψ ∝ ei(k·x+Ωkt) with the dispersion rela-
tion,

Ωk = ±ξk
√

2 + ξ2k2, (4)

where k := |k|.
In the numerical simulation, we apply periodic boundary conditions

with periods 2π in each of three directions in the Cartesian coordinates for
simplicity. Under these boundary conditions, it is convenient to introduce
the Fourier space representation of (2),

∂

∂t
ψk = −iξ2k2ψk + iψk − i

∑

k+p−q−r=0

ψ∗

pψqψr

+Dk + Fk, (5)

where the Fourier transform of an arbitrary function f(x) and its inverse are
given by

fk :=
1

(2π)3

∫

dxf(x)e−ik·x, f(x) =
∑

k

fke
ik·x,

with k = (k1, k2, k3), k1, k2, k3 = 0,±1,±2, · · ·. In (5), a dissipation term Dk
and a forcing term Fk are added to the original equation (2).

The dissipation term Dk should originate in the interaction between ψ
and the fluctuation, δψ̂ := ψ̂ − ψ, which is neglected in (2). We may expect
that the dissipation term mainly acts in a high wavenumber range and that
some statistics of ψ in the inertial subrange are insensitive to the details
of the dissipation mechanism. In the present study, we will not discuss the
dissipation mechanism further and use a Laplacian type model,

Dk = −νk2ψk, (6)

for simplicity. In the present study, we will focus our interest on the wavenum-
bers smaller than ξ−1. Note that the typical time scale of the dissipation is
given by τd(k) = ν−1k−2 and that the waves with wavenumber k may be ef-
ficiently dissipated when τd(k) < Ω−1

k . Hence, ν ∼ ξ2 implies that the modes
with k > ξ−1 are efficiently dissipated and that the modes with k < ξ−1 are
less influenced by the artificial dissipation. We put ν = ξ2 in the present
simulations.
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Due to the dissipation term Dk, the mean density ρ is not conserved
any more and decays with time. In order to achieve a statistically quasi-
stationary state, it is necessary to pump the density. The pumping is intro-
duced by amplifying low wavenumber modes, i.e., Fk is given by

Fk =

{

αψk (k < kf )
0 (k ≥ kf )

, (7)

where α is determined at every time step so as to keep ρ̄ almost unity.
It may be worthwhile to mention here that Kobayashi and Tsubota8

(hearafter KT) introduced a different type of dissipation and forcing in their
numerical simulation of GP turbulence. The equation in their simulation is
given by

h̄(i− γ∗) ∂
∂t
ψ = −

(

h̄2

2m
∇2 + µ(t)

)

ψ + g|ψ|2ψ

+W (x, t)ψ, (8)

where γ is a function whose Fourier transform γk is given by γk = γ0(k >
2π/ξ), γk = 0(k ≤ 2π/ξ), and ∗ denotes convolution, The time-dependent
chemical potential µ(t) is introduced to conserve ρ. The system is forced
by the random potential W (x, t) with a large correlation length L0 À ξ.
The term with γ induces a corresponding dissipation term Dk which is not
a linear function of ψk but a nonlinear function of ψk′ where k

′ may be an
arbitrary wavevector.

Let us introduce the statistical quantities which will be investigated in
the present study. The kinetic and interaction energy density per unit mass,
Ekin and Eint, respectively, are given by

Ekin :=
1

V

∫

dxξ2|∇ψ|2 =
∑

k

ξ2k2ψ2k, (9)

Eint :=
1

2V

∫

dx(δρ)2 =
∑

k

|(δρ)k|2, (10)

where V is the volume of the domain. The kinetic energy Ekin can be divided
into three parts,

Ekin = Ewi + Ewc + Eq, (11)

Ewi :=
1

2V

∫

dx|wi|2, Ewc := 1

2V

∫

dx|wc|2, Eq := 1

V

∫

dxξ2|∇√ρ|2,
(12)

where

w :=
1√
2ξ

√
ρv, (13)
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Table 1. Parameters in the numerical simulations.

N kmax ξ ν(×10−3) kf ∆t ρ

RUN128 128 60 0.05 2.5 2.5 0.01 0.998
RUN256 256 120 0.025 0.625 2.5 0.01 0.999
RUN512 512 241 0.0125 0.15625 2.5 0.01 0.998

and wi and wc are, respectively, incompressible and compressible parts of
w, i.e., w = wi +wc,∇ ·wi = 0, and ∇×wc = 0. In contrast to the more
conventional decomposition

√
ρv =

√
ρvi+

√
ρvc, the present decomposition

w = wi + wc, which was introduced in Ref. 10, has the advantage of not
involving a mixed compressible-incompressible energy.

Energy spectra associated with the energies Ekin, Eint, Ewi, Ewc, and
Eq are defined by

Ekin(k) :=
∑

k′=k

ξ2k′2|ψk′ |2, Eint(k) :=
∑

k′=k

|(δρ)k′ |2, (14)

Ewi(k) :=
1

2

∑

k′=k

|wik′ |2, Ewc(k) :=
1

2

∑

k′=k

|wck′ |2, (15)

Eq(k) :=
∑

k′=k

ξ2k′
2|(√ρ)k′ |2, (16)

where
∑

k′=k denotes the summation with respect to k′ over the shell k −
1/2 < |k′| ≤ k + 1/2.

3. NUMERICAL SIMULATION

3.1. Set up

We performed the numerical simulations of (5) by using an alias-free
spectral method. A 4th-order Runge-Kutta method is used for the time
marching. We performed three simulations which will be denoted by RUN128,
RUN256, and RUN512. Parameters in the numerical simulations are listed
in Table 1, where N is the number of grid points along each of the Carte-
sian coordinates in real space, kmax is the maximum wavenumber, and ∆t is
the time step. The healing length ξ is the smallest length scale of interest
in the present study. We employed a criterion kmaxξ ∼ 3 in order that the
length scale ξ is resolved in the simulations. The initial fields of RUN128 and
RUN256 were given by |ψk| = Ck2 exp(k2/k2p) with random phases, where
kp = 2 and C is determined from the constraint ρ = 1. The initial field of
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Fig. 1. The time evolution of the energies E, E int, Ekin, Ewi, Ewc, and Eq

in RUN512.

RUN512 is a statistically quasi-stationary state of RUN256 (t=20). Most of
the results presented in this paper are those from RUN512.

3.2. Energies and Energy Spectra

The time evolution of the energies E := E int + Ekin, Eint, Ekin, Ewi,
Ewc, and Eq in RUN512 are given in Fig. 1. Each energy is nearly constant
in time after an initial transient period. One can see from the figure that
Eint occupies 85% of the total energy E. The remaining 15% is Ekin which
consists of Ewi, Ewc, and Eq. The energy Ewi is about 40 times smaller
than Ewc. Energy spectra Ekin(k), Eint(k), Ewi(k), Ewc(k), and Eq(k) in
RUN512 at t = 24 are shown in Fig. 2. The scaling of Ewi(k) is not clearly
observed. These results are in strong contrast to those of the numerical
simulation in KT, in which Ewi is about 4 times larger than Ewc and the
Kolmogorov spectrum Ewi(k) ∝ k−5/3 is observed.

Possible origins of the discrepancy between the results in the present
study and in KT are the difference in the forcing and the dissipation applied
to each simulation. We may suppose that the forcing is more responsible for
the difference in the energy ratio Ewi/Ewc, since the forcing mainly acts in
the low wavenumber range, i.e., the energy containing range, whereas the
dissipation mainly acts in the high wavenumber range. The present result
Ewi ¿ Ewc, Eint suggests that the forcing Fk of the form (7) scarcely injects
energy into Ewi. Note that Ewi(k) is smaller than Ewc(k) not only in the
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Fig. 2. Energy Spectra in RUN512 at t = 24. Ekin(k) and Eint(k) in the
top figure, and Ewi(k), Ewc(k), and Eq(k) in the bottom figure. E int(k) in
RUN256 at t = 20 is also given in the top figure.



K. Yoshida and T. Arimitsu

 0.01

 0.1

 1

 1  10  100
k

slope k-1/6
k3/2 Eint(k)

Fig. 3. Compensated Energy Spectrum k3/2Eint(k) in RUN512 at t = 24.
An arbitrary constant line and the slope k−1/6 are given for reference.

low wavenumbers range but also in the high wavenumbers where the forcing
is not directly applied. This suggests that the coupling between wi and
wc is weak and that the energy is not efficiently transfered from Ewc to
Ewi. Hence, we may conclude that the scaling of Ewi(k) is not observed in
the present simulation because the turbulence is moderately developed with
respect to wi due to the scarce injection and transfer of energy to wi.

Comparison between KT and the present study suggests that energy
spectra in the inertial subrange are not universal, i.e., they depend on the
forcing applied outside the inertial subrange. If this is the case, it is of
interest to investigate how the inertial subrange statistics is affected by the
forcing.

Let us analyze the turbulence statistics for the present case further. As
shown in Fig. 2, it is found that E int(k) ∝ k−3/2 and Ekin(k) ∝ k4/3 in a
wavenumber range kf ∼< k ∼< ξ−1 of RUN512. For a closer inspection
of the scaling exponent of E int(k), the compensated spectrum k3/2Eint(k) is
plotted in Fig. 3. The slope k−1/6 which corresponds to E int(k) ∝ k−5/3 is
given for reference in the figure. The figure shows that the slope of E int(k)
is closer to k−3/2 rather than k−5/3.

The scaling Eint(k) ∝ k−3/2 is consistent with the weak turbulence anal-
ysis by Dyachenko et al.11. The basic assumptions in the weak turbulence
analysis are that the fluctuation of ψ from its mean is small, i.e. Eq. (3),
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Fig. 4. Probability density function of ρ = (left) and ρ1/2 = |ψ| (right) in
RUN512 at t = 24.

and that ψ is approximated by an linear combination of waves with the
dispersion relation (4).

3.3. Density field

The assumption of the weak turbulence analysis |δψ| ¿ |ψ0| implies
|δρ| ¿ ρ. Let us examine the density field ρ in order to check whether the
assumption is valid.

Probability density functions of ρ and
√
ρ = |ψ| are given in Fig. 4

where the samples are taken over grid points in the real space. The figure
shows that ρ (= 1) and δρ are typically of the same order of magnitude. In

fact,
√

(δρ)2 = 1.05. The fluctuation δρ seems to be not small enough for
the weak turbulence analysis to be justified.

Figure 5 shows the low density region ρ < 0.0025 in the real space
of RUN512 at t = 24. Note that |δρ| ¿ ρ is violated in the low density
region. Some parts of the low density region have filament-like structure.
It is expected that there are quantized vortex lines inside the structure.
The filament-like structure resembles the structure of intense vorticity region
observed in direct numerical simulations of classical fluid turbulence. (See,
for example, Ref. 12.)

3.4. Frequency Spectrum

The validity of the weak turbulence assumption may be tested more
directly, in comparison to the density field analysis, by examining the fre-
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Fig. 5. Low density region ρ < 0.0025 in RUN512 at t = 24. The whole
(2π)3-domain is displayed.
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Fig. 6. Averaged frequency spectrum Ψk(ω) in RUN256.

quency spectrum Ψk(ω) introduced by

Ψk(ω) :=

{

|ψk,ω|2 + |ψk,−ω|2 (ω 6= 0)
|ψk,ω|2 (ω = 0)

, (17)

where ω = {0,∆ω, 2∆ω, · · · , (M/2)∆ω}, ∆ω := 2π/T , T is a time interval,
∆T is a time increment of the time sequence data, M := T/∆T , and ψk,ω

is the Fourier transform of ψk(t) with respect to t, i.e.,

ψk,ω :=
1

2π

∫ t0+T

t0
dt ψk(t)e

−iω(t−t0). (18)

In the weak turbulence analysis, ψk is approximated by a wave, i.e.,
ψk ∼ ei(k·x+Ωkt) with (4). Such an approximation may be appropriate when
|ωk − Ωk| ¿ |Ωk| and ∆ωk ¿ |Ωk|, where

ωk := C−1
k

∑

ω

∆ω ωΨk(ω), (19)

∆ωk :=

√

C−1
k

∑

ω

∆ω (ω − ωk)2Ψk(ω), (20)

Ck :=
∑

ω

∆ω Ψk(ω). (21)

Figure 6 shows averaged frequency spectra Ψk(ω) for some wavenumbers
k in the scaling range E int(k) ∝ k−3/2 of RUN256 (See Fig. 2). We used data
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from a lower resolution simulation, RUN256, since a long time period data
of RUN512 was not available. We put T = 102.4, ∆T = 0.1, t0 = 20 and the
average is taken over 4 wavevectors, (0, k, 0), (0,−k, 0), (0, 0, k), (0, 0,−k). It
is found that the spectrum Ψk(ω) is not localized around |Ωk|. Typically,
ωk ∼ ∆ωk ∼ 4Ωk. We may conclude that the present case is outside the
scope of the weak turbulence analysis.

4. DISCUSSION

Although the scaling E int(k) ∝ k−3/2 which is consistent with the weak
turbulence analysis is observed in the present numerical simulation of GP
equation, it turned out from the analysis of the density field and the fre-
quency spectrum that the basic assumptions of the weak turbulence analysis
is not satisfied. Therefore, it is difficult to justify the application of the weak
turbulence analysis to the present case.

Then, a question arises how the scaling E int(k) ∝ k−3/2 can be ex-
plained. Note that the introduction of a wavenumber-dependent time scale
τ(k) = Ω−1

k ∼ (ξk)−1 is crucial to the derivation of E int(k) ∝ k−3/2 in the
weak turbulence analysis. An alternate possible scenario is that the nonlin-
ear effect is not so small as assumed in the weak turbulence analysis and
that the wavenumber-dependent time scale τ(k) ∼ (ξk)−1 is introduced as
the correlation time scale, i.e., the time scale of decorrelation due to the
nonlinear effect, not as the time scale of the oscillation of the waves.

For classical fluid turbulence, the correlation time scale may be in-
troduced by closure approximations such as the direct interaction approx-
imation (DIA)13, the abridged Lagrangian history direct interaction ap-
proximation (ALHDIA)14, or the Lagrangian renormalized approximation
(LRA)15,16. DIA deals with the Eulerian correlation time scale, while AL-
HDIA and LRA deal with the Lagrangian correlation time scale. ALHDIA
and LRA derive the Kolmogorov spectrum E(k) = CKε

2/3k−5/3 up to the
Kolmogorov constant CK with ε being the energy dissipation rate, while DIA
fails to do so. This implies that one has to choose an appropriate time scale
in order to derive the correct energy spectrum. It would be interesting to
apply methods similar to DIA, ALHDIA, or LRA to the GP equation and
to examine the scalings of the correlation time scale and the energy spectra.
This is left for future study.

It is difficult to compare the results of the present GP turbulence simu-
lation directly with those of the experiments of superfluid turbulence (e.g.,
Refs. 5,6), since (i) the scaling of Ewi(k) is not observed in the present sim-
ulation, and (ii) to our knowledge, E int(k) or related quantities are not mea-
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sured experimentally in superfluid turbulence. The reason for (i) is probably
that the forcing in the present simulation injects little to Ewi of the system,
as was discussed in Sec. 3.2.. With regards to Ewi, the forcing used in the
simulation in KT, yielding the Kolmogorov spectrum for Ewi(k), might be
more relevant to the experiments than the present simulation. As for E int,
we cannot conclude how much the present simulation is relevant to the exper-
iments at present. It would be interesting to measure E int(k) experimentally
in superfluid turbulence and to compare it with the present result.
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