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Abstract. In this paper, small-scale statistics in stably stratified turbulence is
studied theoretically and numerically. Expressions for the spectra of the velocity
correlation, density fluctuation and buoyancy flux are derived using a perturbation
method that generalizes the idea used by Ishihara et al for studying small-
scale anisotropy in turbulent shear flows (2002 Phys. Rev. Lett. 88 154501). The
expressions give not only the scaling in the inertial subrange but also estimates for
anisotropy of the spectra at small scales. They were found to be in good agreement
with a direct numerical simulation with 5123 grid points.
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1. Introduction

A turbulence system consists of a large number of degrees of freedom. The motion of each degree
of freedom as well as its trajectory in phase space is sensitive to and affected by flow conditions,
such as the initial and boundary conditions. Despite differences in flows, it is widely believed that,
under certain conditions, the statistics of turbulence is universal, in the sense that it is insensitive
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to details of the flow conditions. It is also expected that the flow statistics can be described in
terms of a few parameters. These expectations have been basically supported by experiments
and direct numerical simulations (DNSs) of turbulence. Kolmogorov’s hypotheses (K41) [1]
are consistent with this idea of universality. According to K41, in fully developed turbulence
at sufficiently high Reynolds numbers Re and at scales � much smaller than the characteristic
length scales L of the energy-containing eddies, there exists the so-called universal equilibrium
range, where the statistics is insensitive to details of the flow conditions and can be described in
terms of a few parameters, such as the energy dissipation rate ε per unit mass, the viscosity ν

and the length scale �.
This picture of turbulence is similar to that known in thermodynamics and statistical

mechanics for a thermal equilibrium system, which also contains a large number of degrees
of freedom. Such a system exhibits universal macroscopic relations that are insensitive to
details of the differences between phase-space trajectories at the microscopic level, and can
be described in terms of a few macroscopic state variables, such as pressure, mass density and
temperature. In studies of thermal equilibrium or near-equilibrium systems, at least two classes
of universal relations are known: (i) those characterizing the equilibrium state itself, such as
Boyle–Charles’ law and (ii) those characterizing the response to disturbances added to the
equilibrium state (see e.g. [2]). As an example of the relation in (ii), consider a Newtonian
incompressible fluid at rest in a thermal equilibrium state. If a disturbance or an external force
is added to the fluid, the fluid is set into macroscopic motions that obey the following linear
relation between the rate of strain tensor Sij and the viscous stress (momentum flux) tensor τij:

τij = CijmnSmn, (1)

where Cijmn is a fourth-order isotropic tensor that reflects the thermal equilibrium state of the
fluid.

Even if the idea of universality, such as Kolmogorov’s hypotheses, is asymptotically correct
for Re → ∞, L/� → ∞, in real turbulence, Re and L/� can only be finite, so that the turbulence
is not free from the effects (which we call here disturbances), which may cause deviations from
the universal equilibrium state. For example, even if the statistics in the universal equilibrium
range is locally isotropic for Re → ∞, L/� → ∞, in real turbulence with finite Re and L/�,
the statistics cannot be isotropic in a strict sense owing to the non-universal disturbances. This
fact, together with the analogy of turbulence with thermal equilibrium systems, encouraged us
to examine the possible universality of turbulence in the sense of (ii) mentioned above.

One of the various possible disturbances that may cause deviations from the equilibrium
state is the existence of a mean flow. Recently, Ishihara et al [3] (hereafter referred to as IYK)
studied the effects of a homogeneous mean shear flow at small scales using a simple perturbation
analysis. Their analysis suggests that the deviation �Qij(k) of the velocity correlation spectrum
from the equilibrium state due to the mean shear can be given by

�Qij(k) = Cijmn(k)Smn, (2)

at a large wavenumber k, where Sij is the rate of strain tensor of the mean shear flow, and the
integration of �Qij(k) over the wave vector k gives the so-called turbulence Reynolds stress.
Similar to equation (1), Cijmn is a fourth-order isotropic tensor that reflects the equilibrium state
and is independent of Smn. However, unlike in equation (1), Cijmn in (2) depends on k and (2)
holds only for sufficiently large k, i.e. small scales. The form of (2) agrees well with DNS results
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[3]. The scaling derived from (2) in the inertial subrange [3] is in agreement with the scalings
obtained by Lumley [4] and Biferale et al [5] (see section 2).

The equilibrium state is modified not only by the existence of the anisotropic and/or
inhomogeneous mean flows, but also by external forces, such as buoyancy and magnetic fields.
In this paper, we consider stably stratified turbulence as a typical example of turbulence subjected
to anisotropic forces or disturbances. In section 2, we review the basic idea of IYK and consider
how the equilibrium state responds to disturbances in a rather general framework. We then apply
this idea to stably stratified turbulence and derive relations between the correlation spectra and
the disturbance (or buoyancy force) in section 3. The results are compared with DNS data in
section 4, where particular attention is paid to the angular dependence of the correlation spectra.

2. Small-scale statistics in turbulent shear flows

In this section, we consider an incompressible turbulent velocity field u(x, t) that obeys the
Navier–Stokes equations

∂

∂t
u(x, t) = −(u · ∇)u − ∇p + ν∇2u + F , (3)

∇ · u = 0, (4)

where ν is the kinematic viscosity, p the pressure, F the external force and the density is assumed
to be unity.

In fully developed turbulence at high Reynolds numbers, the time dependence of u in the
Eulerian frame of reference is dominated by the so-called sweeping effect of large eddies. This
effect is not to be confused with the non-linear interactions between small eddies of similar
size. To avoid confusion, it is convenient to introduce a co-ordinate system moving with the
velocity of a fluid particle at a certain time, as in K41. Let v be the velocity in the moving
frame of reference, defined as v(r, t) ≡ u(r + x0 + u0t, t + t0) − u0 with u0 ≡ u(x0, t0), and let
us consider the statistics in a local domain D = {(r, t) | r � L and |t| � T }, where L and T are
the characteristic length and time scales of the energy-containing eddies, respectively, or those
of the mean flow. In terms of v, (3) can be written as

∂

∂t
v(r, t) = −(v · ∇)v − ∇p + ν∇2v + G, (5)

where G = G(r, t) = F (r + x0 + u0t, t + t0).
If we decompose the field into the mean and fluctuating parts, such as v = 〈v〉 + ṽ with

〈ṽ〉 = 0, then (5) gives

∂

∂t
ṽ(r, t) = −(ṽ · ∇)ṽ − ∇p̃ + ν∇2ṽ + E, (6)

where E ≡ −M + G̃,

M ≡ (v · ∇)v − (ṽ · ∇)ṽ − 〈(v · ∇)v〉 = 〈v〉 · ∇ṽ + ṽ · ∇〈v〉 − 〈(ṽ · ∇)ṽ〉
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and the brackets 〈 〉 denote a statistical mean or average taken over an appropriate ensemble.
Equation (6) shows that the dynamics of ṽ are governed by three terms: (a) the convective term
(ṽ · ∇)ṽ, (b) the viscous term ν∇2ṽ and (c) the term E representing effects of the mean flow and
external forces. Here, we ignore the pressure term, since it can be eliminated by the use of the
incompressibility condition (4).

To obtain some idea of the relative magnitude of these terms, we assume here for the
sake of simplicity that (i) the external force is negligible (G̃ = 0), i.e. E = −M, (ii) the mean
shear rate Sij ≡ ∂〈vi〉/∂rj is almost constant in the local domain D and (iii) the statistics are
almost homogeneous in the domain D. The mean field 〈v〉 may then be expanded for small r as
〈vi〉 = Sijrj + · · · and

Ei = −Mi = −Smnrn

∂ṽj

∂rm

− Sijṽj, (7)

where the higher-order terms in r have been omitted. Hereinafter, we use the summation
convention for repeated indices.

Let v� be the characteristic velocity of eddies of size � in D or, equivalently, the characteristic
velocity |v| at r ∼ �, where the symbol ∼ denotes equality to an order of magnitude. Then,
dimensional considerations suggest that the order of magnitude of the three terms in (6)
associated with the motions of these eddies are given by

(ṽ · ∇)ṽ ∼ v2
�/�, ν∇2ṽ ∼ νv�/�

2, M ∼ Sv�, (8)

where S is an appropriate norm of the tensor Sij. Equation (8) gives M/[(ṽ · ∇)ṽ] ∼ S�/v�, so
that |M| will be much smaller than |(ṽ · ∇)ṽ| provided that δ� ≡ S�/v� � 1.

According to K41, v� obeys the scaling v� ∼ ε1/3�1/3 in the inertial subrange L 	 � 	 η,
where η is the dissipation length scale at which v2

η/η ∼ νvη/η
2, i.e. Re� ≡ v��/ν ∼ 1. Then (8)

yields M/[(ṽ · ∇)ṽ] ∼ δ� ∼ S�2/3/ε1/3. This implies that the effect of M decreases with the size
� faster when compared with the effect of the convective term (ṽ · ∇)ṽ and there may exist a
range of � (� � �E ≡ (ε1/3/S)3/2, in the present case) for which the magnitude of E is much
smaller when compared with that of the nonlinear convective term. A similar result may hold
true for turbulence under various kinds of external forces, such as stably stratified turbulence
(see section 3), rotating turbulence, magnetohydrodynamic turbulence subjected to a uniform
magnetic field and β-plane turbulence in two dimensions. The ideas discussed in this section are
also applicable to these types of turbulence.

In terms of the characteristic time scales τN , τν and τE associated with the terms (a), (b) and
(c), respectively, (8) can be written as

τN ∼ �/v�, τν ∼ �2/ν, τE ∼ 1/S, (9)

which gives τN/τE ∼ S�/v� = δ�. The use of K41 then gives τN ∼ �2/3/ε1/3 and τN/τE ∼ δ� ∼
S�2/3/ε1/3. Therefore τN/τE � 1 for � � �E = (ε1/3/S)3/2.

To take into account the incompressibility condition, it is convenient to introduce wave
vector space. Let Qij be the velocity correlation spectrum tensor, defined as

Qij(k, t) = 1

(2π)3

∫
d3r 〈ui(x + r, t)uj(x, t)〉e−ik·r.
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Recalling that the Navier–Stokes dynamics with Sij = 0 is compatible with the local
homogeneities and isotropies at small scales � � L, i.e. in the wavenumber range k ≡ |k| 	
kL ≡ 1/L, we write Q as

Qij(k, t) = Q
(0)
ij (k, t) + �Qij(k, t), (10)

where Q
(0)
ij represents the spectrum in the absence of mean shear and external forces, and is

isotropic in the high wavenumber range k 	 kL,

Q
(0)
ij (k, t) = Q(k, t)Pij(k), Pij(k) = δij − kikj

k2
.

The above discussion leading to (8) and (9) gives M/[(ṽ · ∇)ṽ] ∼ τN/τE ∼ S�/v� ≡ δ�. In wave
vector space, we have τN/τE ∼ δ(k) ≡ S/[kv(k)], for eddies of size 1/k, where v2(k)/k =
E(k) ≡ 〈〈Q(k)〉〉k; 〈〈Q(k)〉〉k denotes the integral of Q(q) over the spherical surface q = k

in wave vector space q. This implies that in the high wavenumber range for which δ(k) � 1,
the effects of the term M are weak when compared with those of the convective term, so that it
may be treated as a perturbation when estimating Qij(k) on the basis of (3) or, equivalently, (6).
Since E in (6) is linear in Sij (see (7)), it is tempting to assume that �Q is of the form

�Qij(k, t) = Cijmn(k)Smn + · · · (11)

Here, from symmetry considerations, it is shown that Cijmn can be written without loss of
generality as

Cijmn(k) = a(k)[Pim(k)Pjn(k) + Pin(k)Pjm(k)] + b(k)Pij(k)
kmkn

k2
(12)

for almost stationary turbulence, where a and b are isotropic functions of k, i.e. they depend on k

only through k [3]. This form has been confirmed to be in good agreement with DNS results [3].
Quantitative estimates of a(k) and b(k) have been obtained both in DNSs [3, 6] and experiments
[7]; these are also in good agreement.

If we assume that K41 holds, then

Q
(0)
ij ∼ ε2/3k−11/3,

so that v2(k) ∼ ε2/3k−2/3, δ(k) ≡ S/[kv(k)] ∼ S/(k2/3ε1/3) and �Q(k) ∼ Q(0)(k)δ(k) ∝ k−13/3

in the inertial subrange kL � k � kν, where kν = ε1/4ν−3/4 is the wavenumber k at which
v(k)/(kν) ∼ 1. This scaling k−13/3 of �Q is in agreement with Lumley [4], who discussed
the influence of viscosity, buoyancy, magnetic fields and elasticity on the scaling, and also with
Biferale et al [5], who presented a prediction that generalized the scaling for all orders of structure
functions and all SO(3) sectors. Note that (i) equation (11) with (12) applies not only for the
similarity range, but is valid as long as δ(k) � 1, and (ii) equation (11) gives not only the scaling
in the inertial subrange, but also gives the anisotropy (i.e. the dependence on the components i, j

and on the direction of k) of �Qij(k) in terms of only two scalar functions a(k) and b(k), unlike
the expressions in Lumley [4] and Biferale et al [5]. The form (11) with (12) is also consistent
with the Lagrangian renormalized approximation (LRA) [8]; a theoretical estimate of a(k) and
b(k) has been obtained on the basis of the LRA [6].
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3. Stably stratified turbulence

We consider here a stably stratified turbulence velocity field that obeys the Boussinesq
approximation. It can be written as

∂

∂t
u + (u · ∇)u = −∇p + ν∇2u − Nρe3, (13)

∇ · u = 0, (14)

∂

∂t
ρ + (u · ∇)ρ = κ∇2ρ + Nu3, (15)

after appropriate normalizations, where u, ρ and p are the fluctuating velocity, density and
pressure with zero mean, respectively; ν and κ are the kinematic viscosity and molecular
diffusivity, respectively; e3 is the unit vector in the x3-direction, which is anti-parallel to gravity
and N is the Brunt–Väisälä frequency given by

N =
(

− g

ρ0

dρ̄

dx3

)1/2

. (16)

Here, g is the acceleration due to gravity, ρ0 the reference density and ρ̄(x3) a stably stratified
background-density profile with dρ̄/dx3 (<0) being constant.

This system contains not only the velocity and pressure fields but also the fluctuating density
field. It is not difficult to generalize the ideas of the previous section to include the effect of the
density field. Let us define the density spectrum P(k, t) and the buoyancy-flux spectrum tensor
Bi(k, t) as follows:

P(k, t) = 1

(2π)3

∫
d3r 〈ρ(x + r, t)ρ(x, t)〉e−ik·r,

Bi(k, t) = − 1

(2π)3

∫
d3r 〈ui(x + r, t)ρ(x, t)〉e−ik·r.

Hereafter, we consider statistically quasi-stationary states and omit writing time t in the spectrum
tensors.

Corresponding to (10), let us write

Qij(k) = Q
(0)
ij (k) + �Qij(k), (17)

P(k) = P(0)(k) + �P(k), (18)

Bi(k) = B
(0)
i (k) + �Bi(k), (19)

where X(0) denotes the equilibrium spectrum in the absence of buoyancy, i.e. N = 0, and �X

denotes the deviation from X(0). We assume here that the equilibrium spectra for k 	 kL are
isotropic, which implies that

Q
(0)
ij (k) = Q(0)(k)Pij(k), P(0)(k) = P(0)(k), B

(0)
i = 0. (20)
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Let v� and ρ� be the characteristic velocity and amplitude of the density fluctuations,
respectively, associated with eddies of size � ∼ 1/k. Then, similar to (9), we have

τN ∼ �/v�, τν ∼ �2/ν, τE ∼ 1/N,

where τN is the characteristic time scale associated with the nonlinear convective terms (but in
the moving frame of reference as in (5)) and τE is the linear interaction between u and ρ (the N

terms) in (13) and (15). In wave vector space, we have τN/τE ∼ δ(k) ≡ N/[kv(k)] for eddies of
size 1/k, so that in the high wavenumber range, for which δ(k) � 1, the effect of the buoyancy
force is weak when compared with that of the convective term and can be treated as a perturbation
to the dynamics (13)–(15) with N = 0. Then, by following the idea leading to (11), we try to
write expansions for the deviation spectra in powers of δ(k) or N = Ne3, e.g.

�Qij(k) = Q
(1)
ijm(k)Nm + Q

(2)
ijmn(k)NmNn + · · · , (21)

�P(k) = P(1)
m (k)Nm + P(2)

mn(k)NmNn + · · · , (22)

�Bi(k) = B
(1)
im (k)Nm + B

(2)
imn(k)NmNn + · · · , (23)

where Q(α), P(α) and B(α) (α = 1, 2) are isotropic tensors that depend on k.
Since the equations of motion (13)–(15) are invariant under reflections, {u → −u, ρ →

−ρ, x → −x, k → −k}, they are compatible with Q(−k) = Q(k), P(−k) = P(k) and
B(−k) = B(k). We assume that Q, P and B satisfy these conditions. Taking into account
these conditions and the fact that Q(α), P(α) and B(α) (α = 1, 2) are isotropic tensors
and kiQij(k) = kjQij(k) = kiBi(k) = 0 owing to the incompressibility condition (14), it is
possible to show that Q(1) = P(1) = B(2) = 0. Thus (21)–(23) can be written, without loss of
generality, as

�Qij(k) =
[
q1(k)Pi3(k)Pj3(k) + q2(k)Pij(k)

k2
3

k2
+ q3(k)Pij(k)

]
N2, (24)

�P(k) =
[
p1(k)

k2
3

k2
+ p2(k)

]
N2, (25)

�Bi(k) = b(k)Pi3(k)N (26)

to the leading order for small δ(k).
Equations (17)–(20) along with (24)–(26) give

Qii(k) = 2Q(0)(k) + [q1(k) sin2 θ + 2q2(k) cos2 θ + 2q3(k)]N
2, (27)

P(k) = P(0)(k) + [p1(k) cos2 θ + p2(k)]N
2, (28)

B3(k) = b(k) sin2 θN. (29)

New Journal of Physics 6 (2004) 34 (http://www.njp.org/)

http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Therefore

EQ(k) ≡ 1
2〈〈Qii(k)〉〉k

= 4πk2Q(0)(k) + 4πk2[ 1
3q1(k) + 1

3q2(k) + q3(k)]N
2, (30)

EP(k) ≡ 1
2〈〈P(k)〉〉k = 2πk2P(0)(k) + 2πk2[ 1

3p1(k) + p2(k)]N
2, (31)

EB(k) ≡ 〈〈B3(k)〉〉k = 8
3πk2b(k)N, (32)

where we have used k3 = k cos θ and 〈〈cos2 θ〉〉k = 4πk2/3, 〈〈sin2 θ〉〉k = 8πk2/3.
There are two types of terms in (27)–(29): (a) terms that are anisotropic and θ-dependent

(q1, q2 and p1 terms) and (b) isotropic and θ-independent terms. Simple algebra based on (17),
(18), (20), (24), (25), (27) and (28) shows that q1(k), q2(k) and p1(k) can be given by

8
3πk2q1(k) = Eq1(k) ≡ 〈〈q1(k)〉〉k, (33)

16
15πk2q2(k) = Eq2(k) ≡ 〈〈(3 cos2 θ − 1)q2(k)〉〉k, (34)

16
15πk2p1(k) = Ep1(k) ≡ 〈〈(3 cos2 θ − 1)p1(k)〉〉k, (35)

where

q1(k) ≡ k2 + k2
3

k2 − k2
3

Q33(k) − Q11(k) − Q22(k) = q1(k) sin2 θ, (36)

q2(k) ≡ Q11(k) + Q22(k) − k2
3

k2 − k2
3

Q33(k)

− 1

4πk2
〈〈Q11(k) + Q22(k) − k2

3

k2 − k2
3

Q33(k)〉〉k

= q2(k)(cos2 θ − 1
3), (37)

p1(k) ≡ P(k) − 1

4πk2
〈〈P(k)〉〉k = p1(k)(cos2 θ − 1

3). (38)

Here, we have used 〈〈(3 cos2 θ − 1)f(k)〉〉k = 0 for an isotropic function f that depends on k

only through k.
If Q(0) and P(0) obey the scaling,

Q(0)(k) = Ko

4π
ε2/3k−11/3, P(0)(k) = Coε

−1/3χk−11/3, (39)

then δ(k) = N/[kv(k)] ∼ N/(k2/3ε1/3) in the inertial subrange kL � k � kν, kκ, where χ is
the scalar dissipation rate of 〈ρ2〉 per unit mass due to the molecular diffusion; Ko and Co

are universal constants of order unity and kκ = ε1/4κ−3/4. Since the functions q1(k), q2(k), q3(k),
p1(k), p2(k) and b(k) are to be determined by the equilibrium state, we apply the idea of K41,
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i.e. we assume that they are functions only of ε, χ and k in the inertial subrange. Then, a simple
dimensional analysis yields

qi(k) = αik
−5, pj(k) = βjk

−5, b(k) = γε1/3k−13/3, (40)

where α1, α2, α3, β1, β2 and γ are universal non-dimensional functions of ε and χ. From (32)–(35)
and (40), we have

EB(k) = 8
3πγε−1/3k−7/3N, (41)

Eq1(k) = 8
3πα1k

−3N2, (42)

Eq2(k) = 16
15πα2k

−3N2, (43)

Ep1(k) = 16
15πβ1k

−3N2 (44)

to the leading order for δ(k) = N/(k2/3ε1/3) � 1. The scaling EB(k) ∝ k−7/3 is consistent with
that in [4].

4. Comparison with DNS

To examine the theoretical conjectures obtained in the previous section, we performed a DNS
of decaying stratified turbulence that obeys (13)–(15). The fluctuating velocity u, density ρ

and pressure p were assumed to be periodic with a period 2π in each of the three Cartesian
directions. The background density ρ̄ appears in (13)–(15) only through the constant N as
given in (16). The DNS was based on an alias-free spectral method with 5123 grid points and
a maximum wavenumber of kmax = 241. A fourth-order Runge–Kutta method is used for the
time evolution. We set N = 1 and ν = κ = 2.89 × 10−4. There have been extensive studies
of stably stratified turbulence using numerical simulations (see e.g. [9]–[17]). In the present
DNS, (i) the number of grid points was as large as 5123, (ii) N was as small as 1 (this was
because we are interested in the high wavenumber range for which δ(k) � 1) and (iii) the natural
viscosity and diffusivity were used (i.e. no turbulence models such as hyper-viscosity/diffusivity
were used). To the authors’ knowledge, the present DNS is unique in having these three
characteristics.

In the DNS, Qij(k, t), P(k, t) and B(k, t) were given by

Qij(k, t) = 〈ûi(k, t)ûj(−k, t)〉,
P(k, t) = 〈ρ̂(k, t)ρ̂(−k, t)〉,
Bi(k, t) = −Re[〈ûi(k, t)ρ̂(−k, t)〉],

where û(k, t) and ρ̂(k, t) (k = k1e1 + k2e2 + k3e3 and k1, k2, k3 = 0, ±1, ±2, . . .) are the Fourier
transforms of u(x, t) and ρ(x, t), respectively, and Re denotes the real part. We assumed that
the ensemble average 〈f 〉K of f summed over a wave vector domain, K, can be approximated
by the summation over domain K in one realization, provided that the number of wave vector
modes in K is not too small. Therefore, in practice, we used only one realization in the following
analysis.
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Table 1. DNS parameters at Nt = 0.0 and 3.0. EQ, total kinematic energy;
EP , total potential energy; ε, energy dissipation rate; L0, integral length scale; λ,
Taylor microscale; η, Kolmogorov microscale; Rλ, Taylor microscale Reynolds
number.

Nt EQ EP ε L0 λ η Rλ

0.0 0.500 0.250 7.12 × 10−2 1.21 0.143 4.30 × 10−3 284
3.0 0.263 0.114 5.55 × 10−2 1.10 0.117 4.57 × 10−3 170

We used a statistically quasi-stationary state obtained from a preliminary DNS of forced
turbulence without a density field for the initial velocity field of the present DNS. A log–log
plot of the initial kinematic energy spectrum Ek(k) versus the wavenumber k showed a slope
close to that of the k−5/3 spectrum near k = 10 (figure omitted). The initial density field was
generated randomly under the constraint (kinetic energy) : (potential energy) = 2 : 1, within each
shell k − 1/2 � k′ < k + 1/2 in the wave vector space, i.e. EP(k) ≈ (1/2)EQ(k). At the initial
instant, u and ρ were almost uncorrelated, i.e. EB(k) ≈ 0.

The DNS was performed up to Nt = 5.0. After a certain initial transient period, EB(k)

showed a persistent feature of EB(k) < 0 for small k and EB(k) > 0 for large k. The feature is
consistent with previous numerical studies, although the critical wavenumber kc at which EB(k)

changes the sign is different in simulations under different conditions (initial conditions; external
forces; turbulence models/natural viscosity and diffusivity; and resolutions); in the present DNS,
kc 	 kE, where kE = N3/2ε−1/2, while in the simulation in [15], kc � kE (see [12, 14, 15, 17,
18] and references therein for more details on the sign of EB(k)). Hereafter, we will focus on
the scaling and angular dependence of the spectra, for which the theoretical predictions were
given in section 4.

The magnitude of EB(k), as well as those of EQ(k) and EP(k), decayed with time in the
present DNS. The spectra EQ(k), EP(k) and EB(k) at different Nt values were quite similar
except during the initial transient period. In the following analysis of the DNS data, we used
the representative spectra at Nt = 3.0 after the transient period. Some parameter values that
characterize the field at Nt = 3.0, as well as the initial field at Nt = 0.0, are listed in table 1,
where the total kinematic energy EQ, the total potential energy EP , the energy dissipation rate
ε and the integral length scale L0 are defined by

EQ = 1

2

∫
d3k Qii(k), EP = 1

2

∫
d3kP(k),

ε = ν

∫
d3k k2Qii(k), L0 = π

4u′2

∫
d3k k−1Qii(k),

where u′2 = 2EQ/3. The Taylor microscale λ, the Kolmogorov microscale η and the Taylor
microscale Reynolds number Rλ are given by

λ = (15νu′2/ε)1/2, η = (ν3/ε)1/4, Rλ = u′λ/ν.

According to K41, the nonlinear interaction between eddies of similar size is dominant in
the inertial subrange kE � k � kν, kκ, where kE = N3/2ε−1/2. In our run, kE, kν and kκ were
estimated to be kE = 4.2 and kν = kκ = 219 at Nt = 3.0.
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Figure 1. (a) Buoyancy-flux spectrum EB(k) and anisotropic correlation spectra
(b) Eq1(k), (c) Eq2(k) and (d) Ep1(k), at Nt = 3.0. Isotropic spectra EQ(k) (——)
and EP(k) (- - - -) are also shown for comparison in each figure. The slopes
∝ k−7/3 and ∝ k−3 are indicated (– · – · –).

Strictly speaking, there may be modifications to Q, P and B from the equilibrium spectra in
the range owing not only to buoyancy, but also to non-stationarity, in particular those of ε and χ,
as discussed for a turbulent shear flow in [6]. However, the modifications are expected to be small
provided that τN � τt, where τt is the characteristic time scale of the energy or scalar dissipation
rate and is given by τt = ε/(dε/dt) or τt = χ/(dχ/dt); τN is the time scale associated with
interactions between eddies of similar size. This may be the case in the wavenumber range k 	 kt,
where kt is the wavenumber at which τN ∼ τt. The use of the K41 scaling gives τN ∼ ε−1/3k−2/3.
In the present DNS, kt was estimated to be about 1.5 at Nt = 3.0.

Furthermore, the deviation �Q, �P and �B due to the non-stationarity can be shown to
be isotropic and of the form

�Qij(k) = qt(k)Pij(k)/τt, �P(k) = pt(k)/τt, �Bi(k) = 0

to leading order for small τN/τt, where qt and pt are appropriate functions of k. In the following,
where our main interest is in the anisotropy of the small scales, we ignore the possible effects of
non-stationarity.

Figures 1(a), (b), (c) and (d) show EB(k), Eq1(k), Eq2(k) and Ep1(k), respectively, together
with the isotropic spectra EQ(k) and EP(k) obtained from the present DNS. Equations (30)–(32)
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and the Kolmogorov scaling (39)–(44) suggest that, in the inertial subrange,

(i) EQ(k) ∝ k−5/3, EP(k) ∝ k−5/3,

(ii) EB(k) ∝ k−7/3,

(iii) Eq1(k), Eq2(k) and Ep1(k) ∝ k−3

to leading order for small δ(k). The spectra (at k ≈ 10) in figure 1 are consistent with, or at
least quite close to, these estimates, although the ranges over which the DNS values follow the
scaling laws implied by (i)–(iii) are limited, especially for Eq1, presumably because the Reynolds
number of the present DNS, where the Taylor micro-scale Reynolds number was Rλ ≈ 170, was
only moderate.

Next we consider the angular dependence of the spectra. Before comparing the theoretical
estimates and DNS values, recall that the θ dependences (27)–(29) and (36)–(38) of the spectra
Qii(k), q1(k), q2(k), P(k), p1(k) and B3(k) are obtained without assuming Kolmogorov scaling,
i.e. they are free from the Kolmogorov scaling assumption. To examine a theoretical conjecture
for the θ dependence, let us define the normalized function X(�, θ) as

X(�, θ) ≡ 4π
∫

�
dk k2X(k, θ)∫

�
dk 〈〈X(k)〉〉k

,

where � is the domain [k0, k1],
∫

�
dk denotes an integration with respect to k over � and X(k, θ)

is the average of X(q) over q satisfying k − �k/2 � q < k + �k/2 and θ − �θ/2 � θ′ < θ +
�θ/2 with q3 = q cos θ′ and �k = 1, �θ = 3◦.

Figure 2 shows the DNS values of Qii(�, θ) and P(�, θ) for different values of � (i.e. k0

and k1). If X(k) is an isotropic function of k, then X(�, θ) must be θ-independent and equal
to 1. The θ dependence of the DNS values Qii(�, θ) and P(�, θ) in figure 2 is consistent with
(27) and (28) since the values are almost constant and close to 1; however, they have some
small θ-dependent deviations from the constant. The large fluctuations observed in Qii(�, θ)

and P(�, θ), especially for � with small k0 and k1, are presumably due to the lack of the number
of wave vector modes in �.

To compare the theory and DNS results regarding θ dependences in more detail, let us first
consider (29) and (36), according to which

B3(k, θ)

〈〈B3(k)〉〉k

≈ q1(k, θ)

〈〈q1(k)〉〉k

≈ 3

2
sin2 θ. (45)

When comparing with the DNS values, it is convenient to use X(�, θ) rather than
X(k, θ)/〈〈X(k)〉〉k to avoid large fluctuations in the denominator. Equation (45) yields

B3(�, θ) ≈ q1(�, θ) ≈ 3
2 sin2 θ. (46)

Figure 3 presents the DNS values of B3(�, θ) and q1(�, θ) in comparison with the theoretical
prediction 3

2 sin2 θ in (46). The DNS values and the theoretical conjecture are in good agreement
with each other, especially for large wavenumbers, although there are some slight fluctuations
at small wavenumbers.
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Figure 2. The θ dependence of the normalized spectra Qii(�, θ) (a, b) and
P(�, θ) (c, d) for various values of �; � ≡ [k0, k1] at Nt = 3.0. The thick lines
represent the value 1.

Next, consider (37) and (38), according to which

qA
2 (�, θ) ≈ pA

1 (�, θ) ≈ 5
4(3 cos2 θ − 1), (47)

where

XA(�, θ) ≡ 4π
∫

�
dk k2X(k, θ)∫

�
dk 〈〈(3 cos2 θ − 1)X(k)〉〉k

.

Figure 4 shows DNS values of qA
2 (�, θ) and pA

1 (�, θ) for various values of �, together with
the theoretical predictions of 5

4(3 cos2 θ − 1) obtained from (37) and (38). The DNS values and
the theoretical conjecture are again in good agreement with each other, especially for large
wavenumbers, similar to figure 3.

5. Results and discussions

In this paper, we have assumed that, in fully developed turbulence at sufficiently small scales
and sufficiently high Reynolds numbers, there exists an equilibrium state, whose statistics is
governed primarily by the inherent dynamics, consisting of the convective, pressure and viscous
effects, and is insensitive to the flow conditions at large scales. The equilibrium state is generally
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Figure 3. The θ dependence of the normalized spectra B3(�, θ) (a, b) and
q1(�, θ) (c, d) for various values of �; � ≡ [k0, k1] at Nt = 3.0. The thick lines
represent the function 3

2 sin2 θ in (46).

modified in response to possible external disturbances, such as the existence of a mean field,
magnetic fields, buoyancy and so on. In section 3, by extending the ideas of IYK on the analysis
of small-scale anisotropy in turbulent shear flows, we derived expressions to modify the velocity
correlation spectrum Qij(k), the density spectrum P(k) and the buoyancy-flux spectrum Bi(k)

due to the buoyancy effect in stably stratified turbulence. The expressions give not only the
scaling in the inertial subrange, but also estimates of the anisotropy of the spectra in terms of a
few scalar functions. The theoretical conjectures were compared with a DNS and found to be in
good agreement.

Expression (11) with (12) for turbulent shear flow as well as the expressions (24)–(26)
for the spectra �Q, �P and �B in stably stratified turbulence are consistent with the LRA.
Regarding (11), a theoretical estimate of the two universal functions a(k) and b(k) in the inertial
subrange was obtained based on the LRA [6]. An estimate of the universal functions α1, α2, α3,
β1, β2 and γ in (39)–(44) for the inertial subrange can also be obtained from the LRA, at least
in principle. Such a theoretical estimate remains to be pursued. A preliminary analysis suggests
that the k−3 spectra in (42)–(44) can be modified into one that is proportional to k−3 log k, as is
the case for the enstrophy cascade range in two-dimensional turbulence [19, 20].

The scaling (39)–(44) can also be obtained from simple dimensional arguments under certain
weak assumptions. However, the possibility of anomalous scaling, which is not obtained by
simple dimensional arguments, cannot be excluded a priori. In fact, (i) a closure approximation
under an appropriate linearization with respect to small perturbations in the velocity correlation
spectrum, as well as (ii) a simple passive vector model with pressure-like effects, which are
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Figure 4. The θ dependence of the normalized spectra qA
2 (�, θ) (a, b) and

pA
1 (�, θ) (c, d) for various values of �; � ≡ [k0, k1] at Nt = 3.0. The thick

lines represent the function 5
4(3 cos2 θ − 1) in (47).

generalizations of the well-known Kraichnan’s passive scalar model [21, 22], suggest the
possibility of anomalous anisotropic scaling of the velocity correlation spectrum in turbulence
that is almost isotropic [23]. Clarification of the possible anomalous scaling in turbulence with
and without mean flow, buoyancy, etc is an interesting challenge that requires further theoretical
studies as well as experiments and DNSs at high Reynolds numbers.
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