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10 Landauer-Büttiker formula

This is a lecture note of the theory of condensed matter IV, on Jun. 24 explaining the derivation of
the Landauer-Büttiker formula, which expresses the current in terms of the transmission probability and
distribution functions of the reservoirs. We use the Keldysh formula explained in the last lecture, to treat
the situation far from the equilibrium. The effect of electron interaction and spin degree’s of freedom is
neglected. Average current is expressed with quantum dot (QD) retarded/advance Green function and
line-width functions (Meir-Wingreen formula). General expression reduces to that from classical master
equation in the limit of small line-width (weak couplings).

Figure 1: Schematics of the considered system.

10.1 Average current

We consider a single quantum dot (QD), which is tunnel coupled to the left and right reservoirs as shown
in Fig.1. We disregard the Coulomb interaction in the QDs and in the reservoirs and the spin degrees of
freedom. We take account of only single level in the QD. The total Hamiltonian is Ĥ = ĤQD+ ĤRes+ ĤT,

which is time-independent (after t > t0 = −∞). The unperturbed part is Ĥ0 ≡ ĤQD + ĤRes. The
Hamiltonian of the QD is

ĤQD = ϵdd̂
†d̂, (1)

where d̂† (d̂) and ϵd are the creation (annihilation) operator and the level energy of the QD, respectively.
The Hamiltonian of the two non-interacting reservoirs is

ĤRes =
∑
p

ϵpĈ
†
pĈp +

∑
q

ϵqĈ
†
q Ĉq, (2)

where p (q) and ϵp (ϵq) are the quantum state index and its energy in the left (right) reservoir. Ĉ†
p (Ĉp)

and Ĉ†
q (Ĉq) are the creation (annihilation) operators of the left and right reservoirs, respectively. Finally,

the Hamiltonian of the tunnel coupling between the QD and reservoirs is

ĤT =
∑
p

VLpĈ
†
pd̂+

∑
q

VRqĈ
†
q d̂+H.c., (3)
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where VLp (VRq) is a complex tunnel coupling parameter between the left reservoir and the QD (between
the right reservoir and the QD), and H.c. means the Hermite conjugate terms.

The results of this subsection and the next (Sec. 10.2) are general and are not dependent on the details
of the QDs Hamiltonian, HQD, but depends through QD’s Green functions which will be discussed in
Sec. 10.3. We study the current flowing from the QD to the right reservoir and is defined by

JR(t) = −e
〈

d

dt
N̂R(t)

〉
= − ie

ℏ

〈
[Ĥ, N̂R(t)]

〉
, (4)

where the operators are in the Heisenberg picture and the average ⟨· · · ⟩ means the quantum mechanical
and statistical average over the reservoir states locally in thermal equilibrium and for an arbitrary initial
state of the QDs. N̂R ≡

∑
q Ĉ

†
q Ĉq is the number operator of the right reservoir. e (> 0) is the unit charge

and −e is the charge of an electron. Therefore, positive JR means current flowing from QD to the right
reservoir. We used equation of motion of the Heisenberg operator Ô(t),

∂

∂t
Ô(t) =

i

ℏ
[Ĥ, Ô(t)]. (5)

Since N̂R commutes with ĤRes, evaluating the commutator in Eq. (4) in the Schrödinger picture,

[Ĥ, N̂R] =
[
ĤT, N̂R

]
= −

∑
q

{
VRqĈ

†
q d̂− V ∗

Rqd̂
†Ĉq

}
, (6)

the current becomes

JR(t) =
ie

ℏ
∑
q

[
VRq

〈
Ĉ†

q (t)d̂(t)
〉
− V ∗

Rq

〈
d̂†(t)Ĉq(t)

〉]
. (7)

Then we introduce the lesser Green function

G<
d,q(t, t

′) ≡ i

ℏ

〈
Ĉ†

q (t
′)d̂(t)

〉
. (8)

The complex conjugate of the lesser Green function is[
G<

d,q(t, t
′)
]∗

= − i

ℏ

{〈
Ĉ†

q (t
′)d̂(t)

〉}∗
= − i

ℏ

〈
d̂†(t)Ĉq(t

′)
〉
. (9)

Therefore, the current reduces to

JR(t) =
ie

ℏ
∑
q

{
VRq

ℏ
i
G<

d,q(t, t)− V ∗
Rq

(
−ℏ
i

)[
G<

d,p(t, t)
]∗}

= 2eℜ

{∑
q

VRqG
<
d,p(t, t)

}
. (10)

10.2 Equation of motion of contour-ordered Green function

In order to study the lesser Green function, Eq.(8), we consider contour-ordered Green function,

Gd,q(τ, τ
′) ≡ − i

ℏ
T̂C

〈
d̂(τ)Ĉ†

q (τ
′)
〉
, (11)

where the contour time ordering operator arranges T̂C{Ô1(τ)Ô2(τ
′)} to Ô1(τ)Ô2(τ

′) for τ >C τ ′ and
−Ô2(τ

′)Ô1(τ) for τ <C τ ′, where Ô1(τ) and Ô2(τ
′) are Fermion operators and >C and <C mean the

inequality along the closed time path C. The equation of motion is

−iℏ ∂

∂τ ′
Gd,q(τ, τ

′) = −
{
∂θC(τ − τ ′)

∂τ ′

〈
d̂(τ)Ĉ†

q (τ
′)
〉
− ∂θC(τ

′ − τ)

∂τ ′

〈
Ĉ†

q (τ
′)d̂(τ)

〉}
− i

ℏ
T̂C

〈
d̂(τ)

(
−iℏ ∂

∂τ ′
Ĉ†

q (τ
′)

)〉
= δC(τ − τ ′)

〈{
d̂(τ), Ĉ†

q (τ)
}〉
− i

ℏ
T̂C

〈
d̂(τ)

[
Ĥ, Ĉ†

q (τ
′)
]〉

, (12)
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whtere θC(τ) and δC(τ) are the Heaviside step function and the Dirac delta function along the closed time
path, respectively. The equal-time anti-commutator of the first term is zero and the commutator in the
second term is evaluated using[

Ĥ, Ĉ†
q

]
=

[
ĤRes + ĤT, Ĉ

†
q

]
= ϵqĈ

†
q + V ∗

Rqd̂
†. (13)

Therefore, the equation of motion Eq. (12) becomes

−iℏ ∂

∂τ ′
Gd,q(τ, τ

′) = ϵq

{
− i

ℏ
T̂C

〈
d̂(τ)Ĉ†

q (τ
′)
〉}

+ V ∗
Rq

{
− i

ℏ
T̂C

〈
d̂(τ)d̂†(τ ′)

〉}
= ϵqGd,q(τ, τ

′) + V ∗
RqGd(τ, τ

′), (14)

where we define QD’s Green function

Gd(τ, τ
′) ≡ − i

ℏ
T̂C

〈
d̂(τ)d̂†(τ ′)

〉
. (15)

Then, we have

Gd,q(τ, τ
′)←−g −1

Rq(τ
′) = V ∗

RqGd(τ, τ
′). (16)

where we defined an operator operating to the left,

←−g −1
Rq(τ

′) ≡ −iℏ ∂

∂τ ′
− ϵq. (17)

We then study free Green function of the right reservoir (in the following, the Green functions with
small character g are “free” Green function without the effect of the tunneling Hamiltonian HT),

gRq(τ, τ
′) ≡ − i

ℏ
T̂C

〈
C̃q(τ)C̃

†
q (τ

′)
〉
, (18)

where the “tilde” operator is in the interaction picture,

C̃q(τ) ≡
{
T̂ eiĤ0τ/ℏ

}
Ĉq

{
T̃ e−iĤ0τ/ℏ

}
= eiĤResτ/ℏĈqe

−iĤResτ/ℏ. (19)

The equation of motion of free Green function is

−iℏ ∂

∂τ ′
gRq(τ, τ

′) = δC(τ − τ ′)
〈{

C̃q(τ), C̃
†
q (τ)

}〉
− i

ℏ
T̂C

〈
C̃q(τ)

[
H̃0, C̃

†
q (τ

′)
]〉

. (20)

Noting the commutator
[
Ĥ0, Ĉ

†
q

]
=

[
ĤRes, Ĉ

†
q

]
= ϵqĈ

†
q , and

{
Ĉq, Ĉ

†
q

}
= 1, we have

−iℏ ∂

∂τ ′
gRq(τ, τ

′) = δC(τ − τ ′) + ϵqgRq(τ, τ
′), (21)

or equivalently,

gRq(τ, τ
′)←−g −1

Rq(τ
′) = δC(τ − τ ′). (22)

Then, we can express Gd,q by Gd and gRq as follows

Gd,q(τ, τ
′) =

∫
C

dτ1Gd(τ, τ1)V
∗
RqgRq(τ1, τ

′), (23)

which can be checked by applying ←−g −1
Rq(τ

′) from the right.
With a procedure of the analytic continuation (Langreth formula), we obtain

G<
d,q(t, t

′) =

∫ ∞

−∞
dt1

[
Gr

d(t, t1)V
∗
Rqg

<
Rq(t1, t

′) +G<
d (t, t1)V

∗
Rqg

a
Rq(t1, t

′)
]
, (24)

3



where we introduced the retarded and lesser Green functions of the QD system

Gr
d(t, t

′) ≡ − i

ℏ
θ(t− t′)

〈{
d̂(t), d̂†(t′)

}〉
, (25)

G<
d (t, t

′) ≡ i

ℏ

〈
d̂†(t′)d̂(t)

〉
, (26)

which will be studied in detail in the next section. The advanced Green function is also defined accordingly.
Putting these relations into the expression of the current, Eq. (10), we have

JR(t) = 2e
∑
q

|VRq|2ℜ
{∫ ∞

−∞
dt1

[
Gr

d(t, t1)g
<
Rq(t1 − t) +G<

d (t, t1)g
a
Rq(t1 − t)

]}
. (27)

The free Green functions are discussed in Sec. 10.3.4 and is shown to be the function of only the time
difference t1 − t.

Now, the current is determined by calculating QD’s Green functions, Gr
d(t, t

′) and G<
d (t, t

′).

10.3 QD’s Green functions

This section studies QD’s Green functions in detail.

10.3.1 Closed time-ordered Green function

Let us start from closed time-ordered free Green function of QD:

gd(τ, τ
′) ≡ − i

ℏ
T̂C

〈
d̃(τ)d̃†(τ ′)

〉
, (28)

and its equation of motion is

iℏ
∂

∂τ
gd(τ, τ

′) = δC(τ − τ ′)
〈{

d̃(τ), d̃†(τ ′)
}〉
− i

ℏ
T̂C

〈
−
[
H̃0, d̃(τ)

]
d̃†(τ ′)

〉
. (29)

The commutator is [
Ĥ0, d̂

]
= −ϵdd̂, (30)

then the equation of motion reduces to

iℏ
∂

∂τ
gd(τ, τ

′) = δC(τ − τ ′) + ϵdgd(τ, τ
′). (31)

We define an operator applying to the right

−→g −1
d (τ) ≡ iℏ

∂

∂τ
− ϵd (32)

and we have

−→g −1
d (τ)ĝ(τ, τ ′) = δC(τ − τ ′). (33)

Similarly, another equation of motion of gd(τ, τ
′) is

−iℏ ∂

∂τ ′
gd(τ, τ

′) = δC(τ − τ ′)
〈{

d̃(τ), d̃†(τ ′)
}〉
− i

ℏ
T̂C

〈
d̃(τ)

[
H̃0, d̃

†(τ ′)
]〉

. (34)

The commutator is [
Ĥ0, d̂

†
]
= ϵdd̂

†. (35)

Therefore,

−iℏ ∂

∂τ ′
gd(τ, τ

′) = δC(τ − τ ′) + ϵdgd(τ, τ
′). (36)
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We defined an operator

←−g −1
d (τ ′) ≡ −iℏ ∂

∂τ ′
− ϵd (37)

where the differential operator of ←−g −1
d (τ) applies to the function with time τ ′ on the left, and we have

ĝd(τ, τ
′)←−g −1

d (τ ′) = δC(τ − τ ′). (38)

With these preparations, we study full QDs’ Green function, Eq.(15). The equation of motion is now

iℏ
∂

∂τ
Gd(τ, τ

′) = δC(τ − τ ′)− i

ℏ
T̂C

〈
−
[
Ĥ, d̂(τ)

]
d̂†(τ ′)

〉
, (39)

where the commutator is [
Ĥ, d̂

]
=

[
Ĥ0, d̂

]
+

[
ĤT, d̂

]
, (40)[

ĤT, d̂
]
= −

∑
p

V ∗
LpĈp −

∑
q

V ∗
RqĈq. (41)

Therefore,

iℏ
∂

∂τ
Gd(τ, τ

′) = δC(τ − τ ′) + ϵdGd(τ, τ
′) +

∑
p

V ∗
LpGp,d(τ, τ

′) +
∑
q

V ∗
RqGq,d(τ, τ

′). (42)

The new Green function

Gp,d(τ, τ
′) ≡ − i

ℏ
T̂C

〈
Ĉp(τ)d̂

†(τ ′)
〉
, (43)

obeys following equation of motion

iℏ
∂

∂τ
Gp,d(τ, τ

′) = δC(τ − τ ′)
〈{

Ĉp(τ), d̂
†(τ)

}〉
− i

ℏ
T̂C

〈
−
[
Ĥ, Ĉp(τ)

]
d̂†(τ ′)

〉
. (44)

Using the commutator [
Ĥ, Ĉp

]
= −ϵpĈp − VLpd̂, (45)

we have

−→g −1
Lp(τ)Gp,d(τ, τ

′) = VLpGd(τ, τ
′). (46)

Therefore,

Gp,d(τ, τ
′) =

∫
C

dτ1gLp(τ, τ1)VLpGd(τ1, τ
′), (47)

where gLp(τ, τ1) is free Green function in the left reservoir satisfying −→g −1
Lp(τ)gLp(τ, τ1) = δC(τ − τ1), which

is defined similarly to the free Green function in the right reservoir gRq(τ, τ
′) defined in Eq. (18). Quite

similarly, we also have the relation for the right reservoir

Gq,d(τ, τ
′) =

∫
C

dτ1gRq(τ, τ1)VRqGd(τ1, τ
′). (48)

Putting these into Eq.(42), we have

iℏ
∂

∂τ
Gd(τ, τ

′) = δC(τ − τ ′) + ϵdGd(τ, τ
′)

+

∫
C

dτ1
∑
p

gLp(τ, τ1)|VLp|2Gd(τ1, τ
′) +

∫
C

dτ1
∑
q

gRq(τ, τ1)|VRq|2Gd(τ1, τ
′), (49)
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which reduces to

−→g −1
d (τ)Gd(τ, τ

′) = δC(τ − τ ′) +

∫
C

dτ1Σ(τ, τ1)Gd(τ1, τ
′), (50)

where the self-energy is defined by

Σ(τ, τ1) ≡
∑
p

|VLp|2gLp(τ, τ1) +
∑
q

|VRq|2gRq(τ, τ1). (51)

Now we had obtained the Dyson equation

Gd(τ, τ
′) = gd(τ, τ

′) +

∫
C

dτ1gd(τ, τ1)

∫
C

dτ2Σ(τ1, τ2)Gd(τ2, τ
′), (52)

which can be verified by applying −→g −1
d (τ) from the left.

10.3.2 Application of Langreth’s theorem

From the Dyson equation obtained in the previous subsection, the analytic continuation provides Keldysh
Green function matrix elements of QD

Gr
d(t, t

′) = grd(t, t
′) +

∫ ∞

−∞
dt1dt2g

r
d(t, t1)Σ

r(t1, t2)G
r
d(t2, t

′), (53)

Ga
d(t, t

′) = gad(t, t
′) +

∫ ∞

−∞
dt1dt2g

a
d(t, t1)Σ

a(t1, t2)G
a
d(t2, t

′), (54)

G<
d (t, t

′) = g<d (t, t
′) +

∫ ∞

−∞
dt1dt2

{
grd(t, t1)Σ

r(t1, t2)G
<
d (t2, t

′)

+ grd(t, t1)Σ
<(t1, t2)G

a
d(t2, t

′) + g<d (t, t1)Σ
a(t1, t2)G

a
d(t2, t

′)
}
. (55)

The free QD’s Green functions are defined by

grd(t, t
′) ≡ − i

ℏ
θ(t− t′)

〈{
d̃(t), d̃†(t′)

}〉
, (56)

gad(t, t
′) ≡ i

ℏ
θ(−t+ t′)

〈{
d̃(t), d̃†(t′)

}〉
, (57)

g<d (t, t
′) ≡ i

ℏ

〈
d̃†(t′)d̃(t)

〉
. (58)

The meaning of the average ⟨· · · ⟩ needs some consideration, especially for the lesser free Green function,
since we do not know the density matrix ρQD(t) at t → −∞. However, by the discussions in the next
section, if we are considering the steady states far later after the initial situation, g<d (−∞,−∞) does not
appear in the expression of the current. Evaluating the equation of motion, it is easy to show the following
relations

−→g −1
d (t)g

r/a
d (t, t′) = δ(t− t′), (59)

g
r/a
d (t, t′)←−g −1

d (t′) = δ(t− t′). (60)

By explicit evaluation, we can show

−→g −1
d (t1)g

<
d (t1, t2) =

(
iℏ

∂

∂t1
− ϵd

)
i
〈
d̃†(t2)d̃(t1)

〉
= 0, (61)

which is checked using the relations

iℏ
∂d̃(t1)

∂t1
= ϵdd̃(t1). (62)
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Similarly,

g<d (t1, t2)
←−g −1

d (t2) = 0. (63)

The self-energies Σr/a/<(t, t′) are obtained from Eq. (51) by replacing gLp/Rq(t, t
′) by g

r/a/<
Lp/Rq(t, t

′). Re-

tarded self-energy is

Σr(t1, t2) ≡
∑
p

grLp(t1, t2)|VLp|2 +
∑
q

grRq(t1, t2)|VRq|2, (64)

and the lesser self-energy is

Σ<(t1, t2) ≡
∑
p

g<Lp(t1, t2)|VLp|2 +
∑
q

g<Rq(t1, t2)|VRq|2. (65)

10.3.3 Important properties of QD Green functions

In the following, in order to simplify the notation, the Green functions and self-energies without time vari-
ables are understood as matrices with indices of two times and the product of two functions is understood
as employing internal time integral from −∞ to +∞.

Keldysh Green function matrices of QD, Eq. (53), obtained by the analytic continuation, are shown
again

Gr
d = grd + grdΣ

rGr
d, (66)

Ga
d = gad + gadΣ

aGa
d, (67)

G<
d = g<d + grdΣ

rG<
d + grdΣ

<Ga
d + g<d Σ

aGa
d. (68)

Equation (66) is an iterative expression and we can formally expand it and resums

Gr
d = grd + grdΣ

rGr
d,

= grd + grdΣ
rgrd + grdΣ

rgrdΣ
rgrd + · · ·

= grd + (grd + grdΣ
rgrd + · · · )Σrgrd

= grd +Gr
dΣ

rgrd. (69)

Applying ←−g −1
d (t′) from the right and using Eq. (60), we have

Gr
d(t, t1)

←−g −1
d (t1) = δ(t− t1) +

∫
dt2G

r
d(t, t2)Σ

r(t2, t1). (70)

where we replaced t′ by t1 and t1 by t2. Then we multiply Ga
d(t1, t

′) from the right and by integrating with
t1, we have ∫

dt1G
r
d(t, t1)

←−g −1
d (t1)G

a
d(t1, t

′) = Ga
d(t, t

′) +

∫
dt1dt2G

r
d(t, t2)Σ

r(t2, t1)G
a
d(t1, t

′). (71)

The left hand side can be evaluated with partial integration,∫
dt1G

r
d(t, t1)

←−g −1
d (t1)G

a
d(t1, t

′) =

∫
dt1

{
−iℏ ∂

∂t1
Gr

d(t, t1)

}
Ga

d(t1, t
′)−

∫
dt1G

r
d(t, t1)ϵdG

a
d(t1, t

′)

= −iℏGr
d(t, t1)G

a
d(t1, t

′)|t1=∞
t1=−∞ +

∫
dt1G

r
d(t, t1)

{
iℏ

∂

∂t1
Ga

d(t1, t
′)

}
−
∫

dt1G
r
d(t, t1)ϵdG

a
d(t1, t

′)

=

∫
dt1G

r
d(t, t1)

−→g −1
d (t1)G

a
d(t1, t

′), (72)

where we used the relationGr
d(t,∞)Ga

d(∞, t′) = 0, which comes from the step function of retarded/advanced
Green function, and Gr

d(t,−∞)Ga
d(−∞, t′) = 0, for t, t′ far after the initial time −∞, which comes from the
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exponentially dumping factor, which will be discussed explicitly in Sec. 10.3.5. Similarly, applying −→g −1
d (t)

from the left to Eq. (54), we have

−→g −1
d (t1)G

a
d(t1, t

′) = δ(t1 − t′) +

∫
dt2Σ

a(t1, t2)G
a
d(t2, t

′), (73)

where we replaced t by t1. Then we multiply Gr
d(t, t1) from the left and by integrating with t1, we have∫

dt1G
r
d(t, t1)

−→g −1
d (t1)G

a
d(t1, t

′) = Gr
d(t, t

′) +

∫
dt1dt2G

r
d(t, t1)Σ

a(t1, t2)G
a
d(t2, t

′). (74)

Since the left hand side of Eqs. (71,74) are equal using the property Eq. (72), we arrive the following
relation of the difference of retarded and advanced Green functions:

Gr
d(t, t

′)−Ga
d(t, t

′) =

∫
dt1dt2G

r
d(t, t1) [Σ

r(t1, t2)− Σa(t1, t2)]G
a
d(t2, t

′). (75)

The Dyson’s equation for the lesser Green function is evaluated with expanding the iterations:

G<
d = g<d + grΣ<Ga

d + g<d Σ
a
dĜ

a + grdΣ
r
dG

<
d

= g<d + grdΣ
<Ga

d + g<d Σ
aGa

d + grdΣ
r{g<d + grdΣ

<Ga
d + g<d Σ

aGa
d + grdΣ

rG<
d }

= {1 + grdΣ
r}g<d {1 + ΣaGa

d}+ {grd + grdΣ
rgrd}Σ<Ga

d + grdΣ
rgrdΣ

rG<
d

= {1 + grdΣ
r}g<d {1 + ΣaGa

d}+ {grd + grdΣ
rgrd}Σ<Ga

d + grdΣ
rgrdΣ

r{g<d + grdΣ
<Ga

d + g<d Σ
aGa

d + grdΣ
rG<

d }
= {1 + grdΣ

r + grdΣ
rgrdΣ

r}g<d {1 + ΣaGa
d}+ {grd + grdΣ

rgrd + grdΣ
rgrdΣ

rgrd}Σ<Ga
d + grdΣ

rgrdΣ
rgrdΣ

rG<
d

= · · ·
= {1 +Gr

dΣ
r}g<d {1 + ΣaGa

d}+Gr
dΣ

<Ga
d. (76)

We examine the first term of the last expression, which is shown to be negligible. By using Eqs. (70,73),∫
dt1dt2G

r
d(t, t1)

←−g −1
d (t1)g

<
d (t1, t2)

−→g −1
d (t2)G

a
d(t2, t

′)

=
[
−iℏGr

d(t, t1)g
<
d (t1, t2)

∣∣t1=∞
t1=−∞ + iℏ

∫
dt1G

r
d(t, t1)

∂

∂t1
g<d (t1, t2)

+

∫
dt1G

r
d(t, t1)ĤQDg

<
d (t1, t2)

]−→g −1
d (t2)G

a
d(t2, t

′)

=

[
iℏGr

d(t,−∞)g<d (−∞, t2) +

∫
dt1G

r
d(t, t1)

−→g −1
d (t1)g

<
d (t1, t2)

]
−→g −1

d (t2)G
a
d(t2, t

′) = (∗), (77)

where we used Gr
d(t,∞) = 0 because of the retarded property. The second term in the bracket is zero using

Eq. (61). Then we execute partial integration again

(∗) = iℏGr
d(t,−∞)g<d (−∞, t2)iℏGa

d(t2, t
′)
∣∣t2=∞
t2=−∞ − iℏGr

d(t,−∞)

∫
dt2g

<
d (−∞, t2)

←−g −1
d (t2)G

a
d(t2, t

′)

= ℏ2Gr
d(t,−∞)g<d (−∞,−∞)Ga

d(−∞, t′), (78)

where we used Ga
d(∞, t′) = 0 because of the advanced property and the relation g<d (−∞, t2)

←−g −1
d (t2) = 0,

Eq. (63). Apparently, the last expression depends on the initial population of the QD represented by
g<d (t, t) at t = −∞, but there is no contribution for the times of interest, t, t′, since Gr

d(t,−∞), Ga
d(−∞, t′)

are exponentially dumped as shown in Sec. 10.3.5. Therefore, we can express the lesser Green function by
retarded and advanced Green functions:

G<
d (t, t

′) =

∫
dt1dt2G

r
d(t, t1)Σ

<(t1, t2)G
a
d(t2, t

′). (79)
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10.3.4 Free Green functions and self-energies

The free Green functions for the right reservoir and QD are defined by

g<Rq(t, t
′) ≡ i

ℏ

〈
C̃†

q (t
′)C̃q(t)

〉
, (80)

gaRq(t, t
′) ≡ i

ℏ
θ(−t+ t′)

〈{
Ĉq(t), Ĉ

†
q (t

′)
}〉

, (81)

g<d (t, t
′) ≡ i

ℏ

〈
d̃†(t′)d̃(t)

〉
, (82)

gad(t, t
′) ≡ i

ℏ
θ(−t+ t′)

〈{
d̂(t), d̂†(t′)

}〉
. (83)

These are only the function of two times difference t− t′ as demonstrated as follows.
The equation of motion of C̃†

q (t
′) is

d

dt′
C̃†

q (t
′) =

{
T̂ eiĤ0t

′/ℏ
} i

ℏ

[
Ĥ0, Ĉ

†
q

]{
T̃ e−iĤ0t

′/ℏ
}
=

i

ℏ
ϵqC̃

†
q (t

′), (84)

and noting C̃†
q (0) = Ĉ†

q , we have

C̃†
q (t

′) = e
i
ℏ ϵqt

′
Ĉ†

q , (85)

and similarly,

C̃q(t) = e−
i
ℏ ϵqtĈq. (86)

Therefore, the lesser free Green function is

g<Rq(t, t
′) =

i

ℏ

〈
Ĉ†

q Ĉq

〉
e−

i
ℏ ϵq(t−t′) =

i

ℏ
fRqe

− i
ℏ ϵq(t−t′), (87)

where fRq is the Fermi-Dirac distribution function of the right reservoir,

fRq ≡
1

eβR(ϵq−µR) + 1
≡ fR(ϵq). (88)

βR, µR are the inverse temperature (= 1/(kBTR)) and the chemical potential of the right reservoir, respec-
tively. The advanced free Green function is

gaRq(t, t
′) ≡ i

ℏ
θ(−t+ t′)

〈{
Ĉq, Ĉ

†
q

}〉
e−

i
ℏ ϵq(t−t′) =

i

ℏ
θ(−t+ t′)e−

i
ℏ ϵq(t−t′). (89)

Similarly, the retarded free Green function is

grRq(t, t
′) = − i

ℏ
θ(t− t′)e−

i
ℏ ϵq(t−t′). (90)

Therefore, g<Rq(t, t
′), gaRq(t, t

′) and grRq(t, t
′) are only the function of the time difference t− t′.

The equation of motion of d̃†(t′) is

d

dt′
d̃†(t′) =

{
T̂ eiĤ0t

′/ℏ
} i

ℏ

[
Ĥ0, d̂

†
]{
T̃ e−iĤ0t

′/ℏ
}
=

i

ℏ
ϵdd̃

†(t′), (91)

and noting d̃†(0) = d̂†, we have

d̃†(t′) = e
i
ℏ ϵdt

′
d̂†, (92)

and similarly,

d̃(t) = e−
i
ℏ ϵdtd̂. (93)
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Therefore, the lesser free Green function is

g<d (t, t
′) =

i

ℏ

〈
d̂†d̂

〉
e−

i
ℏ ϵd(t−t′) =

i

ℏ
fde

− i
ℏ ϵd(t−t′), (94)

where fd ≡ ⟨d̂†d̂⟩ is the initial distribution function of the QD, which does not appear in the final expression
of the current as explained in the last section. The advanced free Green function is

gad(t, t
′) ≡ i

ℏ
θ(−t+ t′)

〈{
d̂, d̂†

}〉
e−

i
ℏ ϵd(t−t′) =

i

ℏ
θ(−t+ t′)e−

i
ℏ ϵd(t−t′). (95)

Similarly, the retarded free Green function is

grd(t, t
′) = − i

ℏ
θ(t− t′)e−

i
ℏ ϵd(t−t′). (96)

Therefore, g<Rq(t, t
′), gaRq(t, t

′), grRq(t, t
′) and g<d (t, t

′), gad(t, t
′), grd(t, t

′) are only the function of the time
difference t− t′.

Retarded self-energy is

Σr(t1, t2) ≡
∑
p

grLp(t1, t2)|VLp|2 +
∑
q

grRq(t1, t2)|VRq|2

∼ − i

ℏ
θ(t1 − t2)

{∫
dϵpρL(ϵp) |VL(ϵp)|2 e−

i
ℏ ϵp(t1−t2) +

∫
dϵqρR(ϵq) |VR(ϵq)|2 e−

i
ℏ ϵq(t1−t2)

}
= −iθ(t1 − t2)

∫
dϵ

2π
e−i ϵ

ℏ (t1−t2) (ΓL(ϵ) + ΓR(ϵ)) , (97)

where we used the expression of retarded free Green functions in the reservoirs and replace the sum over
the quantum state in the reservoir by the integral of the energy ϵp(q),

∑
p(q) →

∫
dϵp(q)ρL(R)(ϵp(q)) where

ρL(R)(ϵ) is the density of states of the left (right) reservoir. We have introduced the line-width function of
left (right) reservoir

ΓL(R)(ϵ) ≡
2π

ℏ
ρL(R)(ϵ)|VL(R)(ϵ)|2, (98)

which is positive-definite function of energy ϵ. The lesser self-energy is similarly evaluated as

Σ<(t1, t2) = i

∫
dϵ

2π
e−i ϵ

ℏ (t1−t2) {ΓL(ϵ)fL(ϵ) + ΓR(ϵ)fR(ϵ)} . (99)

From these analysis, we had known that the self-energies Σr(t1, t2) and Σ<(t1, t2) are only the function
of the time difference t1− t2. From Eq. (53) and Eq. (79), the full QD Green functions are also the function
of the time difference t1 − t2 for the long-time limit. Hence, we can make the Fourier transform of these
function with the frequency ϵ/ℏ, which turns out to be quite a powerful approach.

10.3.5 Fourier transform

The Fourier transforms of some function f(t) is

F (ϵ) =

∫ ∞

−∞
dteiϵt/ℏf(t), (100)

and its reverse transform,

f(t) =

∫ ∞

−∞

dϵ

2πℏ
e−iϵt/ℏF (ϵ). (101)

The free retarded Green function in the reservoir R is

grRq(ϵ) =

∫ ∞

−∞
dteiϵt/ℏgrRq(t) = −

i

ℏ

∫ ∞

−∞
dteiϵt/ℏθ(t)e−

i
ℏ ϵqt−ηt

=
i

ℏ

∫ ∞

0

dtei(ϵ−ϵq+iη′)t/ℏ =
1

ϵ− ϵq + iη′
, (102)
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where we introduced an infinitesimal positive constant η (or η′ ≡ ℏη) to make the integral converge. The
advanced Green function is

gaRq(ϵ) =
1

ϵ− ϵq − iη′
, (103)

and hence
{
gaRq(ϵ)

}∗
= grRq(ϵ). Similarly, free lesser Green function is

g<Rq(ϵ) =

∫
dteiϵt/ℏg<Rq(t) =

i

ℏ
fR(ϵq)

∫
dtei(ϵ−ϵq)t/ℏ = 2πifR(ϵ)δ (ϵ− ϵq) , (104)

which is pure imaginary. Fourier transform of the free retarded Green function of QD is

grd(ϵ) =

∫
d(t− t′)eiϵ(t−t′)/ℏgrd(t, t

′) =

∫
d(t− t′)eiϵ(t−t′)/ℏ

(
− i

ℏ

)
θ(t− t′)eiϵd(t−t′)/ℏ

= − i

ℏ

∫ ∞

0

dtei(ϵ−ϵd+iη′)t/ℏ =
1

ϵ− ϵd + iη′
. (105)

Since the QD’s free Green function and its self-energies are only the function of the time difference
t1 − t2 for the long-time limit (steady-state condition), we expect the QD’s Green function is also the
function of time difference. Then, the Fourier transform is

G
r/a
d (ϵ) ≡

∫
dteiϵ(t−t′)/ℏG

r/a
d (t, t′). (106)

Fourier transform of Eq. (66) is

Gr
d(ϵ) = grd(ϵ) + grd(ϵ)Σ

r(ϵ)Gr
d(ϵ), (107)

hence

Gr
d(ϵ) =

grd(ϵ)

1− grd(ϵ)Σ
r(ϵ)

=
1

ϵ− ϵd − Σr(ϵ)
. (108)

Similarly,

Ga
d(ϵ) =

1

ϵ− ϵd − Σa(ϵ)
. (109)

The self-energy is

Σr(ϵ) ≡
∫

dteiϵt/ℏΣr(t) =
∑
p

grLp(ϵ) |VLp|2 +
∑
q

grRq(ϵ) |VRq|2 , (110)

and hence (Σa(ϵ))∗ = Σr(ϵ). Using the expression of Eq. (97),

Σr(ϵ) = −i
∫ ∞

0

dteiϵt/ℏ
∫

dϵ′

2π
e−i ϵ′

ℏ t (ΓL(ϵ
′) + ΓR(ϵ

′))

=

∫
dϵ′

2π

ℏ
ϵ− ϵ′ + iη′

(ΓL(ϵ
′) + ΓR(ϵ

′))

=

{
ΛL(ϵ)−

iℏ
2
ΓL(ϵ)

}
+

{
ΛR(ϵ)−

iℏ
2
ΓR(ϵ)

}
. (111)

where the real part of the self-energy ΛL/R(ϵ) is defined by the Cauchy’s principle integral

ΛL/R(ϵ) = P

∫
dϵ′

2π

ℏΓL/R(ϵ
′)

ϵ− ϵ′
. (112)

We have used the relation for real a, 1
a+iη = P 1

a − iπδ(a).
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Therefore, the full retarded Green function is

Gr
d(ϵ) =

1

ϵ− ϵd − ΛL(ϵ)− ΛR(ϵ) + iℏ(ΓL(ϵ)+ΓR(ϵ)
2

=
1

ϵ− ϵ̃d(ϵ) + iℏγ(ϵ)
, (113)

where we defined renormalized effective QD energy ϵ̃d(ϵ) = ϵd + ΛL(ϵ) + ΛR(ϵ) and effective line-width
γ(ϵ) = (ΓL(ϵ) + ΓR(ϵ))/2. This function shows a peak when ϵ = ϵpeak where ϵpeak satisfies the relation
ϵpeak = ϵ̃d(ϵpeak). The peak width is characterized by ℏγpeak ≡ ℏγ(ϵpeak) (> 0). Near this peak, we can
approximate the Green function as

Gr
d(ϵ) ∼

1

ϵ− ϵpeak + iℏγpeak
. (114)

Then, the Fourier reverse transformation provides

Gr
d(t) ∼

∫ ∞

−∞

dϵ

2πℏ
Gr

d(ϵ)e
−iϵt/ℏ

= − i

ℏ
θ(t)e−i(ϵpeak−iℏγpeak)t/ℏ ∝ e−γpeakt, (115)

which dumps exponentially with time. This property is universally found in an open quantum system, and
this is the reason that for a long time after the initial condition, the factor containing the retarded Green
function can be neglected.

The advanced self-energy is the complex conjugate of Σr(ϵ), and hence

Σr(ϵ)− Σa(ϵ) = −iℏΓL(ϵ)− iℏΓR(ϵ). (116)

The Fourier transform of Eq.(75) becomes

Gr
d(ϵ)−Ga

d(ϵ) = Gr
d(ϵ) [Σ

r(ϵ)− Σa(ϵ)]Ga
d(ϵ)

= −iℏGr
d(ϵ) [ΓL(ϵ) + ΓR(ϵ)]G

a
d(ϵ). (117)

Similarly, Fourier transformed lesser self-energy is pure imaginary,

Σ<(ϵ) =

∫
dteiϵt/ℏi

∫
dϵ′

2π
e−i ϵ′

ℏ t (ΓL(ϵ
′)fL(ϵ

′) + ΓR(ϵ
′)fR(ϵ

′))

= i

∫
dϵ′

2π
(ΓL(ϵ

′)fL(ϵ
′) + ΓR(ϵ

′)fR(ϵ
′))

∫
dtei(ϵ−ϵ′)t/ℏ

= iℏ (ΓL(ϵ)fL(ϵ) + ΓR(ϵ)fR(ϵ)) . (118)

The Fourier transform of the lesser Green function is by using Eq. (79),

G<
d (ϵ) =

∫
d(t− t′)ei

ϵ(t−t′)
ℏ

∫
dt1dt2

∫
dϵ1
2πℏ

e−i
ϵ1(t−t1)

ℏ Gr
d(ϵ1)

∫
dϵ′

2πℏ
e−i

ϵ′(t1−t2)
ℏ Σ<(ϵ′)

∫
dϵ2
2πℏ

e−i
ϵ2(t2−t′)

ℏ Ga
d(ϵ2)

=

∫
dϵ1
2πℏ

Gr
d(ϵ1)

∫
dϵ′

2πℏ
Σ<(ϵ′)

∫
dϵ2
2πℏ

Ga
d(ϵ2)

∫
dt1e

i
(ϵ1−ϵ′)t1

ℏ

∫
dt2e

i
(ϵ′−ϵ2)t2

ℏ

∫
d(t− t′)ei

ϵ(t−t′)
ℏ e−i

(ϵ1t−ϵ2t′)
ℏ

= Gr
d(ϵ)Σ

<(ϵ)Ga
d(ϵ). (119)

Since (Gr
d(ϵ))

∗
= Ga

d(ϵ) and Σ<(ϵ) is pure imaginary, G<
d (ϵ) is also pure imaginary.

10.4 Steady current

In the previous section, the QD’s lesser Green function, needed for the calculation of the current, is
expressed by QD’s retarded/advanced Green function, Eq. (79). In this section, we express the current
formula with the Fourier transform and obtain the Landauer-Büttiker formula.
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Let us get back to the expression of the current Eq.(27), which is Fourier transformed

JR(t) = 2e
∑
q

|VRq|2ℜ
{∫

dt1
[
Gr

d(t, t1)g
<
Rq(t1 − t) +G<

d (t, t1)g
a
Rq(t1 − t)

]}
= 2e

∑
q

|VRq|2ℜ
{∫

dt1

∫
dϵ

2πℏ
dϵ′

2πℏ

[
Gr

d(ϵ)e
−i

ϵ(t−t1)
ℏ g<Rq(ϵ

′)e−i
ϵ′(t1−t)

ℏ +G<
d (ϵ)e

i
ϵ(t−t1)

ℏ gaRq(ϵ
′)e−i

ϵ′(t1−t)
ℏ

]}
= 2e

∑
q

|VRq|2ℜ
{∫

dϵ

2πℏ
[
Gr

d(ϵ)g
<
Rq(ϵ) +G<

d (ϵ)g
a
Rq(ϵ)

]}
. (120)

As one can see, the current JR is independent of time t (steady current). Since g<Rq(ϵ) and G<
d (ϵ) are pure

imaginary as shown in previous section, Eq.(104,119),

JR = 2e
∑
q

|VR(ϵq)|2
∫

dϵ

2πℏ
[
−ℑ{Gr

d(ϵ)}ℑ
{
g<Rq(ϵ)

}
−ℑ

{
G<

d (ϵ)
}
ℑ
{
gaRq(ϵ)

}]
= 2e

∑
q

|VR(ϵq)|2
∫

dϵ

2πℏ

[
− 1

2i
{Gr

d(ϵ)−Ga
d(ϵ)} 2πfR(ϵq)δ (ϵ− ϵq)−

1

i
G<

d (ϵ)πδ (ϵ− ϵq)

]
=

2e

ℏ

∫
dϵρR(ϵ) |VR(ϵ)|2

[
− 1

2i
(−iℏ)Gr

d (ϵ) {ΓL(ϵ) + ΓR(ϵ)}Ga
d (ϵ) fR(ϵ)

− 1

2i
Gr

d (ϵ) iℏ {ΓL(ϵ)fL(ϵ) + ΓR(ϵ)fR(ϵ)}Ga
d (ϵ)

]
=

e

h

∫
dϵℏ2ΓR(ϵ)G

r
d (ϵ) [{ΓL(ϵ) + ΓR(ϵ)} fR(ϵ)− {ΓL(ϵ)fL(ϵ) + ΓR(ϵ)fR(ϵ)}]Ga

d (ϵ)

= − e

h

∫
dϵℏ2ΓL(ϵ)ΓR(ϵ)G

r
d (ϵ)G

a
d (ϵ) (fL(ϵ)− fR(ϵ)) , (121)

which is Meir-Wingreen form[1].
We define the transmission probability:

T (ϵ) ≡ ℏ2ΓL(ϵ)ΓR(ϵ) |Gr
d (ϵ)|

2
. (122)

Then, we arrive the final expression,

JR = − e

h

∫
dϵ(fL(ϵ)− fR(ϵ))T (ϵ), (123)

which is corresponding to the Landauer-Büttiker formula.
The transmission probability is by using Eq. (113),

T (ϵ) = ℏ2ΓL(ϵ)ΓR(ϵ)

∣∣∣∣ 1

ϵ− ϵ̃d(ϵ) + iℏγ(ϵ)

∣∣∣∣2 =
ℏ2ΓL(ϵ)ΓR(ϵ)

(ϵ− ϵ̃d(ϵ))
2
+ ℏ2γ2

, (124)

where the renormalized level energy is ϵ̃d(ϵ) ≡ ϵd + ΛL(ϵ) + ΛR(ϵ) and the line width is γ(ϵ) = (ΓL(ϵ) +
ΓR(ϵ))/2. This form of the transmission probability is called Breit-Wigner resonance. At the resonant
energy, determined by ϵpeak = ϵ̃d(ϵpeak), the peak transmission probability is

T (ϵpeak) =
4ΓL(ϵpeak)ΓR(ϵpeak)

(ΓL(ϵpeak) + ΓR(ϵpeak))
2 , (125)

which can become unity when ΓL(ϵpeak) = ΓR(ϵpeak).
The Landauer-Büttiker formula, Eq. (123), reduces to that obtained with classical master equation,

lecture note on May 13, page 6, Eq. (38) by multiplying the charge factor −e in the limit of weak couplings,
where the level energy becomes to the bare one, ϵ̃d(ϵ)→ ϵd and γ(ϵ)→ 0. Hence,

T (ϵ)→ ℏ2ΓL(ϵ)ΓR(ϵ)

ℏγ(ϵ)
ℏγ(ϵ)

(ϵ− ϵd)2 + (ℏγ(ϵ))2
. (126)
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The last factor is well approximated with a Dirac’s delta function in the limit of γ → 0, 1

lim
γ(ϵ)→0

ℏγ(ϵ)
(ϵ− ϵd)2 + (ℏγ(ϵ))2

= πδ(ϵ− ϵd). (128)

Therefore, in the limit of small γ(ϵd),

T (ϵ)→ ℏΓL(ϵ0)ΓR(ϵ0)

γ(ϵ0
πδ(ϵ− ϵd) = h

ΓL(ϵ0)ΓR(ϵ0)

ΓL(ϵ0) + ΓR(ϵ0)
δ(ϵ− ϵd). (129)

By putting this into Eq. (123), we have

JR = −e ΓL(ϵ0)ΓR(ϵ0)

ΓL(ϵ0) + ΓR(ϵ0)
{fL(ϵ0)− fR(ϵ0)} . (130)

10.5 Conclusions

We have derived the formula of the current through a quantum dot using Keldysh nonequilibrium Green
function method.
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