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10 Landauer-Buttiker formula

This is a lecture note of the theory of condensed matter IV, on Jun. 24 explaining the derivation of
the Landauer-Biittiker formula, which expresses the current in terms of the transmission probability and
distribution functions of the reservoirs. We use the Keldysh formula explained in the last lecture, to treat
the situation far from the equilibrium. The effect of electron interaction and spin degree’s of freedom is
neglected. Average current is expressed with quantum dot (QD) retarded/advance Green function and
line-width functions (Meir-Wingreen formula). General expression reduces to that from classical master
equation in the limit of small line-width (weak couplings).
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Figure 1: Schematics of the considered system.

10.1 Average current

We consider a single quantum dot (QD), which is tunnel coupled to the left and right reservoirs as shown
in Fig.1. We disregard the Coulomb interaction in the QDs and in the reservoirs and the spin degrees of
freedom. We take account of only single level in the QD. The total Hamiltonian is H = 7:[QD + 7:lRes + 7:[T,
which is time-independent (after ¢ > ty = —o0). The unperturbed part is Ho = 7:lQD + Hies. The
Hamiltonian of the QD is

/HQD = edcﬁd, (1)

where di ((i) and €4 are the creation (annihilation) operator and the level energy of the QD, respectively.
The Hamiltonian of the two non-interacting reservoirs is

HRes = Z epé';ép + Z eqé’;réq, (2)
q

p

where p (q) and €, (¢,) are the quantum state index and its energy in the left (right) reservoir. CA’; (C’p)

and ég (C,) are the creation (annihilation) operators of the left and right reservoirs, respectively. Finally,
the Hamiltonian of the tunnel coupling between the QD and reservoirs is

7:lT = Z VLpCAgdA + Z VRqCA'gdA + H.c,, (3)
p q



where Vi, (Vgq) is a complex tunnel coupling parameter between the left reservoir and the QD (between
the right reservoir and the QD), and H.c. means the Hermite conjugate terms.

The results of this subsection and the next (Sec. 10.2) are general and are not dependent on the details
of the QDs Hamiltonian, Hqp, but depends through QD’s Green functions which will be discussed in
Sec. 10.3. We study the current flowing from the QD to the right reservoir and is defined by

d - 1€ ~ o~
Tn(t) = —e (S Nn(t) ) = =% (AL NR(®)]), (4)
dt h
where the operators are in the Heisenberg picture and the average (---) means the quantum mechanical
and statistical average over the reservoir states locally in thermal equilibrium and for an arbitrary initial
state of the QDs. Ngr =3_, CJCy is the number operator of the right reservoir. e (> 0) is the unit charge

and —e is the charge of an electron. Therefore, positive Jr means current flowing from QD to the right
reservoir. We used equation of motion of the Heisenberg operator O(t),

S0(0) = 1,00, o)
Since N commutes with Hges, evaluating the commutator in Eq. (4) in the Schrodinger picture,
[, Ny = [ﬁT,NR} --y {VRqé;cZ - ngciféq} : (6)
q
the current becomes
E‘fz Vi (CF0)d(1)) = Vi, (d1(0)C(0))] (7)
q

Then we introduce the lesser Green function

The complex conjugate of the lesser Green function is

1

(67,000 =1 {{cie)iw)} =5 (dcw)). ©)

Therefore, the current reduces to
ie N h < * <
Trlt) = 5 34 Vaa has (68 = Vi, (== [Gd,p(at)} = 2eR4 S VR G5, (60 . (10)
q q

10.2 Equation of motion of contour-ordered Green function

In order to study the lesser Green function, Eq.(8), we consider contour-ordered Green function,

Gaalr,7') = —1 7 (dn)C)), (11)

where the contour time orderlng operator arranges Te{01(7)02(1")} to O1(7)0y(1') for 7 >¢ 7/ and
—O05(7")O1 (1) for 7 <¢ 7', where Oy(7) and Oy(r') are Fermion operators and >¢ and <¢ mean the
inequality along the closed tlme path C. The equation of motion is

—m%Gd,q(r, = - {690(877/_7') (d(r)Ei) - W ( Ag(T')CZ(T)>} T <J(T) (—maa,cf( )>>

= 57— ) ({d(r), ¢} }) - +1e {dr) [RC4)]) (12)



whtere 0¢(7) and dc(7) are the Heaviside step function and the Dirac delta function along the closed time
path, respectively. The equal-time anti-commutator of the first term is zero and the commutator in the
second term is evaluated using

|7, Ch| = [Hnes + Hr, ]| = e4CF + Vi d. (13)
Therefore, the equation of motion Eq. (12) becomes

_m%Gdﬁq(T? ) = ¢ {_;%C <J(7)O;(T’)>} + Vi, {—;jc <d(7)cﬁ(7’)>}

=€,Gaq(r,7") + Véqu(T, ), (14)
where we define QD’s Green function
Gulr, ) =+ (At (). (15)
Then, we have
Gag(r. )G o (') = Vit Ga(r, 7). (16)
where we defined an operator operating to the left,

_ ., 0
?R;(T’) = fzh% — €. (17)

We then study free Green function of the right reservoir (in the following, the Green functions with
small character g are “free” Green function without the effect of the tunneling Hamiltonian Hr),

iAo~ -
gra(7,7") = =1 Te (G (1)CY(T)) (18)
where the “tilde” operator is in the interaction picture,
Co(r) = {7—61";’-107—/}1} C, {fe—m(ﬁ/n} _ emResr/néqe—mResT/h_ (19)
The equation of motion of free Green function is

~ 1

—m%gRq(T, ) =bo(r =) ({Calr). €} }) = +7e (Colr) [Ho. C}(r)] ) - (20)

Noting the commutator [7:[0, CAﬂ = [7:[RCS, C’ﬂ = eqé’;f, and {C'q, A;f} =1, we have

0
—’LﬁﬁgRq(T, ™) =68c(T —7') + €49rq (1, T'), (21)
or equivalently,
9rq(1, )G a (7)) = b (r = 7). (22)

Then, we can express Gy, by Gg and gr, as follows
Gd’q(ﬂ T/) = / driGa(r, Tl)Vlzquq (71, 7—/)7 (23)
c

which can be checked by applying ?E;(T’ ) from the right.
With a procedure of the analytic continuation (Langreth formula), we obtain

oo

chq(t,t’):/ dty [G(t, 1) Vi 95, (b1, 1) + G (1, 81) Vg (t1, )] (24)

— 00



where we introduced the retarded and lesser Green functions of the QD system
T N — 73‘ oyl 7 7t (4
Gyt t) = =00t =) ({d(t),d'(¥)} ). (25)
< = 1 gtand
G5 (t,¢) = - (d'()dw). (26)

which will be studied in detail in the next section. The advanced Green function is also defined accordingly.
Putting these relations into the expression of the current, Eq. (10), we have

Tr(t) =26 3 Vg PR { [ dn (Gt m)gi, (0~ )+ G5 1) 0~ 1) } . (27)

— 00

The free Green functions are discussed in Sec. 10.3.4 and is shown to be the function of only the time
difference t; — t.
Now, the current is determined by calculating QD’s Green functions, G%(¢,¢') and G (¢, ).

10.3 QD’s Green functions

This section studies QD’s Green functions in detail.

10.3.1 Closed time-ordered Green function

Let us start from closed time-ordered free Green function of QD:

galr,7') = —1 o (dn)d (7). (28)
and its equation of motion is
m%gd(ﬂ ) =dc(r =) {{d(n).d' () }) - %TC (- [fo.d)] d' (7). (29)
The commutator is
[7%0702} = —eqd, (30)

then the equation of motion reduces to

0
ihagd(ﬂ ') =6c(T —7') + €aga(r, 7). (31)

We define an operator applying to the right

_ 0
7d 1(7’) = ’LhE — €4 (32)
and we have
Fat(mg(r ) =dc(r—7). (33)
Similarly, another equation of motion of g4(7,7') is
2 ) — bt - ) (Lo eV — (i [T
—ZhaT,gd(T,T y=0dc(r—7") <{d(7‘),d (r )}> — hTC <d(7’) [Ho,d (r )}> ) (34)
The commutator is
|:7:[0, JT:| = eda?f. (35)
Therefore,
0
—ih?gd(ﬂ ) =dc(r —7') + €aga(r, 7). (36)



We defined an operator

_ .0
?d ) = —zh% — €4 (37)

where the differential operator of ?;1(7) applies to the function with time 7’ on the left, and we have
Ja(T, T’)?gl(r’) =do(r—1). (38)

With these preparations, we study full QDs’ Green function, Eq.(15). The equation of motion is now

Gl ) = bolr — ') = T (~ [A,dr)] di ), (39)
where the commutator is
0, = [ d] + [ie.d]. ()
[#LT, d] =S ViG-S Vi Co (41)
P q
Therefore,
ih%Gd(T, ') = bc(t — 1) + eaGa(r, ') + 2,,: Vi, Gpa(r, ™) + Zq: Vi Gaa(r, ). (42)
The new Green function
Gpalr,7') = —1 T (Gt (). (43)
obeys following equation of motion
m%and(ﬂ ) =do(r =) ({Com),di ) }) - %%c (- [.Cn)dh). (44)
Using the commutator
[7.6,] = &€y = Viyd, (45)
we have
G ia(D)Gpa(r,7') = VipGa(r, 7). (46)
Therefore,
Gya(r™) = [ driguy(r.m)VigGatr. 7). (47)

where g7, (7, 71) is free Green function in the left reservoir satisfying 72; (T)g9rp(T,71) = 6c(T —11), which
is defined similarly to the free Green function in the right reservoir gr,(7,7’) defined in Eq. (18). Quite
similarly, we also have the relation for the right reservoir

Ggalr, ') = / dT19re (T, T1)VReGa(1,T'). (48)
c
Putting these into Eq.(42), we have
0 , ’ /
zha—Gd(T,T ) =dc(t —7") + eqGa(r, ")
T
+/ dT1Zng(T7T1)\VLp|2Gd(T1,T') +/ dr ZgRq(7'7Tl)‘VRqFGd(Tl;T/)a (49)
c P c q



which reduces to
7;1(7)6}(7, ) =dc(r—1') + /C dn (1, 11)Galm1,7"), (50)
where the self-energy is defined by
X(r,m) = Z |VLp|29Lp(Ta )+ Z ‘VRq|29Rq(T, 71). (51)
P q
Now we had obtained the Dyson equation

Ga(r,7) :gd(T,T')—I—/ dTlgd(T,Tl)/ Ao X (71, 72)G a1, ), (52)
c c

which can be verified by applying 7;1(7) from the left.

10.3.2 Application of Langreth’s theorem

From the Dyson equation obtained in the previous subsection, the analytic continuation provides Keldysh
Green function matrix elements of QD

Ga(t,t") = gg(t,t') + / dtydtagg(t, t1)X" (t1, t2)Gylt2, '), (53)
o
G4 (t,t) :gg(t,t’)+/ dt1dtags(t, t1)X% (L1, t2) G4 (t2,t'), (54)

G5 (t,t) :g;(t,t’)+/ dtldtg{gg(t,tl)Er(tl,tQ)Gj(tg,t')
gt 1) (1, 12) G2, ) + 95 (1 1) 37 (b1, 1) Gl (12, 1) | (55)

The free QD’s Green functions are defined by

gittt) = —voe— ) ({0, d@)}), (56)
gilt, ) = o1+ ) ({0, d'#)}). (57)
g5 (t,t) = % (df () (58)

The meaning of the average (---) needs some consideration, especially for the lesser free Green function,
since we do not know the density matrix pop(t) at ¢ - —oo. However, by the discussions in the next
section, if we are considering the steady states far later after the initial situation, g5 (—oc0, —0o) does not
appear in the expression of the current. Evaluating the equation of motion, it is easy to show the following
relations

Fa'(0gy"(t,t) =8t~ 1), (59)
gi ") G (W) = st —t). (60)
By explicit evaluation, we can show
_ I, e s
T (t)g5 (o ta) = (matl - ed) i(d(t2)d(11)) =0, (61)
which is checked using the relations
d(t .
inddty) cad(ty). (62)
aty



Similarly,

95 (t1,12) G 7 (82) = 0. (63)
The self-energies $7/%/<(t,1') are obtained from Eq. (51) by replacing 9rp/Re(t,t") by g%‘}/};}(t t'). Re-
tarded self-energy is
Sty te) = ) gyt 1) [Vipl* + > gg(tr, t2) [Vl (64)
P q
and the lesser self-energy is
St te) =) 97, (b t2)[Vipl + ) g5, (b1, 12) Vgl (65)

p q

10.3.3 Important properties of QD Green functions

In the following, in order to simplify the notation, the Green functions and self-energies without time vari-
ables are understood as matrices with indices of two times and the product of two functions is understood
as employing internal time integral from —oo to +oo.

Keldysh Green function matrices of QD, Eq. (53), obtained by the analytic continuation, are shown
again

0= 94+ 9.2 Gy, (66)
q=9q+94x"Gyg, (67)
Gy =95 + 905 Gy + gg2=Gi+ g7 X°Gy. (68)

Equation (66) is an iterative expression and we can formally expand it and resums
i = 9a+ 942" Gy,
=9q+9a%" 94+ 9a%" 943" 90 + -+
=94+ (92 +9a%"9a + )% g4
=94+ GaX"gq- (69)
Applying ?gl(t’) from the right and using Eq. (60), we have
Gg(t,tl)?gl(tl) =4(t—t1) +/dt2Gg(t, to)X" (ta,t1). (70)

where we replaced t' by ¢; and ¢, by to. Then we multiply G4(t1,t’) from the right and by integrating with
t1, we have

/dthQ(t,tl)gd (t1)GY(t1,t") = Ga4(t, ') + /dtldtQGQ(t,tg)ET'(t27t1)G§(t17t'). (71)
The left hand side can be evaluated with partial integration,
/dthg(t,tl)?gl(tl)ag(tl,t’) = /dt1 {—zha Go(t, tl)}Gg(tl,t’) — /dtlag(t,tl)eng(tht’)
= —ihGY(t, t1)Ga(tr, ) 2% +/dt1GQ(t,t1) {z‘h(,;;Gg(tl,t’)}
—/dtlag(t,tl)eng(tl,t’)
_ / A Gt 1) T 7 (1) G5, 1), (72)

where we used the relation G} (¢, 00)GY (oo t') = 0, which comes from the step function of retarded /advanced
Green function, and Gj(t, —00)G%(—o00,t') = 0, for ¢, t’ far after the initial time —oo, which comes from the



exponentially dumping factor, which will be discussed explicitly in Sec. 10.3.5. Similarly, applying 751(t)
from the left to Eq. (54), we have

TGt ) = (8 — 1) + /dth“(tl,tg)Gg(tg,t’), (73)
where we replaced t by t1. Then we multiply G7(¢,t1) from the left and by integrating with ¢, we have
/dthd (t,t1)F 7 () GS(tr, ) = G, 1) + /dtldtQGQ(t,tl)E“(tl,tQ)G‘;(tQ,t’). (74)

Since the left hand side of Eqs. (71,74) are equal using the property Eq. (72), we arrive the following
relation of the difference of retarded and advanced Green functions:

GL(t,t) — G4(t,t') = /dtldtzG;(t,tl) [X7(t1,t2) — X(t1,t2)] GY(ta, t'). (75)

The Dyson’s equation for the lesser Green function is evaluated with expanding the iterations:
Gi =97 + 955G+ 95 54G" + 934G35
=97 +94X"Ga+ 97X Gq + 92X {97 + 94X~ Ga + 9§E“G3 +9a2 G}
= {1+ giE g {1+ B°G3} + {gq + 9uE" 92} <G + 9i % 942" G g
= {1+ 92" g7 {1 + 2°Gg} + {91 + 9aX" 9} 2=Gq + 92X 92 {97 + 94X G + 972G + gi¥ G}
= {1+ ga%" + 93" gaX" bag {1 + G} + {ga + 942" g1 + 945" 92X 9a} G + 9a X" 9q X 92 G

= {1+ GX" g5 {1+ 2°Gq} + GuE<GY. (76)
We examine the first term of the last expression, which is shown to be negligible. By using Egs. (70,73),
/dtldtzGZ(t7 1)1 (1)g7 (11, 12) G 7 (82) G (b, 1)
[ ) , - 0
= —Zth(t,tl)gj(tl,tg) ::—oo + ’Lh/dthd(t,tl)at gd (tl,tg)

+ [0yt fangs (. 12)| 7 ()G 1Y)

= _iﬁGZ(t,—OO)gi(—OOJz)+/dthZ(tt1)751(t1)g§(t1,t2)} G4t (t2)Gilta,t)) = (x),  (T7)

where we used G7(t, 00) = 0 because of the retarded property. The second term in the bracket is zero using
Eq. (61). Then we execute partial integration again

(x) = ihG}(t, —00) gy (—00, t2)iRGY(ta, t )t2 > —ihGg(t,—oo)/dtzgj(—oo,tz)?gl(tz)Gg(tz,t’)
= thQ(ta 700)9;(7007 700)G‘dl(700,t/), (78)

where we used G%(00,t’) = 0 because of the advanced property and the relation gJ (—oo, tg)?gl(tg) =0,
Eq. (63). Apparently, the last expression depends on the initial population of the QD represented by
g5 (t,t) at t = —oco, but there is no contribution for the times of interest, ¢,¢, since G'}(t, —c0), G%4(—o0, ')
are exponentially dumped as shown in Sec. 10.3.5. Therefore, we can express the lesser Green function by
retarded and advanced Green functions:

G5 (t,t) = /dtldtQGg(t,t1)2<(t1,t2)03(t2,t’). (79)



10.3.4 Free Green functions and self-energies

The free Green functions for the right reservoir and QD are defined by

gy (t.) = 7 (CHE)C, ). (80)
gt 7) = 100~ + 1) ({Cul0), L0}, (s1)
g5 1) = + (@), (52)
g3ty = o1+ ) {{d(e).d' (1) }) (83)

These are only the function of two times difference ¢ — ' as demonstrated as follows.
The equation of motion of C; (') is

%C’;(t’) = {Tetor/n} % [0, Cy] {Tewor i} = %eqég(t/), (84)
and noting C’;f(()) = C‘;f, we have
Cl(t') = ereat’ ¢, (85)
and similarly,
C,(t) = e"ncat(, (86)
Therefore, the lesser free Green function is
Gralt#) = 7 (CIC, ) emhealt=t) = L frpehealt=), (87)
where fr, is the Fermi-Dirac distribution function of the right reservoir,
fr : = fr(eq)- (88)

7= eBr(ea—nRr) 4+ 1

Br, pr are the inverse temperature (= 1/(kpTg)) and the chemical potential of the right reservoir, respec-
tively. The advanced free Green function is

gy (t,t) = %9(4 + ) <{éq, g}> o healt=t) _ %9(4 4 )ekealt=t), (89)

Similarly, the retarded free Green function is
Ghg(t,t) = = 6(t = e Falt=1), (90)

Therefore, g5, (t,'), g%, (t,t") and gg,(t,1') are only the function of the time difference ¢ —¢'.

The equation of motion of df(#') is

%aﬁ(t') = [T % [Flo, df| {Temor/m) = %eddf(t’), (91)

and noting df(0) = df, we have

dt(t') = ereat'df, (92)

and similarly,

d(t) = e~ %, (93)



Therefore, the lesser free Green function is
) = 1) b= i) "

where f; = <CZTCZ> is the initial distribution function of the QD, which does not appear in the final expression
of the current as explained in the last section. The advanced free Green function is

O(~t+ ) ({d,dl ) emheat=) = 0t + e REal=, (95)

v
h

Similarly, the retarded free Green function is

ga(tt) =

grt,t) = —%9(15 — ) healt=t), (96)
Therefore, g5, (t,t"), gi,(t,1'), gry(t,t") and g7 (t,t'), g4(t,t), gi(t, ') are only the function of the time

difference t — t'.
Retarded self-energy is

S (t1t2) = 3 g (11, 02)[Vipl® + 3 gy (b1, 12)| Vi
p q

2

5000 =) { [ deppr(e) Wil e85 1 [ degpnle) Vi) e hent =

ity — 1) / ;L;e—i%al—tz) (TL(€) + Tr(e), (97)

where we used the expression of retarded free Green functions in the reservoirs and replace the sum over
the quantum state in the reservoir by the integral of the energy €,(q), Zp(q) - [ dep(q)PL(R) (€p(q)) Where
pL(r)(€) is the density of states of the left (right) reservoir. We have introduced the line-width function of
left (right) reservoir

2T
Lrir(e) = EPL(R)(‘E”VL(R)(G)F» (98)
which is positive-definite function of energy e. The lesser self-energy is similarly evaluated as
< ; de —ig(t1—t2)
Nt te) =i [ o oeT {CL(e)fL(€) + Tr(€)fr(e)}- (99)

From these analysis, we had known that the self-energies X" (¢1,t2) and X<(1,¢3) are only the function
of the time difference t; —t3. From Eq. (53) and Eq. (79), the full QD Green functions are also the function
of the time difference ¢t; — to for the long-time limit. Hence, we can make the Fourier transform of these
function with the frequency e/h, which turns out to be quite a powerful approach.

10.3.5 Fourier transform

The Fourier transforms of some function f(¢) is

F(e) = / dte' /" f(t), (100)
and its reverse transform,
> de t/h
= I (e). 101
1) = [ 5o @ (101)

The free retarded Green function in the reservoir R is

Ghgle) = / dteiet/hg;,q(t):—% / dte't/ng(t)e~ Feat—nt

— 00 — 00

[ et 1
= / dtel(catimII/ — — (102)
R Jo €—€q+1in

10



where we introduced an infinitesimal positive constant 7 (or ' = fin) to make the integral converge. The
advanced Green function is

Gg(6) = ————, (103)

€— € — 17

and hence { g%q(e)}* = gr,(€). Similarly, free lesser Green function is

ITAC /dte“t/hgfaq fR €q /cltel(E Ot/ — omifr(e)d (e — €), (104)

which is pure imaginary. Fourier transform of the free retarded Green function of QD is

92(6> _ /d(t o tl>€i€(t_t/)/hgg<t,t/) _ /d(t _ t/)eie(t—t')/h (_;’i) 9(t . t/)eied(t—t')/h

- /OO deei—eatinm — L (105)
hJo €—€q+ i

Since the QD’s free Green function and its self-energies are only the function of the time difference
t; — to for the long-time limit (steady-state condition), we expect the QD’s Green function is also the
function of time difference. Then, the Fourier transform is

Gle(e) = / dtete =G/ g Y. (106)
Fourier transform of Eq. (66) is
a(€) = ga(e) + ga(e) X" (€)Ga(e), (107)
hence
. 9a(e) 1
a(€) 1—gi(e)¥r(e) €—€eq—X"(e) (108)
Similarly,
30 = (109)
d\) = €—eq— 2% e)’
The self-energy is
/dtezet/ﬁzr Zng |VLp| +ZgRq ‘VRq| (110)

and hence (X%(¢))* = X"(¢). Using the expression of Eq. (97),
T [ iet/h de' —i5-t / /
X(e) = —i dte —e "F (Ip(€) +Tr(€))
0 2m
de’ h
= | ————— (T() +Tr(¢
/27refe’+i77/( £(€) +Tr(€)

= {AL(E) - Z:FL(G)} + {AR( ) — @FR( )} (111)

where the real part of the self-energy Ay g(¢) is defined by the Cauchy’s principle integral

dEl hFL/R(E/)
A =P [ —— . 112
unl) =P [ GoEHE (112)
We have used the relation for real a, ;- = P —ind(a).

11



Therefore, the full retarded Green function is

1 1
Gh(e) = = — - , 113
a(©) ﬁ_fd_AL(ﬁ)—AR(e)‘Fiw € — €q(€) + ihvy(e) (113)

where we defined renormalized effective QD energy é4(€) = €4 + AL(€) + Agr(e) and effective line-width
v(e) = (T'z(€) + T'r(e))/2. This function shows a peak when € = €peax Where €pear satisfies the relation
€peak = €d(€peak). The peak width is characterized by Aypeax = y(€peak) (> 0). Near this peak, we can
approximate the Green function as

1
Gh(e) ~ - . 114
d( ) € — €peak + Zh’Ypeak ( )

Then, the Fourier reverse transformation provides
> de ,
G (1) ~ a —iet/h
a(t) /_ . 2rh alee

_ 7i0(t)efi(epcakfihvpcak)t/h x eprcakt7 (115)

h

which dumps exponentially with time. This property is universally found in an open quantum system, and
this is the reason that for a long time after the initial condition, the factor containing the retarded Green
function can be neglected.

The advanced self-energy is the complex conjugate of X" (e), and hence

Y7 (e) — X% e) = —ihl'L(e) — ihl R(e). (116)
The Fourier transform of Eq.(75) becomes

Gale) — Gale) = Gale) [ () — 2(6)] Gi(e)
= —ihGy(e) [TL(e) + Tr(€)] Gg(e). (117)

Similarly, Fourier transformed lesser self-energy is pure imaginary,
< iet/h; de’ ey ’ ’ ’ ’
Be) = [ dte i [ e " (TL(€) fi(e) + Tr(e) fr(€))

=i [ S5 L) + Tl i) [[ate =
= in(Ce(€)fr(e) + Tn(e)fn(e) (118)

The Fourier transform of the lesser Green function is by using Eq. (79),
del _jeat=t) de’ _veul t2>2<( )/ d62 _ic2la=t)

- / d(t dt Galer) | 57 onh’

Ga(Gg)

d d c(eq1—€e)ty (! —ep)to ce(t—t! (eqt—eqt’
/QE%Gd( )/2 hZ (e)/ﬂG“(ez)/dtlel( " /dtzel( w2 /d(tft')ez (i it

= Gy(e) 2= ()G (e). (119)
Since (G%(€))" = G%(e) and £<(e) is pure imaginary, G5 (€) is also pure imaginary.

10.4 Steady current

In the previous section, the QD’s lesser Green function, needed for the calculation of the current, is
expressed by QD’s retarded/advanced Green function, Eq. (79). In this section, we express the current
formula with the Fourier transform and obtain the Landauer-Bittiker formula.
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Let us get back to the expression of the current Eq.(27), which is Fourier transformed

Jr(t) = 262 |VRq| %{/dtl (Gt t1) g5, (T — £) + G5 (t,11) gk, (01 —t)]}
_9 Ve 1250 gt de de’ o L o 2O I N L ) e P VI N L o )
=23 Vil V] g |Gale T g (e (e T gy (e

=23 WP { [ 52 (G097, + GF O] | (120)

As one can see, the current Jp is independent of time ¢ (steady current). Since g, (€) and G (¢) are pure
imaginary as shown in previous section, Eq.(104,119),

n =23 Vilef [ 5 3160} 3 {55,(0} - 3 {G5(9} 3 {y ()}
_ QeZWR e)? / {

1
2 1
_ d ! ih) Gl r r Gy
- f/ eon(@) Va0 [ - ML T+ TR0} 01010
- %GZ () th{Tr(e)fr(e) + Tr(e) fr(e)} Gg (6)]
= %/dﬁher(E)G:i (6) {T'L(e) + Tr(e)} fre) —{T'L(€) fL€) + Tr(€)fr(€)}] GG (€)
= —% /dehQFL(e)FR(e)GZ (e) GG (e) (fr(e) — fr(e)), (121)

Gie) = G} 2nnlea)d (¢ ~ ) ~ 16T (A3 (e )|

which is Meir-Wingreen form|[1].
We define the transmission probability:

T(€) = BT ()T r(e) |GY (o). (122)

Then, we arrive the final expression,

Tn=—5 [ detruto) - rie) T (123)

which is corresponding to the Landauer-Biittiker formula.
The transmission probability is by using Eq. (113),

1
€ — €q(€) + ihy(e)

> RTL()Tg(e)

(e —€a(€))” + h2y?
where the renormalized level energy is €;(€) = €5 + Ar(e) + Ar(e) and the line width is y(e) = (T'z(e) +
T'r(e))/2. This form of the transmission probability is called Breit-Wigner resonance. At the resonant
energy, determined by €peak = €4(€peak), the peak transmission probability is

4FL (Gpeak)FR(Epeak)
(FL (Gpcak) + ]:‘R(Gpcak))2

T () = R*T'(e)Tr(e)

(124)

T (€pear) =

, (125)

which can become unity when I'f(€peax) = I'r(€peak)-

The Landauer-Biittiker formula, Eq. (123), reduces to that obtained with classical master equation,
lecture note on May 13, page 6, Eq. (38) by multiplying the charge factor —e in the limit of weak couplings,
where the level energy becomes to the bare one, é4(¢) — €4 and y(¢) — 0. Hence,

R*T ()T r(e) hry(e)
hy(e)  (e—€a)® + (hy(e)*

T(e) = (126)
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The last factor is well approximated with a Dirac’s delta function in the limit of v — 0, !

i f(e) =7mo(e —¢€
w(lel)rgo (e —€q)? + (hy(e))? d ) (128)

Therefore, in the limit of small y(e4),

. AT (€0)T R (€0)
v(€o

I'z(e0)T'r(€0)

7 I'z(e0) + Ir(€o)

mo(e —eq) = h d(e — €q). (129)

By putting this into Eq. (123), we have

I'z(e0)I'r(€0)

Jp=—e—"~F "
R I'r(e0) + Tr(eo)

{f(e0) — frleo)}- (130)

10.5 Conclusions

We have derived the formula of the current through a quantum dot using Keldysh nonequilibrium Green
function method.
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IThis could be understood since at € = €4, the function is sharply peaked with a peak height 1/(hvy(eq)) — oo and the
integral over the energy in the range including €4 is (for some § > 0)

s () e )
/EH e i o7 = e = (127)

where we had changed variable x = € — €4.
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