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7 Full-counting statistics and fluctuation theorem

This is the lecture note on Jun. 3, 2024 focusing on the application of the Full-counting statistics of the
transferred electrons. For large time limit, we can obtain an explicit expression of the cumulant generation
function and the noise behaviors for large and low bias limits are derived. Finally, it is shown that the
cumulant generation function has special symmetry, which reduces to the Fluctuation theorem.

7.1 Summary of the last lecture

We are discussing the system of a single electron level coupled to two leads obeying following master
equation

d

dt
|W (t)⟩ = M̂ |W (t)⟩ . (1)

We had introduced a modified transition matrix with a counting field χ, M̂(χ). With this, we can define
a characteristic function

Zτ (χ) = ⟨0|eM̂(χ)τ |W (0)⟩ , (2)

where τ is the measurement time. This provides a cumulant generating function of the transferred electrons,

F (χ) = lim
τ→∞

1

τ
lnZτ (χ). (3)

Using this cumulant generating function, we can evaluate the average current and the current noise,

I = −e ∂F (χ)
∂(iχ)

∣∣∣∣
χ=0

, S = 2e2
∂2F (χ)

∂(iχ)2

∣∣∣∣
χ=0

. (4)

Exercise V: Calculate the average current I and zero-frequency current noise S of a highly-biased
quantum point contact and calculate its Fano factor. The detail of the assignment is uploaded in manaba.
Report deadline is June 17, 13:00 to manaba.

7.2 Large τ behavior

We are interested in the probability distribution of the net transferred electron number n for large time τ .
The eigen-equation of M̂(χ), (k = 0, 1) is

M̂(χ) |ψk(χ)⟩ = λk(χ) |ψk(χ)⟩ . (5)

The eigenvalues are determined by the relation
∣∣∣M̂(χ)− λ(χ)Î

∣∣∣ = 0, which provides

λ0,1(χ) = −γ+ + γ−
2

∓

√(
γ+ − γ−

2

)2

+ (γL− + γR−eiχ)(γL+ + γR+e−iχ). (6)
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Choosing ℜλ0(χ) > ℜλ1(χ) (note that both of which are negative) being satisfied for |χ| ≪ 1,

λ0(χ) = −γ+ + γ−
2

+

√(
γ+ − γ−

2

)2

+ (γL− + γR−eiχ)(γL+ + γR+e−iχ). (7)

Clearly, limχ→0 λ0(χ) = 0. For the left and right eigenfunctions, we require the orthonormality condition

⟨ψk(χ)|ψq(χ)⟩ = δkq and completeness condition
∑

k=0,1 |ψk(χ)⟩ ⟨ψk(χ)| = Î.
Using the completeness relation, we expand the initial state |W (0)⟩ with the right eigenvectors |ψk(χ)⟩,

|W (0)⟩ =
∑
k=0,1

ak(χ) |ψk(χ)⟩ , (8)

where ak(χ) (= ⟨ψk(χ)|W (0)⟩) are the expansion coefficients. Then we note that

1 = ⟨0|W (0)⟩ =
∑
k=0,1

ak(χ) ⟨0|ψk(χ)⟩ , (9)

and

lim
χ→0

⟨0|ψk(χ)⟩ = δk0, lim
χ→0

a0(χ) = 1. (10)

Using this expansion, the characteristic function is

Zτ (χ) =

〈
0

∣∣∣∣∣∣eM̂(χ)τ
∑
k=0,1

ak(χ)

∣∣∣∣∣∣ψj(χ)

〉
=
∑
k=0,1

ak(χ) ⟨0|eλk(χ)τ |ψk(χ)⟩

τ→∞∼ a0(χ) ⟨0|ψ0(χ)⟩ eλ0(χ)τ , (11)

where we noticed that the factor eλ1(χ)τ decays much faster than eλ0(χ)τ for τ → ∞. Hence, for large τ

lnZτ (χ) ∼ ln {a0(χ) ⟨0|ψ0(χ)⟩}+ τλ0(χ) ∼ τλ0(χ), (12)

where the first term is progressively less dominant for large τ .
Using the results, we have

F (χ) = lim
τ→∞

1

τ
lnZτ (χ) ∼ λ0(χ). (13)

Assuming local detail balance conditions for left and right leads, we defined following factors for ν = L/R:

γν ≡ γν+ + γν−, (14)

γν+ = γνfν(ϵ0) ≡ γνf
+
ν , (15)

γν− = γν(1− fν(ϵ0)) ≡ γνf
−
ν , (16)

where we defined the Fermi distribution function of the lead ν,

fν(ϵ0) ≡
1

eβν(ϵ0−µν) + 1
. (17)

With these, we have the expression of cumulant generation function:

F (χ) = λ0 = −γL + γR
2

+
γL + γR

2

√
1− u

{
f+L f

−
R (1− eiχ) + f−L f

+
R (1− e−iχ)

}
, (18)

where we defined u ≡ 4γLγR/(γL + γR)
2.
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Using this result, the average current is

I = −e ∂F (χ)
∂(iχ)

∣∣∣∣
χ=0

= −eγL + γR
2

−u
{
f+L f

−
R (−eiχ) + f−L f

+
R e

−iχ
}

2
√
A

∣∣∣∣∣
χ=0

= −e(γL + γR)

4
u
{
f+L f

−
R − f−L f

+
R

}
= − eγLγR

γL + γR
{fL(ϵ0)(1− fR(ϵ0))− (1− fL(ϵ0))fR(ϵ0)}

= −e γLγR
γL + γR

(fL(ϵ0)− fR(ϵ0)), (19)

where we set A ≡ 1 − u
{
f+L f

−
R (1− eiχ) + f−L f

+
R (1− e−iχ)

}
. This expression is consistent with that

obtained in the lecture note on May 13, Eq. (38).
Similarly, the current noise is

S = 2e2
∂2F (χ)

∂(iχ)2

∣∣∣∣
χ=0

= 2e2
∂

∂(iχ)

(
γL + γR

2

−u
{
f+L f

−
R (−eiχ) + f−L f

+
R e

−iχ
}

2
√
A

)∣∣∣∣∣
χ=0

= 2e2
γL + γR

4

{
u(f+L f

−
R e

iχ + f−L f
+
R e

−iχ)√
A

−
u2
(
f+L f

−
R e

iχ − f+R f
−
L e

−iχ
)2

2A3/2

}∣∣∣∣∣
χ=0

=
e2(γL + γR)

2
u
[
f+L f

−
R + f−L f

+
R − u

2

(
f+L f

−
R − f+R f

−
L

)2]
= 2e2

γLγR
γL + γR

[
fL(ϵ0) + fR(ϵ0)− 2fL(ϵ0)fR(ϵ0)−

2γLγR
(γL + γR)2

(fL(ϵ0)− fR(ϵ0))
2

]
. (20)

We would like to inspect in detail the properties of the average current and current noise. In the
following arguments, we assume the temperatures of two leads are the same, βL = βR ≡ β = 1/(kBT ). We
also define the bias, eV ≡ µL − µR, which is set to positive, hence the electron flows in average from the
left to the right and the average current flows oppositely.

7.3 Large bias limit

Let us first discuss the large bias limit (µL − ϵ0, ϵ0 − µR ≫ kBT ), then fL(ϵ0) ∼ 1 and fR(ϵ0) ∼ 0. The
average current becomes

I = −e γRγL
γR + γL

, (21)

and the current noise becomes

S = 2e2
γRγL
γR + γL

(
1− 2γLγR

(γL + γR)2

)
. (22)

Hence, the Fano factor is

S

2|I|
= e

(
1− 2γLγR

(γL + γR)2

)
. (23)

In the limit of γL ≪ γR, I ∼ −eγL, and

S

2|I|
∼ e

(
1− 2γL/γR

(1 + γL/γR)2

)
∼ e, (24)

3



which is the same result as the field emission (Poisson process) discussed in the lecture on May 20. In fact,
cumulant generation function in this limit is

F (χ) ∼ λ0(χ) ∼ −γR
2

(
1 +

γL
γR

)
+
γR
2

(
1 +

γL
γR

)√
1− 4γL/γR

(1 + γL/γR)2
(1− eiχ)

∼ −γR
2

(
1 +

γL
γR

)
+
γR
2

(
1 +

γL
γR

){
1− 2γL/γR

(1 + γL/γR)2
(1− eiχ)

}
= −γL(1− eiχ), (25)

which is the cumulant generation function for the Poisson process as shown in the Appendix 1 of the last
lecture note, May 27. Similar result is obtained for γL ≫ γR, but in this case

F (χ) ∼ −γR(1− eiχ). (26)

In contrast, when γL = γR ≡ γ, I ∼ −eγ/2, and the Fano factor becomes

S

2|I|
∼ e

(
1− 2γ2

(2γ)2

)
=
e

2
. (27)

The cumulant generation function is

F (χ) ∼ −γ + γ

√
1− 4γ2

(2γ)2
(1− eiχ) = −γ(1− ei

χ
2 ), (28)

which is similar to the case γL ≪ γR but the exponential function with χ is different by a factor 1/2
and this cannot be assumed as a Poisson process. One should not interpret the result Eq. (27) as the
elementary charge being half of the charge quantum since this is not a Poisson process. But this represents
the “correlation effect” of the electron on the way through the quantum dots.

To see this correlation effect, let us calculate the number probability distribution function, P (n, τ),
using the relation

P (n, τ) =
1

2π

∫ π

−π

dχZτ (χ)e
−iχn, (29)

whose derivation is given in Appendix A. Since we are focusing on the large bias limit, the contribution of
n < 0 can be neglected. With using the long-time (γτ ≫ 1) form of the characteristic function

Zτ (χ) ∼ eτF (χ), (30)

we have

P (n, τ) ∼ 1

2π

∫ π

−π

dχe−γτ(1−ei
χ
2 )−iχn. (31)

We evaluate Eq. (31) in a saddle point approximation and we have

P (n, τ) ∼
√

2

πγτ
e−

2
γτ (

γτ
2 −n)

2

, (32)

for the derivation, see Appendix B. 1 From this distribution, we have

⟨n̂⟩τ =
γτ

2
, σ2

n = ⟨n̂2⟩τ − ⟨n̂⟩2τ =
1

2

(γτ
2

)
, (34)

1If we apply the saddle point approximation to the case γL ≪ γR, where the cumulant generation function is given by
Eq. (25), we have the approximated number distribution function,

P (n, τ) ∼

√
1

2πγLτ
e
− 1

2γLτ
(γLτ−n)2

, (33)

which gives ⟨n̂⟩τ = γLτ and σ2
n = γLτ obeying the characteristics of the Poisson distribution.
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which has clearly narrower distribution than the that of the Poisson distribution, which should show
⟨n̂⟩τ = σ2

n. We numerically evaluate P (n, τ) for a fixed γτ (= 40) as shown in Fig. 1. As a comparison, we
also plot Poissonian distribution with a parameter γτ/2 which has the same average ⟨n̂⟩. Obviously, the
distribution of Eq. (31) to the left is narrower than that of the Poisson distribution shown to the right. Such
a narrower distribution is called “sub-Poissonian” distribution, which means that the successive arrivals of
the electrons are not completely random, but somewhat regularized compared with that of the Poisson case.
In other words, the probability of the arrival of two successive electrons with very short separation is small,
which is called as anti-bunching effect. This is reflected to the suppression of the current noise. Physically,
this phenomena can be understood by the property of Fermi statistics (Pauli exclusion principle) such that
no more than one electron can occupy the central quantum dot at the same time. Hence, the incoming
electron from the left lead should wait until another electron occupying the quantum dot escapes to the
right lead.
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Figure 1: Left: Real part of the probability distribution function P (n, τ) (Eq. (31) in blue for γτ = 40
as a function of electron number n. Since the expression of (31) is an approximation, finite imaginary
part (red solid line) remains. Right: Poissonian probability distribution function PPoisson(n, τ) for γτ = 20
(corresponding to the same average ⟨n⟩ with the left figure) as a function of n.

7.4 Low bias limit

Then, we consider the opposite limit, where eV ≪ kBT . In the limit of low bias, we have

fL(ϵ0)− fR(ϵ0) = f(ϵ0 − µL)− f(ϵ0 − µR)

∼ − ∂f(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ0−µ0

(µL − µR)

= −f ′(ϵ0 − µ0)eV, (35)

where we have introduced f(ϵ) ≡ (eβϵ + 1)−1, f ′(ϵ) ≡ df(ϵ)/(dϵ) and µ0 ≡ (µL + µR)/2. Therefore, the
average current is

I ∼ −e2 γLγR
γL + γR

{−f ′(ϵ0 − µ0)}V = −GV, (36)

where we defined the linear conductance

G ≡ e2
γLγR
γL + γR

{−f ′(ϵ0 − µ0)} . (37)

The current noise is

S ∼ 4e2
γLγR
γL + γR

f(ϵ0 − µ0) {1− f(ϵ0 − µ0)}+ o(V 2). (38)

Using the relation,

f ′(ϵ) = − βeβϵ

(eβϵ + 1)2
= −βf(ϵ)(1− f(ϵ)), (39)
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the zero-bias noise is

SV=0 ∼ 4e2
γLγR
γL + γR

(
− 1

β
f ′(ϵ0 − µ0)

)
= 4GkBT, (40)

which is called the Johnson-Nyquist noise. Low bias noise has no physical significance more than the linear
conductance.

7.5 Fluctuation theorm

The cumulant generation function derived in Eq. (18) satisfies following relation

F (χ) = F (−χ+ iA), (41)

where A ≡ β(µL −µR) is called as an affinity, which characterizes the driving force of the non-equilibrium
situation. This relation can be checked by noting

f+L f
−
R (1− e−iχ−A) + f−L f

+
R (1− eiχ+A) = f+L f

−
R − e−iχf+L f

−
R e

−A + f−L f
+
R − eiχf−L f

+
R e

A

= f+L f
−
R (1− eiχ) + f−L f

+
R (1− e−iχ), (42)

where we used the relation f−ν /f
+
ν = eβ(ϵ0−µν).

As shown in Eq. (29), the probability of n electrons transferred in a period τ is

P (n, τ) =
1

2π

∫ π

−π

dχZτ (χ)e
−inχ =

1

2π

∫ π

−π

dχeτF (χ)e−inχ. (43)

By using the relation Eq. (41),

P (n, τ) =
1

2π

∫ π

−π

dχeτF (−χ+iA)e−inχ =
1

2π

∫ π

−π

dχ′eτF (χ′)e−in(−χ′+iA)

= enA
1

2π

∫ π

−π

dχ′eτF (χ′)e−i(−n)χ′
= enAP (−n, τ), (44)

where we changed the integration variable from χ to χ′ = −χ+iA. For the bias condition µL > µR (A > 0)
and for n > 0, this relation shows that the probability of transferring electrons in the reverse direction to
the bias n < 0 is exponentially smaller than that of transferring in the forward direction. Defining the
entropy production by transferring n electrons as nβ(µL − µR) ≡ σ, this relation is rewritten as

P (σ)

P (−σ)
= eσ, (45)

which is called the Fluctuation Theorem.
We can also obtain the relation

⟨e−σ⟩ =
n∑

n=−∞
e−nβ(µL−µR)P (n, τ)

=

n∑
n=−∞

P (−n, τ) = 1, (46)

which is called the Jarzynski equation. For a convex function, f ′′(x) ≥ 0 and probability distribution pn,
following Jensen’s relation holds: ∑

n

pnf(xn) ≥ f

(∑
n

pnxn

)
. (47)

Using this relation, we have

1 = ⟨e−σ⟩ ≥ e−⟨σ⟩, (48)

we arrive the relation

⟨σ⟩ ≥ 0, (49)

which is the 2nd-law of the thermodynamics.
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7.6 Conclusion

We have studied the full-counting statistics of an electron transport through a quantum dot determined by
a Markovian master equation. When the tunneling rates are highly asymmetric, the distribution function
of the transferred electron numbers in a time τ becomes a Poissonian for the large time limit. While for
symmetric rates, the distribution is deviated from the Poissonian, and in fact becomes sub-Poissonian. For
low bias, the zero-bias noise is the Johnson-Nyquist noise. Finally, the cumulant generation function is
shown to obey the Fluctuation theorem and the entropy production satisfies the Jarzynski equation.

A Relation between P (n, τ) and Zτ(χ)

As shown in the footnote in page 3 of the lecture note of May 27, the expectation value of a function of
transferred numbers n̂ of electrons in a time period τ , Ô(n̂), is given by

⟨Ô(n̂)⟩τ ≡
∞∑

n=0

P (n, τ)Ô(n), (50)

where P (n, τ) is the probability distribution function. If we choose a function Ô(n̂) = δn̂ℓ with some integer
ℓ, we have

⟨δn̂ℓ⟩τ ≡
∞∑

n=0

P (n, τ)δnℓ = P (ℓ, τ). (51)

The electron number generating function, Zτ (χ), provides m-th moment by

∂mZτ (χ)

∂(iχ)m

∣∣∣∣
χ=0

= ⟨n̂m⟩τ . (52)

This relation suggests following series expansion of Zτ (χ),

Zτ (χ) = 1 + ⟨n̂⟩τ (iχ) +
1

2!
⟨n̂2⟩τ (iχ)

2 +
1

3!
⟨n̂3⟩τ (iχ)

3 + · · ·

= ⟨eiχn̂⟩τ =

∞∑
n=0

P (n, τ)eiχn. (53)

This relation can be interpreted as a (discrete) Fourier transform of the function P (n, τ). Then, let us
evaluate an inverse Fourier transform of Zτ (χ) with some integer ℓ,

1

2π

∫ π

−π

dχZτ (χ)e
−iχℓ =

1

2π

∫ π

−π

dχ ⟨eiχn̂⟩τ e
−iχℓ

=

〈
1

2π

∫ π

−π

dχeiχ(n̂−ℓ)

〉
τ

= ⟨δn̂ℓ⟩ = P (ℓ, τ), (54)

where we had used the relation valid for an integer ℓ, 1
2π

∫ π

−π
dχeiχℓ = δℓ.

B Saddle point approximation

Here, we evaluate the integral

P (n, τ) ∼ 1

2π

∫ π

−π

dχe−γτ(1−ei
χ
2 )−iχn, (55)

under the long-time condition γτ ≫ 1. The real part of the exponent of the integration kernel, −γτ(1 −
cos χ

2 ), is zero at χ = 0 and has very large negative values for other values of χ. Since γτ ≫ 1, the integral
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is dominated by the values of χ ∼ 0. Hence, by expanding the exponent around χ = 0 and neglecting the
terms more than the second order, we have

−γτ(1− ei
χ
2 )− iχn ∼ −γτ

8
χ2 + i

γτ

2
χ− inχ = −γτ

8

{
χ− 4i

γτ

(γτ
2

− n
)2}2

− 2

γτ

(γτ
2

− n
)2
, (56)

where in the last equation, we completed the square of χ. By extending the integration region of Eq. (55)
to [−∞,∞] and executing the Gaussian integral over χ, we have the expression

P (n, τ) ∼
√

2

πγτ
e−

2
γτ (

γτ
2 −n)

2

. (57)

This probability distribution has a proper normalization,

∞∑
n=0

P (n, τ) =

√
2

πγτ

∞∑
n=0

e−
2
γτ (

γτ
2 −n)

2

∼
√

2

πγτ

∞∑
n=−∞

e−
2
γτ (

γτ
2 −n)

2

∼
√

2

πγτ

∫ ∞

−∞
dxe−

2
γτ x2

= 1, (58)

where in the last part we changed the variable x = γτ
2 − n and modified the sum into an integral.
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