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1 Brownian motion and Langevin equations

This is the lecture note on Apr. 15, 2024 introducing Brownian motion as an introduction to the stochastic
phenomena using Langevin equation. This part of the text is based mainly on Ref.[1].

1.1 Langevin equation and the Fluctuation-Dissipation theorem

Consider the one-dimensional classical motion of a spherical particle of radius a, mass m, position x,
velocity v = dx

dt , immersed in a fluid medium of viscosity η, which is assumed to be in thermal equilibrium
at temperature T . The size a and mass m of the particle is assumed to be much larger than that of the
molecules constituting the fluid. Newton’s equation of motion for the particle is

m
dv

dt
= Ftotal(t), (1)

where Ftotal(t) is the total instantaneous force exerted on the particle at time t. If there are no external
forces applied to the particle, our experience teaches us that this force is dominated by a frictional force
−ζv, proportional to the velocity v of the particle. The friction coefficient ζ (> 0) is given by the Stokes’
law, ζ = 6πηa.

If this is the whole story, the equation of motion for the particle becomes

m
dv

dt
∼ −ζv. (2)

Since this is a linear first-order differential equation, its solution can be easily obtained as

v(t) = e−
ζt
m v(0), (3)

starting from an arbitrary initial velocity v(0). If we wait for a long time, the total system made of the
fluid and the particle becomes thermal equilibrium with temperature T (assuming the fluid is macroscopic
and we can neglect the change of its temperature by the dynamics of the particle). According to Eq. (3),
the velocity of the particle is predicted to decay to zero after a long time.

However, this cannot be strictly true because the mean squared velocity of the particle at thermal
equilibrium with temperature T is proportional to T :⟨

1

2
mv2

⟩
eq

=
m

2
⟨v2⟩eq =

kBT

2
, (4)

which is the equipartition theorem where kB is the Boltzmann’s constant.1 Hence, the actual velocity
cannot remain zero for a finite temperature T . Here, ⟨•⟩eq means the statistical average over an equilibrium
state. Evidently, the assumption that Ftotal(t) is dominated by the frictional force must be modified. In
fact, in 1827, Robert Brown had observed by a microscope a random motion of particles from a pollen of
the plant Clarkia pulchella immersed in water. This is the Brownian motion or a random walk.

1For a molecular particle constituting the fluid of a mass mmol ≪ m, the same equipartition theorem is applied and
mmol

2

⟨
v2mol

⟩
eq

= kBT
2

, where vmol is the velocity of the fluid molecules. This shows that
⟨
v2mol

⟩
eq

≫
⟨
v2

⟩
eq
, the fluid

molecules are moving much faster than the particle in average.
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The appropriate modification, suggested by the observed randomness of an individual motion, is to add
a “random” and “fluctuating” force δF (t) to the frictional force, so that the equation of motion becomes

m
dv

dt
= −ζv + δF (t). (5)

This is the Langevin equation for a Brownian particle without external field. Here, in the following for
simplicity, we assume that the effect of the fluctuating force can be summarized by giving its first and
second moments, as time averages over an infinitesimal time interval dt (coarse graining ) represented by
the bracket ⟨•⟩,

⟨δF (t)⟩ = 0, ⟨δF (t)δF (t′)⟩ = 2Bδ(t− t′). (6)

B (> 0) is a measure of the strength of the fluctuating force which is characterized later. The delta function
in time indicates that there is no correlation between impacts in any distinct time intervals [t, t+ dt] and
[t′, t′ + dt]. The remaining mathematical specification of this dynamical model is that the fluctuating force
has a Gaussian distribution determined by these moments.

The Langevin equation, (5), which is a linear, first-order, inhomogeneous differential equation, can be

solved for t(> 0) to give (This can be solved with setting v(t) = e−
ζt
m g(t) with an auxiliary function g(t).)

v(t) = e−
ζt
m v(0) +

∫ t

0

dt′e−
ζ(t−t′)

m
δF (t′)

m
. (7)

The first term gives the exponential decay of the initial velocity, and the second term gives the extra
velocity produced by the random force. Let us use this to get the mean squared velocity. After using the
properties of the Gaussian distribution, Eq. (6) and partial integration, the result is (Show this !)

⟨v2(t)⟩ = e−
2ζt
m v2(0) +

B

ζm

(
1− e−

2ζt
m

)
. (8)

In the long time limit, the exponentials drop out, and this quantity approaches B/ζm. As discussed
above, in the long time limit, the mean squared velocity must approach its equilibrium value kBT/m.
Consequently we find

B = ζkBT. (9)

This result is known as the Fluctuation-dissipation theorem. It relates the strength B of the random
noise or fluctuating force to the magnitude ζ of the friction or dissipation. It expresses the balance between
friction, which tends to drive any system to a completely “dead” state, and noise, which tends to keep
the system “alive”. This balance is required to keep a thermal equilibrium state for a long time.

It is evident from Eq. (7) that the velocity of the particle at time t, v(t), is a random (statistical)
variable, which is connected to a real physical quantity either when we consider a particular trajectory
(realization) or when we consider its statistical average of it over some ensemble. In fact, we can assume
two sources of the statistical features. One is the probability distribution of the initial velocity of the
particle at time t = 0, v(0). Another is the random fluctuating forces δF (t). In the following, various
examples of this statistical treatment of them are introduced.

1.2 Velocity correlation functions

The second equation of Eq. (6) is the first example of time correlation function of fluctuating forces at
times t and t′. Here we discuss the time correlation function of the velocity, the velocity correlation
function of a single particle in a fluid, ⟨v(t)v(t′)⟩ens, where v(t) is the velocity of that particle at time t
and ⟨•⟩ens means a statistical average of a physical quantity • over some ensemble. One reason for interest
in this time correlation function is its connection with the self-diffusion coefficient, D. If there are no
time-dependent external forces and the system is in thermal equilibrium, which is the situation considered
in this lecture almost all the cases, we may expect that this correlation function only depends on the
relative time t− t′ (This property should be carefully analyzed since this is only expected after a long time
passed from a certain initial condition.)
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There are many ways to show this connection. A particularly easy one starts with the one-dimensional
diffusion equation for the space (x) and time (t) dependence of the concentration W (x, t) of a tagged
particle,2

∂

∂t
W (x, t) = D

∂2

∂x2
W (x, t). (10)

The function W (x, t) represents the statistics of the (single) particle concentration over an ensemble of
huge amount of trials starting from a given initial condition. The definition of the concentration suggests
the normalization condition

∫
V dxW (x, t) = 1 for ∀t, which means that you can find exactly one particle

at any time if you search for all region V : −∞ < x < ∞. Using this function, ensemble average of an
arbitrary physical function of the space x, f(x), is obtained by ⟨f⟩ens (t) ≡

∫
V dxf(x)W (x, t).

Suppose that the tagged particle starts out at an initial time t = 0 from the origin x = 0. Then
the concentration will change from an initial delta function peaked at x = 0 to a spread out distribution
(in fact it becomes a Gaussian function of x). By symmetry, W (x, t) = W (−x, t) and the ensemble
average of the displacement ⟨x⟩ens (t) ≡

∫
V dx xW (x, t) is zero. The mean squared displacement defined as

⟨x2⟩ens (t) =
∫
V dx x2W (x, t) is equivalent to the variance of the distribution, which is zero at time t = 0

since W (x, 0) = δ(x). The mean squared displacement at a finite time t can be found by multiplying the
diffusion equation by x2 and integrating over x. Then its change is

∂

∂t
⟨x2⟩ens (t) =

∫
V
dx x2 ∂

∂t
W (x, t) = D

∫
V
dx x2 ∂2

∂x2
W (x, t) = 2D. (11)

(This can be shown by making use of integration by parts and boundary conditions lim|x|→∞ W (x, t) =
0 and lim|x|→∞ ∂xW (x, t) = 0 for finite t, which are required from the normalization condition.) On
integrating over time, this result leads to the well-known Einstein formula for a diffusion in one dimension,
⟨x2⟩ens = 2Dt.

Now we construct a statistical mechanical theory of the same quantity. The net displacement of the
particle’s position during the time interval from 0 to t is,

x(t) =

∫ t

0

ds v(s), (12)

where v(s) is the velocity of the particle at time s. The ensemble average of the mean squared displacement
is

⟨x2⟩ens (t) =
⟨∫ t

0

ds1v(s1)

∫ t

0

ds2v(s2)

⟩
ens

=

∫ t

0

ds1

∫ t

0

ds2 ⟨v(s1)v(s2)⟩ens . (13)

Note that the integral contains the velocity correlation function at times s1 and s2. Next, take the time
derivative and combine two equivalent terms on the right-hand side,

∂

∂t
⟨x2⟩ens (t) = 2

∫ t

0

ds ⟨v(t)v(s)⟩ens = 2

∫ t

0

du ⟨v(u)v(0)⟩ens , (14)

where as noted above, the velocity correlation function is assumed to depend only on the time difference
t − s = u except for very short initial times. The diffusion equation (10) is expected to be valid only at
times much longer than a molecular time. In the limit of large t, the left-hand side approaches 2D, and
the right-hand side approaches a time integral from zero to infinity since the velocity correlation function
generally decays to zero in a short time difference; in simple liquids, this may be of the order of picosecond.
Therefore, we have derived the simplest example of the relation of a transport coefficient D to the velocity
correlation function ⟨v(t)v(0)⟩ens,

D =

∫ ∞

0

dt ⟨v(t)v(0)⟩ens . (15)

2This equation will be derived microscopically in the lecture of next week.
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1.3 Correlation functions and Brownian motion

The Langevin equation and the fluctuation-dissipation theorem can be used to find expressions for various
time correlation functions. The first example is to obtain the velocity correlation function of a Brownian
particle introduced in the previous subseciton. In this example, it is instructive to calculate both the
equilibrium ensemble average and the long-time average.

As explained before, calculating the equilibrium ensemble average involves both an average over noise
and an average over the initial velocity. Using the solution of the Langevin equation (7), the noise average
leads to

⟨v(t)⟩ = e−
ζt
m v(0). (16)

Now we multiply by v(0) and average over initial velocity under equilibrium,

⟨v(t)v(0)⟩eq =
kBT

m
e−

ζt
m . (17)

This holds only for t > 0 because the Langevin equation is valid only for positive times.
We expect that the velocity correlation function is actually a function of the absolute value of the

time-difference t, but to see this from the Langevin equation we have to go to the long time average. This
calculation starts with a record of the time dependence of the velocity v(t) over a very long time interval
τ . Then the velocity correlation function can be obtained from the long time average,

⟨v(t)v(t′)⟩time ≡
1

τ

∫ τ

0

ds ⟨v(t+ s)v(t′ + s)⟩ . (18)

The instantaneous velocity at time t is determined by its initial value and by an integral over the noise as
shown in Eq. (7). For large τ , we can assume that the initial value of the velocity has decayed to zero, and
the instantaneous velocity is determined only by the noise. Then with a slight rearrangement of the time
integral (t′ = t−u) and approximating the upper limit t of the integral to infinity assuming no any change
because of the factor e−ζu/m for large u, we obtain

v(t) ∼ 1

m

∫ ∞

0

due−
ζu
m δF (t− u). (19)

Now the velocity correlation function is the triple integral,

⟨v(t)v(t′)⟩time =

∫ ∞

0

du1

∫ ∞

0

du2e
− ζ(u1+u2)

m
1

τ

∫ τ

0

ds
1

m2
⟨δF (t− u1 + s)δF (t′ − u2 + s)⟩ = B

mζ
e−

ζ|t−t′|
m .

(20)

(Exercise I: derive this relation.) The product of two random force factors has been replaced by its average.
The integral over s can be done immediately. The delta function removes another integral, and the last one
can be done explicitly. Note that when the time correlation function is calculated this way, the absolute
value of the time difference comes in automatically. On using the fluctuation-dissipation theorem, this
leads to the final expression for the velocity correlation function,

⟨v(t)v(t′)⟩time =
kBT

m
e−

ζ|t−t′|
m . (21)

The time average of the product of two velocities Eq. (21) is the same as the equilibrium ensemble average
Eq. (17). This is what one expects for an ergodic system. One point of this derivation is to show that
observation of time dependent fluctuations over a long time interval can be used to learn about friction.
Putting this result in the definition of diffusion constant Eq. (15), D,

D =

∫ ∞

0

dt
kBT

m
e−

ζt
m =

kBT

ζ
. (22)
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1.3.1 Mean squared displacement

Another application of the general solution of the Langevin equation is to find the mean squared displace-
ment of the Brownian particle. As shown in (12), the actual displacement is

x(t) =

∫ t

0

dt′v(t′). (23)

To find ⟨x2(t)⟩eq, we start with Eq. (7)

v(t) = e−
ζt
m v(0) +

1

m

∫ t

0

dt′e−
ζ(t−t′)

m δF (t′) (24)

and then do the averages both for initial equilibrium distribution of v(0) and δF (t), and the result is

⟨x2(t)⟩eq =

∫ t

0

ds

∫ t

0

ds′ ⟨v(s)v(s′)⟩eq = 2
kBT

ζ

[
t− m

ζ
+

m

ζ
e−

ζt
m

]
. (25)

with using the result of fluctuation-dissipation theorem: B/mζ = kBT/m. (Exercise II: derive this relation.)
At short times, the mean squared displacement increases quadratically with time, namely for t ≪ m

ζ ,

⟨x2(t)⟩eq = 2
kBT

ζ

[
t− m

ζ
+

m

ζ

(
1− ζt

m
+

1

2

(
ζt

m

)2

+ · · ·

)]
∼ kBT

m
t2. (26)

This is the inertial behavior that comes from the initial velocity. At long times, the effects of the noise are
dominant, and the mean squared displacement increases linearly with time,

⟨x2(t)⟩eq → 2
kBT

ζ
t. (27)

Einstein’s formula for the mean squared displacement of a diffusing particle is 2Dt as shown below Eq. (11).
Thus we obtain again the Einstein’s expression for the self-diffusion coefficient,

D =
kBT

ζ
. (28)

When Stokes’ law is used for the friction coefficient, the result is called the Stokes-Einstein formula.

1.4 Conclusions

We discussed a classical one-dimensional Brownian particle in the Langevin equation formalism. Velocity
correlation function and mean squared displacement are explicitly evaluated. Fluctuation-dissipation rela-
tion and diffusion constant are given. We had introduced four types of average, ⟨•⟩ (coarse graining), ⟨•⟩eq
(equilibrium ensemble average), ⟨•⟩ens (ensemble average, in general) and ⟨•⟩time (time average).

When an external field (or more generally an affinity, for example, potential difference or temperature
gradient etc.), the Langevin equation can also treat non-equilibrium situations. In the next lecture, we
introduce Fokker-Planck equation, which in equilibrium, describes the same physics as the Langevin equa-
tion. In the following lectures, we will learn the framework of (quantum) master equation, which can in
principle treat arbitrary non-equilibrium situations.
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