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This note reviews the basics of Tomonaga-luttinger liquid based on the review paper by Jan von
Delft and Herbert Scholler, “Bosonization for beginners - refermionization for experts”, Ann. Phys.
7, 225-306 (1998) and my presentation slides for the ERATO Tarucha Project, “Tomonaga-Luttinger
liquid - Bosonization of one-dimensional electron and transport -”, the first part: “Constructive
approach of Bosonization of one-dimensional electron system”, on May 17, 2001. The purpose for
rewriting this note is to clarify the notation and detailed derivations of (chiral) Tomonaga-Luttinger
liquid, which is now recently been activated again in the context of “quantum quench”.

PACS numbers:

I. SYSTEM

We will discuss an ensemble of Fermionic particles with
a mode η confined in a one-dimensional system of length
L. The mode η can be right/left going chiral modes,
spin up/down modes, the ground, the first excited, and
higher excited one-dimensional subbands, and various
edge channels formed in a two-dimensional system under
a large parpenducular magnetic field. For simplicity, first
we will discuss only one of the modes η and disregard the
interaction within the mode η for the time being. The
effect of the interaction is discussed in Sec. VIB.

Let us define the field operator, Ψ̂η(x), which annihi-

lates one Fermion particle of mode η at x ∈ [−L
2 ,

L
2 ),

where L is the length of the system. This is constructed
by the Fermionic annihilation operator, ĉk, as

Ψ̂η(x) ≡ 1√
L

∞∑
k=−∞

e−ikxĉk, (1)

where the wave number index k is determined by the
boundary condition of the system. We undertake follow-
ing boundary condition

Ψ̂η

(
x+

L

2

)
= eiπδbΨ̂η

(
x− L

2

)
, (2)

where a real constant δb is in the range [0, 2). Then
clearly, the wave numbers are discrete as

k =
2π

L

(
nk − δb

2

)
, (3)

where nk is an integer and hence k ∈ [−∞,∞]. The
field operator, Eq.(1), containing the factor exp[−ikx],
represents a left propagating wave. We assume the en-
ergy of the state k as ϵk. It is important to note that in
the Luttinger model, the energy ϵk is a monotonic func-
tion of k, while the conventional metallic system shows
parabolic dependence ϵk ∝ k2. The fact that there is
no lowest energy state is essential for the following dis-
cussion, although this may sound unphysical. However,
most of physical properties in the metallic system at low

temperatures (typically T ≪ TF , where TF is the Fermi
temperature determined by the electron density, effective
mass, and so forth.) are only concerned with the states
near the Fermi points and this assumption (on states with
infinitely negative energies) does not introduce problems.
We will discuss the relation between this Luttinger model
and real physical system in Sec.VI.

The Fermionic creation operator of state k, ĉ†k, also
defines another field operator,

Ψ̂†
η(x) ≡ 1√

L

∞∑
k=−∞

eikxĉ†k. (4)

With the fermionic anti-commutation relation

{ĉk, ĉ†k′} ≡ ĉk ĉ
†
k′ + ĉ†k′ ĉk = δkk′ , (5)

we have the anti-commutation relation of the field oper-
ators,

{Ψ̂η(x), Ψ̂
†
η(x

′)} =
1

L

∑
k,k′

e−ikx+ik′x′
{ĉk, ĉk′}

=
1

L

∑
k

eik(x
′−x)

≡ 1

L

∞∑
nk=−∞

exp

[
2πi

L

(
nk − δb

2

)
(x− x′)

]

=
1

L
e−

πδbi

L (x−x′)
∞∑

nk=−∞
exp

[
2πi

L
(x− x′)nk

]

=
2π

L
e−

πδbi

L (x−x′)
∞∑

m=−∞
δ

(
2π(x− x′)

L
− 2πm

)

=
2π

L
e−

πδbi

L (x−x′) L

2π

∞∑
m=−∞

δ (x− x′ − Lm)

= δ(x− x′). (6)

We used the identity

∞∑
n=−∞

einy = 2π

∞∑
m=−∞

δ(y − 2πm), (7)
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where n,m are integers and the property of the delta-
function δ(ax) = 1

aδ(x). In the last equation, we chose

m = 0 since x, x′ ∈ [−L
2 ,

L
2 ). All other operators are

anti-commute, like {ĉk, ĉk′} = {ĉ†k, ĉ
†
k′} = 0 and hence

{Ψ̂η(x), Ψ̂η(x
′)} = {Ψ̂†

η(x), Ψ̂
†
η(x

′)} = 0. Please also note
that we can construct the annihilation operator from the
field operator,

ĉk =
1√
L

∫ L
2

−L
2

dx eikxΨ̂η(x), (8)

and similar expression for ĉ†k by Ψ̂†
η(x).

II. FOCK SPACE F

Let us consider a Hilbert spaceHN with a fixed particle
number N . The Fock space is the sum for all N ,

F ≡
∑
⊕N

HN . (9)

We define the vacuum state |0⟩0, which satisfies

ĉk |0⟩0 = 0, for k > 0, (10)

ĉ†k |0⟩0 = 0, for k ≤ 0, (11)

where we chose k = 0 arbitrary, which is allowed because
the wave number is unbounded. In the following argu-
ment, we fix our choice of the origin of k. Physically, this
vacuum state corresponds to the situation that all the
states with nk = 0,−1,−2, . . . are occupied by the par-
ticles and all the states with nk = 1, 2, 3, . . . are empty.

Let us define normal order operation
∗∗ · · · ∗∗ relative to

|0⟩0 by

∗∗ ÂB̂Ĉ · · · ∗∗ ≡ ÂB̂Ĉ · · · − 0 ⟨0| ÂB̂Ĉ · · · |0⟩0 , (12)

where Â, B̂, Ĉ, . . . are operators like ĉk or ĉ†k′ . This oper-
ation is essential to avoid the infinity by subtracting the
expectation value with respect to the vacuum state |0⟩0.
The number operator is defined by

N̂ ≡
∞∑

k=−∞

∗∗ ĉ†k ĉk
∗∗ . (13)

Clearly the eigenvalue (number) of the vacuum state |0⟩0
is zero,

N̂ |0⟩0 =

∞∑
k=−∞

(
ĉ†k ĉk − 0 ⟨0| ĉ†k ĉk |0⟩0

)
|0⟩0

=
∑
k

ĉ†k ĉk |0⟩0 −
0∑

k=−∞

|0⟩0

= 0. (14)

Let us consider the set of all states, which have the eigen-
value N of the operator N̂ . This set spans the Hilbert
spaceHN . Then we defineN -particle vacuum state |N⟩0.
More explicitly, by defining k0N ≡ 2π

L (N − δb
2 ),

ĉk |N⟩0 = 0, for k > k0N , (15)

ĉ†k |N⟩0 = 0, for k ≤ k0N . (16)

It can be proved that all states in HN can be generated
from |N⟩0 by particle-hole pair excitations,

|N⟩f̄ = f̄({ĉ†k ĉk′}) |N⟩0 , (17)

where f̄({ĉ†k ĉk′}) is the function of the products ĉ†k ĉk′

with arbitrary set k, k′. Examples of these for N = 2 are

ĉ†3ĉ1 |2⟩0 and ĉ†4ĉ−1ĉ
†
3ĉ1 |2⟩0.

III. BOSONIC REPRESENTATION OF FOCK
SPACE

For q = 2πnq/L > 0, we define following Bosonic cre-
ation and annihilation operators from a pair of Fermionic
creating and annihilation operators,

b̂†q =
i

√
nq

∞∑
k=−∞

ĉ†k+q ĉk,

b̂q =
−i
√
nq

∞∑
k=−∞

ĉ†k−q ĉk, (18)

where the normalization factor ±i/
√
nq is chosen to sim-

plify the following arguments. Note q = 0 (nq = 0) is ex-

cluded from the discussions. b̂†q |N⟩f̄ (b̂q |N⟩f̄ ) is a linear
combination of the states with momentum q particle-hole

pair created (annihilated) from |N⟩f̄ . Clearly, b̂q |N⟩0 =
0 for ∀q > 0 since there is no particle-hole excited states
to annihilate.
Let us check various commutation relations of b̂q and

b̂†q:

[N̂ , b̂†q] =

[∑
k

∗∗ ĉ†k ĉk
∗∗, i

√
nq

∑
k′

ĉ†k′+q ĉk′

]

=
i

√
nq

∑
k,k′

[ĉ†k ĉk, ĉ
†
k′+q ĉk′ ],

(19)

where the commutator reduces to

[ĉ†k ĉk, ĉ
†
k′+q ĉk′ ] = ĉ†k[ĉk, ĉ

†
k′+q ĉk′ ] + [ĉ†k, ĉ

†
k′+q ĉk′ ]ĉk

= ĉ†k

(
{ĉk, ĉ†k′+q}ĉk′ − ĉ†k′+q{ĉk, ĉk′}

)
+
(
{ĉ†k, ĉ

†
k′+q}ĉk′ − ĉ†k′+q{ĉ

†
k, ĉk′}

)
ĉk

= δk,k′+q ĉ
†
k ĉk′ − δk,k′ ĉ†k′+q ĉk.
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We have used the relation [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

and [Â, B̂Ĉ] = {Â, B̂}Ĉ − B̂{Â, Ĉ} with arbitrary

(Bosonic or Fermionic) operators Â, B̂, Ĉ. Therefore, the
commutator is

[N̂ , b̂†q] =
i

√
nq

∑
k

(
ĉ†k ĉk−q − ĉ†k+q ĉk

)
=

i
√
nq

∑
k

∗∗
(
ĉ†k ĉk−q − ĉ†k+q ĉk

) ∗∗= 0, (20)

where taking the normal order
∗∗ · · · ∗∗ is allowed since

q > 0 and we changed the variable k → k + q in the first
term which is possible in the normal order. Similarly,

[N̂ , b̂q] = 0. (21)

Next,

[b̂q, b̂q′ ] =
−1

√
nqnq′

∑
k,k′

[ĉ†k−q ĉk, ĉ
†
k′−q′ ĉk′ ]

=
−1

√
nqnq′

∑
k,k′

(
δk,k′−q′ ĉ

†
k−q ĉk′ − δk−q,k′ ĉ†k′−q′ ĉk

)
=

−1
√
nqnq′

∑
k

(
ĉ†k−q ĉk+q′ − ĉ†k−q−q′ ĉk

)
=

−1
√
nqnq′

∑
k

∗∗
(
ĉ†k−q ĉk+q′ − ĉ†k−q−q′ ĉk

) ∗∗

= 0, (22)

where we took the normal order since q, q′ > 0 and in the
last equation we changed the variable k → k + q′ in the
second term. Similarly, we have

[b̂†q, b̂
†
q′ ] = 0. (23)

Finally,

[b̂q, b̂
†
q′ ] =

1
√
nqnq′

∑
k,k′

[ĉ†k−q ĉk, ĉ
†
k′+q′ ĉk′ ]

=
1

√
nqnq′

∑
k,k′

(
δk,k′+q′ ĉ

†
k−q ĉk′ − δk−q,k′ ĉ†k′+q′ ĉk

)
=

1
√
nqnq′

∑
k

(
ĉ†k−q ĉk−q′ − ĉ†k−q+q′ ĉk

)
.

Here we should be careful for the conditions of q and q′.
If q ̸= q′, vacuum expectation values of these terms are
zero and

[b̂q, b̂
†
q′ ]q ̸=q′ =

1
√
nqnq′

∑
k

∗∗
(
ĉ†k−q ĉk−q′ − ĉ†k−q+q′ ĉk

) ∗∗

= 0, (24)

where we changed variable k → k−q′ in the second term.

In contrast, for q = q′,

[b̂q, b̂
†
q′ ]q=q′ =

1

nq

∑
k

(
ĉ†k−q ĉk−q − ĉ†k ĉk

)
=

1

nq

∑
k

( ∗∗ ĉ†k−q ĉk−q
∗∗ +0 ⟨0| ĉ†k−q ĉk−q |0⟩0

− ∗∗ ĉ†k ĉk
∗∗ −0 ⟨0| ĉ†k ĉk |0⟩0

)
=

1

nq

(
N̂ +

q∑
k=−∞

−N̂ −
0∑

k=−∞

)

=
1

nq
× nq = 1. (25)

Therefore, we have the canonical commutation relation
of Bosons,

[b̂q, b̂
†
q′ ] = δqq′ . (26)

For all N , |N⟩0 is the Boson vacuum state, since

b̂q |N⟩0 = 0, ∀q. In contrast, b̂†q |N⟩0 represents col-
lectively excited state with momentum q. In particu-
lar situation of linear energy dispersion, all the excita-
tions are energetically degenerate. It can be proved that

all the states generated by b̂†q from |N⟩0, like |N⟩f ≡
f({b̂†q}) |N⟩0 span the complete N -particle Hilbert space

HN generated by Fermion operators, f̄({ĉ†k ĉk′}) |N⟩0.
Here, we skip the proof, please refer Ref.1 if one is in-
terested.
Since the operators b̂q, b̂

†
q conserves the particle number

N , we introduce Klein factors F̂ , F̂ † to connect the states
with different N and to give a correct anti-commutation
relations with different modes. We define

F̂ † |N⟩f = F̂ †f({b̂†q}) |N⟩0
≡ f({b̂†q})ĉ

†
k0N+1

|N⟩0
= f({b̂†q}) |N + 1⟩0 . (27)

Similarly,

F̂ |N⟩f ≡ f({b̂†q}) |N − 1⟩0 . (28)

Clearly,

F̂ †F̂ |N⟩f = F̂ †f({b̂†q}) |N − 1⟩0 = f({b̂†q}) |N⟩0 = |N⟩f ,

F̂ F̂ † |N⟩f = |N⟩f . (29)

We have required commutation relations [b̂q, F̂
†] =

[b̂†q, F̂
†] = [b̂q, F̂ ] = [b̂†q, F̂ ] = 0. If we extend the

discussions with different modes η ̸= η′, {F̂ †
η , F̂η′} =

{F̂η, F̂η′} = {F̂ †
η , F̂

†
η′} = 0, which will correctly treat the

anti-commutation relations of the field operators intro-
duced in the following sections.
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IV. BOSON FIELD AND BOSONIZATION OF
FERMION FIELD

A. Boson field operators

Let us introduce Boson field operators as follows

φ̂η(x) ≡ −
∑
q>0

1
√
nq

e−iqxb̂qe
− aq

2 , (30)

φ̂†
η(x) ≡ −

∑
q>0

1
√
nq

eiqxb̂†qe
− aq

2 , (31)

where a is the infinitesimal positive length cut-off param-
eter. Real (Hermite) field is defined with these boson field
operators,

Φ̂η(x) = φ̂η(x) + φ̂†
η(x), (32)

which has a clear physical meaning by following discus-
sions. Particle density operator at x is defined by

ρ̂(x) =
∗∗ Ψ̂†

η(x)Ψ̂η(x)
∗∗

=
1

L

∑
k,k′

eik
′x−ikx ∗∗ ĉ†k′ ĉk

∗∗ . (33)

Be changing variable k′ → k − q, we have

ρ̂(x) =
1

L

∞∑
q=−∞

e−iqx
∞∑

k=−∞

∗∗ ĉ†k−q ĉk
∗∗

=
1

L

∑
q>0

i
√
nqe

−iqx −i
√
nq

∑
k

ĉ†k−q ĉk

+
1

L

∑
k

∗∗ ĉ†k ĉk
∗∗

+
1

L

∑
q<0

(−i
√

|nq|)e−iqx i√
|nq|

∑
k

ĉ†k−q ĉk

=
1

L

∑
q>0

i
√
nq(e

−iqxb̂q − eiqxb̂†q) +
N̂

L
. (34)

While if we take the derivative of Φ̂η(x),

∂xΦ̂η(x) = −
∑
q>0

1
√
nq

(−iqe−iqxb̂q + iqeiqxb̂†q)e
− aq

2

= −
∑
q>0

−iq
√
nq

(e−iqxb̂q − eiqxb̂†q)e
− aq

2

=
2π

L

∑
q>0

i
√
nq(e

−iqxb̂q − eiqxb̂†q)e
− aq

2 . (35)

Therefore, in the limit of a → 0+,

1

2π
∂xΦ̂η(x) = ρ̂(x)− N̂

L
, (36)

and since N̂/L represents average particle line density,

∂xΦ̂η(x)/(2π) shows the fluctuation of the particle den-
sity. In particular, kinks of the amplitude of 2π in the
function Φ̂η(x) represents localized ±1 charge fluctua-
tions.
Let us examine the commutation relations of Boson

field operators, clearly

[φ̂η(x), φ̂η(x
′)] = [φ̂†

η(x), φ̂
†
η(x)] = 0, (37)

and

[φ̂η(x), φ̂
†
η(x

′)] =
∑

q,q′>0

1√
nqn′

q

ei(q
′x′−qx)e−

a
2 (q+q′)[b̂q, b̂

†
q′ ]

=
∑
q>0

1

nq
eiq(x

′−x)−aq

=
∑
n>0

1

n
e−i 2π

L (x−x′−ia)n

= − ln
[
1− e−i 2π

L (x−x′−ia)
]
, (38)

where we used the series expansion ln(1 − a) =

−
∑

n>0
an

n . Using this relation, we evaluate spatial

derivative of the commutation relation [Φ̂η(x), Φ̂η(x
′)],

∂x′ [Φ̂η(x), Φ̂η(x
′)]

= ∂x′{[φ̂η(x), φ̂
†
η(x

′)] + [φ̂†
η(x), φ̂η(x

′)]}

= ∂x′{− ln
[
1− e−i 2π

L (x−x′−ia)
]
+ ln

[
1− e−i 2π

L (x′−x−ia)
]
}

= i
2π

L

[
e−i 2π

L (x−x′−ia)

1− e−i 2π
L (x−x′−ia)

+
e−i 2π

L (x′−x−ia)

1− e−i 2π
L (x′−x−ia)

]

= i
2π

L

[
1

ei
2π
L (x−x′−ia) − 1

+
1

ei
2π
L (x′−x−ia) − 1

]
. (39)

Now we take the limit L → ∞ with keeping x−x′ finite.
Using the relation for |ϵ| ≪ 1,

1

eiϵ − 1
=

1

(1 + iϵ+ 1
2! (iϵ)

2 + · · · )− 1

=
1

iϵ(1 + iϵ
2 + · · · )

∼ 1

iϵ
(1− iϵ

2
· · · )

∼ 1

iϵ
− 1

2
+O(ϵ), (40)

we have the limiting form,

∂x′ [Φ̂η(x), Φ̂η(x
′)]

∼ i
2π

L

[
1

i 2πL (x− x′ − ia)
+

1

i 2πL (x′ − x− ia)
− 1

]
=

2ia

(x− x′)2 + a2
− i

2π

L

= 2πi

[
a/π

(x− x′)2 + a2
− 1

L

]
. (41)
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Finally, taking the limit a → 0+, we obtain

∂x′ [Φ̂η(x), Φ̂η(x
′)] ∼ 2πi

[
δ(x− x′)− 1

L

]
. (42)

In the literatures, following conventional form is often
used,

[Φ̂η(x), Φ̂η(x
′)] = −πiSgn(x− x′), (43)

where Sgn(s) function is 1 for s > 0, -1 for s < 0 and 0
for s = 0.

B. Fermion field operator by boson field

In this subsection, we express Fermion field opera-
tor Ψ̂η(x) with boson field operators φ̂η(x), φ̂

†
η(x), and

Φ̂η(x). First we check the commutation relation

[b̂q, ĉk] =
−i
√
nq

∑
k′

[ĉ†k′−q ĉk′ , ĉk]

=
−i
√
nq

∑
k′

(
ĉ†k′−q{ĉk′ , ĉk} − {ĉ†k′−q, ĉk}ĉk′

)
=

i
√
nq

∑
k′

δk′−q,k ĉk′

=
i

√
nq

ĉk+q. (44)

Therefore,

[b̂q, Ψ̂η(x)] =
1√
L

∑
k

e−ikx[b̂q, ĉk]

=
1√
L

∑
k

e−ikx i
√
nq

ĉk+q

=
i

√
nq

1√
L

∑
k

e−i(k−q)xĉk

=
i

√
nq

eiqx
1√
L

∑
k

e−ikxĉk

= αq(x)Ψ̂η(x), (45)

where we defined a complex function

αq(x) =
i

√
nq

eiqx, (46)

and used the relation [ÂB̂, Ĉ] = Â{B̂, Ĉ} − {Â, Ĉ}B̂.
Similarly,

[b̂†q, ĉk] =
i

√
nq

∑
k′

[ĉ†k′+q ĉk′ , ĉk]

=
i

√
nq

∑
k′

(
ĉ†k′+q{ĉk′ , ĉk} − {ĉ†k′+q, ĉk}ĉk′

)
=

−i
√
nq

∑
k′

δk′+q,k ĉk′

=
−i
√
nq

ĉk−q. (47)

Therefore,

[b̂†q, Ψ̂η(x)] =
1√
L

∑
k

e−ikx[b̂†q, ĉk]

=
1√
L

∑
k

e−ikx −i
√
nq

ĉk−q

=
−i
√
nq

1√
L

∑
k

e−i(k+q)xĉk

=
−i
√
nq

e−iqx 1√
L

∑
k

e−ikxĉk

= α∗
q(x)Ψ̂η(x). (48)

Let us apply the operator Eq.(45) to the vacuum of N
particles |N⟩0,

[b̂q, Ψ̂η(x)] |N⟩0 = αq(x)Ψ̂η(x) |N⟩0 , (49)

where the left-hand side is

b̂qΨ̂η(x) |N⟩0 − Ψ̂η(x)b̂q |N⟩0 = b̂qΨ̂η(x) |N⟩0 . (50)

Therefore, the state |αN (x)⟩ ≡ Ψ̂η(x) |N⟩0 is the eigen-
function of the bosonic annihilation operator bq with the
eigenvalue αq(x),

b̂q |αN (x)⟩ = αq(x) |αN (x)⟩ . (51)

It is well-known that such a state is a coherent state ex-
pressed with b̂†q,

|αN (x)⟩ = λe
∑

q>0 αq(x)b̂
†
q |N⟩0 , (52)

where λ is a phase factor which commutes with b̂q and

b̂†q. This can be proved as follows: by setting Â ≡ b̂q and

B̂ ≡
∑

q>0 αq(x)b̂
†
q, the commutator

[Â, B̂] =
∑
q′>0

αq′(x)[b̂q, b̂
†
q′ ] = αq(x), (53)

is a c-number and by applying Eq.(A1), we have

[b̂q, e
∑

q>0 αq(x)b̂
†
q ] = αq(x)e

∑
q>0 αq(x)b̂

†
q . (54)

We apply this operator to the state λ |N⟩0, then we ob-
tain

b̂q |αN (x)⟩ = αq(x) |αN (x)⟩ . (55)

(Q.E.D.)
Introducing Klein factor, we set the state |αN (x)⟩ as

Ψ̂η(x) |N⟩0 = F̂ λ(x)e
∑

q>0 αq(x)b̂
†
q |N⟩0

= F̂ λ(x)e−iφ̂†
η(x) |N⟩0 . (56)
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The factor λ(x) is determined as follows: from Fermionic
representation,

0 ⟨N | F̂ †Ψ̂η(x) |N⟩0 = 0 ⟨N | F̂ † 1√
L

∑
k0N≤0

e−ikxck |N⟩0

=
1√
L
e−ik0Nx, (57)

where k0N = 2π
L (N − δb

2 ). Using Bosonic representation
Eq.(56), we get

0 ⟨N | F̂ †Ψ̂η(x) |N⟩0 = 0 ⟨N | F̂ †F̂ λ(x)e−iφ̂†
η(x) |N⟩0

= 0 ⟨N | e−iφ̂†
η(x)λ(x) |N⟩0

= λ(x), (58)

where we used the relation 0 ⟨N | e−iφ̂†
η(x) = 0 ⟨N | since

0 ⟨N | φ̂†
η(x) = 0. Hence,

λ(x) =
1√
L
e−ik0Nx. (59)

Now, we had the bosonic expression of Ψ̂η(x), which gives
the same state if it is applied to |N⟩0.
Then we search more general bosonic expression of

Ψ̂η(x), which gives the same state if it is applied to a

general N particle state |N⟩f ≡ f({b̂†q}) |N⟩0. By set-

ting Â = b̂†q and B̂ = Ψ̂η(x), [Â, B̂] = [b̂†q, Ψ̂η(x)] =

α∗
q(x)Ψ̂η(x), Eq.(48), we apply Eq.(A13),

f(b̂†q)Ψ̂η(x) = Ψ̂η(x)f(b̂
†
q + α∗

q(x)), (60)

then

Ψ̂η(x)f(b̂
†
q) = f(b̂†q − α∗

q(x))Ψ̂η(x). (61)

Therefore,

Ψ̂η(x)f(b̂
†
q) |N⟩0 = f(b̂†q − α∗

q(x))Ψ̂η(x) |N⟩0
= f(b̂†q − α∗

q(x))F̂ λ(x)e−iφ†
η(x) |N⟩0

= F̂ λe−iφ̂†
η(x)f(b̂†q − α∗

q(x)) |N⟩0 ,(62)

where in the last equation, we note that φ̂†
η(x) and b̂†q

commute.
Then, by setting Â ≡ b̂†q and B̂ ≡ iφ̂η(x), the commu-

tator

[Â, B̂] = [b̂†q, iφ̂η(x)]

= −i
∑
q′>0

1
√
nq′

e−iq′x[b̂†q, b̂q′ ]

= −i
∑
q′>0

1
√
nq′

e−iq′x(−δq,q′)

= − −i
√
nq

e−iqx = −α∗
q(x), (63)

is a c-number. Then we apply Eq.(A20) and obtain

f(b̂†q − α∗
q(x)) = e−iφ̂η(x)f(b̂†q)e

iφ̂η(x). (64)

By putting this in Eq.(62),

Ψ̂η(x)f(b̂
†
q) |N⟩0 = F̂ λe−iφ†

η(x)e−iφ̂η(x)f(b̂†q)e
iφ̂η(x) |N⟩0

= F̂ λe−iφ̂†
η(x)e−iφ̂η(x)f(b̂†q) |N⟩0 , (65)

where we used φ̂η(x) |N⟩0 = 0. It can be seen that
all these arguments are valid for more general function

f({b†q}). Then with |N⟩f ≡ f({b̂†q}) |N⟩0,

Ψ̂η(x) |N⟩f = F̂ λe−iφ̂†
η(x)e−iφ̂η(x) |N⟩f . (66)

Finally, by setting Â ≡ −iφ̂†
η(x) and B̂ ≡ −iφ̂η(x), the

commutator

[Â, B̂] = −
[
φ̂†
η(x), φ̂η(x)

]
= − ln

[
1− e−i 2π

L (−ia)
]

= − ln
[
1− e−

2πa
L

]
→ − ln

[
2πa

L

]
, (67)

for a → 0+, is a c-number. Then using Eq. (A25),

e−iφ̂†
η(x)e−iφ̂η(x) = e−i(φ̂†

η(x)+φ̂†
η)e− ln[ 2πa

L ]/2

= e−iΦ̂η(x)

√
L

2πa
. (68)

Therefore, we have the final bosonic representation of the
field operator

Ψ̂η(x) = F̂ λ̂e−iφ†
η(x))e−iφη(x)

= F̂
1√
L
e−ik0Nxe−iΦη(x)

√
L

2πa

=
1√
2πa

F̂ e−iΦ̃η(x), (69)

where we defined Φ̃η(x) = Φ̂η(x) + k0Nx. Similarly,

Ψ̂†
η(x) =

1√
2πa

F̂ †eiΦ̃η(x). (70)

The real field operator Φ̂η(x) is called a phase operator.

V. BOSONIZATION OF HAMILTONIAN WITH
LINEAR DISPERSION

The discussions in the previous sections only assumed
monotonic properties of the energy ϵk as a function of the
wave number k ∈ [−∞,∞]. In the following, we fix the
energy dispersion to be linear, ϵk = ℏvF k, where Fermi
velocity vF characterizes the dispersion at the Fermi
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point. Then the free Hamiltonian without the interac-
tion is

Ĥkin ≡ ℏvF
∞∑

k=−∞

k
∗∗ ĉ†k ĉk

∗∗

= ℏvF
∫ L/2

−L/2

dx
∗∗ Ψ̂†

η(x)i∂xΨ̂η(x)
∗∗ . (71)

It is clear that the following commutation relation holds:

[Ĥkin, N̂ ] = 0. (72)

The ground state energy of N electron Hilbert space
HN is

EN
0 ≡ 0 ⟨N | Ĥkin |N⟩0 , (73)

which is for N > 0, ℏvF 2π
L

∑N
n=1(n − δb

2 ), for N < 0,

ℏvF 2π
L

∑0
n=N+1(−1)(n− δb

2 ) and zero for N = 0. There-
fore,

EN
0 = ℏvF

2π

L

N(N + 1− δb)

2
. (74)

Let us try to derive equivalent expression of Ĥkin by
bosonic operators. First we study the commutation rela-
tion:

[Ĥkin, b̂
†
q]

= ℏvF
∑
k

k
i

√
nq

∑
k′

∗∗ [ĉ†k ĉk, ĉ
†
k′+q ĉ

′
k]

= ℏvF
i

√
nq

∑
k,k′

k
∗∗
(
ĉ†k{ĉk, ĉk′+q}ĉk′ − ĉ†k′+q{ĉ

†
k, ĉk′}ĉk

) ∗∗

= ℏvF
i

√
nq

∑
k,k′

k
∗∗
(
δk,k′+q ĉ

†
k ĉk′ − δk,k′ ĉ†k′+q ĉk

) ∗∗

= ℏvF
i

√
nq

∑
k

k
∗∗ (ĉ†k ĉk−q − ĉ†k+q ĉk)

∗∗

= ℏvF
i

√
nq

∑
k

{(k + q)− k} ĉ†k+q ĉk

= ℏvF qb̂†q. (75)

Then, if we consider any energy eigen-state of Ĥkin,

Ĥkin |E⟩ = E |E⟩ , (76)

The state b̂†q |E⟩ is also the energy eigen-state, since

Ĥkinb̂
†
q |E⟩ = {b̂†qĤkin + ℏvF qb̂†q} |E⟩

= (E + ℏvF q)b̂†q |E⟩ , (77)

where we used the commutation relation Eq.(75).

Since any state |N⟩f in HN can be generated by f(b̂†q),

Ĥkin can be written with bosonic operator with the op-
erator with N̂ representing ground state energy:

ĤB
kin =

∑
q>0

ℏvF qb̂†q b̂q + ℏvF
2π

L

N̂(N̂ + 1− δb)

2
. (78)

We can check the equivalence by examining

[ĤB
kin, b̂

†
q] =

∑
q′>0

ℏvF q′[b̂†q′ b̂q′ , b̂
†
q]

=
∑
q′>0

ℏvF q′
(
b̂†q′ [b̂q′ , b̂

†
q] + [b̂†q′ , b̂

†
q]b̂q′

)
= ℏvF qb̂†q. (79)

We introduce bosonic normal order,

∗∗ ÂB̂ · · · ∗∗ ≡ ÂB̂ · · · − 0 ⟨0| ÂB̂ · · · |0⟩0 , (80)

where Â, B̂, . . . are bosonic creation and annihilation op-

erators, {b̂q, b̂†q}. Then we evaluate following integral
with using the relation Eq.(35),∫ L

2

−L
2

dx

2π

∗∗
(
∂xΦ̂η(x)

)2 ∗∗

=

(
2π

L

)2∑
q>0

i
√
nq

∑
q′>0

i
√
nq′e

− a(q+q′)
2

×
∫ L

2

−L
2

dx

2π

∗∗
{
e−i(q+q′)xb̂q b̂q′ − e−i(q−q′)xb̂q b̂

†
q′

−e−i(q′−q)xb̂†q b̂q′ + ei(q+q′)xb̂†q b̂
†
q′

} ∗∗

=

(
2π

L

)2 ∑
q,q′>0

√
nqnq′e

− a(q+q′)
2

×
∫ L

2

−L
2

dx

2π

{
ei(q

′−q)xb̂†q′ b̂q + ei(q−q′)xb̂†q b̂q′
}

=
2π

L

∑
q>0

nqe
−aq2b̂†q b̂q = 2

∑
q>0

qe−qab̂†q b̂q, (81)

where we used
∫

dx exp[±i(q+q′)x] = 0 since q+q′ > 0.
Therefore,

ĤB
kin (82)

= ℏvF

[∫ L
2

−L
2

dx

2π

1

2

∗∗
(
∂xΦ̂η(x)

)2 ∗∗ +
2π

L

N̂(N̂ + 1− δb)

2

]

→ 2πℏvF
∫ ∞

−∞
dx

1

2

∗∗ ρ̂(x)2
∗∗, (83)

where the limit L → ∞ is taken, and it reduces to the
familiar form of the bosonized Hamiltonian in the litera-
ture. This shows that the density modulation ρ̂(x) costs
extra kinetic energy.

VI. TOMONAGA-LUTTINGER LIQUID

A. Free part

We first discuss spinless one-dimensional fermion sys-
tem with the energy dispersion

ϵk =
ℏ2

2m
(k2 − k2F ), (84)
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where the corresponding Fermionic field is

Ψ̂(x) =
1√
L

∞∑
k=−∞

eikxĉk

=
1√
L

∞∑
k=0

{e−ikxĉ−k + eikxĉk} (85)

=
1√
L

∞∑
k=−kF

{e−i(k+kF )xĉkL + ei(k+kF )xĉkR},

where the first term is left-going wave and the second
term is right-going wave. We have shifted the wave num-
ber relative to the Fermi wave number kF and defined
ĉkν ≡ ĉ∓(kF+k) for ν = L/R. We also define the dis-
persion relation for the mode ν, ϵkν = ϵ(∓(k + kF )) =
ℏ2

2m

(
(k + kF )

2 − k2F
)

= ℏ2

m (kF k + k2

2 ) for k > −kF
and ϵkν = −ϵ(0) + ℏvF (k + kF ) for k < −kF , where

ϵ(0) ≡ ℏ2k2
F

2m which satisfies the condition of monotonic
dispersion. (Approximation I) Now the Fermionic field
operator is made of two terms

Ψ̂TL(x) = e−ikF xΨ̂L(x) + eikF xΨ̂R(x), (86)

Ψ̂ν(x) ≡ 1√
L

∞∑
k=−∞

e∓ikxĉkν , (87)

for ν = L and R.

Repeating the procedure in the previous sections for
R mode, where the sign of k and ∂x is opposite and we
have the expressions for bosonic field operator

Φ̂ν(x) = −
∑
q>0

1
√
nq

e−
aq
2 [e∓iqxb̂qν + e±iqxb̂†qν ], (88)

where q = 2πnq/L and upper/lower sign represents L/R
mode, which satisfies commutation relation

[Φ̂ν(x), Φ̂ν′(x′)] = −πiδνν′Sgn(x− x′)sν , (89)

where sL = 1 and sR = −1. Then the Bosonized
Fermionic field operator for L → ∞ is

Ψ̂B
ν (x) ∼ 1√

2πa
F̂νe

−iΦ̂ν(x), (90)

and the particle density operators are

ρ̂ν(x) = ± 1

2π
∂xΦ̂ν(x) +

1

L
N̂ν . (91)

If we are only interested in the low energy physics much

smaller than ϵ(0) =
ℏ2k2

F

2m = ϵF , we are justified to lin-
earlize the dispersion ϵkν ∼ ℏvF k where vF = ℏkF /m.

(Approximation II) Then the free Hamiltonian is

Ĥkin = ℏvF
∫ L

2

−L
2

dx
∗∗ [Ψ̂†

L(x)i∂xΨ̂L(x)

+Ψ̂†
R(x)(−i∂x)Ψ̂R(x)]

∗∗

→ ℏvF
∑
ν

[ ∫ L
2

−L
2

dx

2π

1

2

∗∗
(
∂xΦ̂ν(x)

)2 ∗∗

+
2π

L

N̂ν(N̂ν + 1− δb)

2

]
→ 2πℏvF

∫
dx

1

2

∗∗
[
ρ̂2L(x) + ρ̂2R(x)

] ∗∗, (92)

where in the last expression we took the limit L → ∞.

B. Interaction part: spin-less case

There are two kinds of interaction process,

• Inter-mode scattering

This process is with transferred momentum
p (|p| ≪ kF ), the electron k′ in the R mode is
scattered to k′ + p and at the same time, the elec-
tron k in the L mode is scattered to k − p, like

ĉ†k−pLĉkLĉ
†
k′+pRĉk′R. The amplitude of the scatter-

ing is defined as g2(p). For simplicity, we neglect p
dependence of the coupling strength and this term

is expressed by g2
∫
dx

∗∗ ρ̂L(x)ρ̂R(x)
∗∗.

• Intra-mode scattering

This process is that for each mode ν, the electron
k′ is scattered to k′ + p and at the same time, the
other electron of the same mode k is scattered to
k − p, like ĉ†k−qν ĉkν ĉ

†
k′+qν ĉk′ν . The amplitude of

the scattering is defined as g4(p), while we neglect

p dependence. This term is expressed by 1
2g4

∫
dx

∗∗
ρ2ν(x)

∗∗.
Therefore, the interaction Hamiltonian is

Ĥint =

∫ L
2

−L
2

dx
∗∗
[
g2ρ̂L(x)ρ̂R(x) +

1

2
g4(ρ̂

2
L(x) + ρ̂2R(x))

]
∗∗ .(93)

C. Diagonalization by Bogoliubov transformation

The total Hamiltonian is

Ĥ0 ≡ Ĥkin + Ĥint, (94)

which can be diagonalized with so-called Bogoliubov
transformation. Let us define new density operators as

ρ̂+(x) ≡ 1√
2
(ρ̂R(x) + ρ̂L(x)) , (95)

ρ̂−(x) ≡ 1√
2
(ρ̂R(x)− ρ̂L(x)) , (96)
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where ρ̂+ represents average density fluctuations and ρ̂−
represents ‘current’ fluctuation. Then the total Hamilto-
nian is

Ĥ0 =

∫ L
2

−L
2

dx
∗∗
[2πℏvF + g4

2

(
ρ̂2L(x) + ρ̂2R(x)

)
+g2ρ̂L(x)ρ̂R(x)

] ∗∗
=

1

2

∫ L
2

−L
2

dx
∗∗
[
(2πℏvF + g4 + g2)ρ̂

2
+(x)

+(2πℏvF + g4 − g2)ρ̂
2
−(x)

] ∗∗
= πℏv

∫ L
2

−L
2

dx
∗∗
[
1

K
ρ̂2+(x) +Kρ̂2−(x)

]
∗∗, (97)

where we defined renormalized velocity v and the inter-
action parameter K by

v ≡
√(

vF +
g4
2πℏ

)2
−
( g2
2πℏ

)2
, (98)

K ≡

√
2πℏvF + g4 − g2
2πℏvF + g4 + g2

. (99)

As can be seen easily, for non-interacting system, v = vF
and K = 1. And in general cases with repulsive inter-
action g2, g4 ≥ 0, K ≤ 1. It should be noted that the
density operators ρ̂± is made of linear combination of

b̂†ν , b̂ν , Ĥ0 is the operator binary in b̂†ν , b̂ν . Therefore,
we can diagonalize it and exactly solvable even with finite
interaction!

We will do this explicitly in the following. Rewriting
the Hamiltonian with the phase operator,

Ĥ0 = πℏv
∫ L

2

−L
2

dx
∗∗
[ 1
K

1

2
(ρ̂R(x) + ρ̂L(x))

2

+K
1

2
(ρ̂R(x)− ρ̂L(x))

2
] ∗∗

=
πℏv
2

∫ L
2

−L
2

dx
∗∗
[( 1

K
+K

)(
ρ̂2R(x) + ρ̂2L(x)

)
+2

(
1

K
−K

)
ρ̂L(x)ρ̂R(x)

] ∗∗ . (100)

Since∫ L
2

−L
2

dx
∗∗ ρ̂2ν(x)

∗∗ =

∫ L
2

−L
2

dx
∗∗
{
± 1

2π
∂xΦ̂ν(x)

}2 ∗∗

=
2

2π

∑
q>0

qb̂†qν b̂qν , (101)

where we used Eq.(81) and noting

∂xΦ̂R(x) = −
∑
q>0

1
√
nq

e−
aq
2 [iqeiqxb̂qR − iqe−iqxb̂†qR]

= −2π

L

∑
q>0

i
√
nq(e

iqxb̂qR − e−iqxb̂†qR)e
− aq

2 ,

(102)

we have

∫ L
2

−L
2

dx
∗∗ ρ̂L(x)ρ̂R(x)

∗∗

= −
∫ L

2

−L
2

dx

4π2

∗∗ {∂xΦ̂L(x)∂xΦ̂R(x)}
∗∗

= −
(
2π

L

)2 ∑
q,q′>0

√
nqnq′e

− a(q+q′)
2

×
∫ L

2

−L
2

dx

4π2

∗∗ (e−iqxb̂qL − eiqxb̂†qL)(e
iq′xb̂q′R − e−iq′xb̂†q′R)

∗∗

= −
(
2π

L

)2 ∑
q,q′>0

√
nqnq′e

− a(q+q′)
2

×
∫ L

2

−L
2

dx

4π2

∗∗
{
ei(q

′−q)xb̂qLb̂q′R + ei(q−q′)xb̂†qLb̂
†
q′R

} ∗∗

= −
(
2π

L

)2∑
q>0

nqe
−aq L

4π2

∗∗
(
b̂qLb̂qR + b̂†qLb̂

†
qR

) ∗∗

= − 1

2π

∑
q>0

q
∗∗
(
b̂qLb̂qR + b̂†qLb̂

†
qR

) ∗∗ . (103)

Therefore,

Ĥ0 =
πℏv
2

{( 1

K
+K

)
2

2π

∑
q>0

q
(
b̂†qLb̂qL + b̂†qRb̂qR

)
−
(

1

K
−K

)
2

2π

∑
q>0

q
∗∗
(
b̂qLb̂qR + b̂†qLb̂

†
qR

) ∗∗
}

=
1

2

∑
q>0

ℏvq ∗∗
{( 1

K
+K

)
(b̂†qLb̂qL + b̂†qRb̂qR)

−
(

1

K
−K

)
(b̂qLb̂qR + b̂†qLb̂

†
qR)
} ∗∗, (104)

where [b̂qν , b̂
†
q′ν′ ] = δqq′δνν′ , and [b̂qν , b̂q′ν′ ] = [b̂†qν , b̂

†
q′ν′ ] =

0. We then introduce

b̂q+ ≡ 1√
2
(b̂qL + b̂qR), (105)

b̂q− ≡ 1√
2
(b̂qL − b̂qR), (106)

and b̂†q± are also defined. Clearly, [b̂qu, b̂q′u′ ] =

[b̂†qu, b̂
†
q′u′ ] = 0 and [b̂qu, b̂

†
q′u′ ] = δqq′δuu′ where u, u′ is

+/−. Then we can show that

b̂†qLb̂qL + b̂†qRb̂qR = b̂†q+b̂q+ + b̂†q−b̂q−, (107)

b̂qLb̂qR + b̂†qLb̂
†
qR =

1

2

(
b̂2q+ − b̂2q− + b̂†2q+ − b̂†2q−

)
.(108)
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Then

Ĥ0 =
1

2

∑
q>0

ℏvq

× ∗∗
[{( 1

K
+K

)
b̂†q+b̂q+ − 1

2

(
1

K
−K

)
(b̂2q+ + b̂†2q+)

}
+

{(
1

K
+K

)
b̂†q−b̂q− +

1

2

(
1

K
−K

)
(b̂2q− + b̂†2q−)

}] ∗∗ .

(109)

Each +/− part can be diagonalized by Bogoliubov trans-
formation,

b̂ = uâ+ vâ†, (110)

b̂† = uâ† + vâ, (111)

where â and â† are new bosonic operators that satisfy
[â, â†] = 1, u and v are (in general complex but here
we set real) constants that satisfy u2 − v2 = 1. This last

property guarantees the commutation relation [b̂, b̂†] = 1.
Now, the Hamiltonian with real parameters A,B (with
A > |B|),

ĥ =
∗∗
{
Ab†b+

1

2
B(b2 + b†2)

}
∗∗, (112)

is rewritten with the operators a, a†,

ĥ = A
∗∗ (uâ† + vâ)(uâ+ vâ†)

∗∗

+
B

2

∗∗
{
(uâ† + vâ)2 + (uâ+ vâ†)2

} ∗∗

=
[
A(u2 + v2) + 2Buv

]
â†â

+

[
Auv +

B

2
(u2 + v2)

]
(â†â† + ââ). (113)

Then we require the last term to vanish, by the condition

Auv +
B

2
(u2 + v2) = 0. (114)

Using v2 = u2 − 1, we get the equation for u2,

u2(u2 − 1)− α

4
= 0, (115)

where α ≡ B2/(A2 −B2) > 0. From the solutions

u2 =
1

2
(1±

√
1 + α), (116)

we take plus sign since α > 0. Then u =√(√
1 + a+ 1

)
/2. The sign of v = ±

√
u2 − 1 is deter-

mined to achieve the condition, Eq.(114). Hence,

u =

√√√√1

2

{√
A2

A2 −B2
+ 1

}
, (117)

v = − B

|B|

√√√√1

2

{√
A2

A2 −B2
− 1

}
. (118)

Then the coefficient of diagonal part is

A(u2 + v2) + 2Buv =
√
A2 −B2

(119)

and the Hamiltonian is diagonalized

ĥ =
√
A2 −B2â†â. (120)

With putting A = K−1 +K and B = ∓(K−1 −K), we
have √

A2 −B2 = 2, (121)

u =
1

2

{
1√
K

+
√
K

}
, (122)

v = ±1

2

{
1√
K

−
√
K

}
, (123)

then the Hamiltonian reduces to

Ĥ0 =
∑
q>0

ℏvq
{
â†q+âq+ + â†q−âq−

}
. (124)

Therefore, the Hamiltonian is expressed with the sum of
independent bosons (Harmonic oscillators) Hamiltonian.
Let us rewrite the total Hamiltonian in the standard

form. We introduce

θ̂(x) =
1

2
[Φ̂R(x)− Φ̂L(x)], (125)

ϕ̂(x) =
1

2
[Φ̂R(x) + Φ̂L(x)], (126)

then the commutation relation reads

[θ̂(x), ϕ̂(x′)] =
1

4

{
[Φ̂R(x), Φ̂R(x

′)]− [Φ̂L(x), Φ̂L(x
′)]
}

=
1

4
{iπSgn(x− x′) + iπSgn(x− x′)}

=
πi

2
Sgn(x− x′). (127)

Moreover,

∂xθ̂(x) =
1

2
[∂xΦ̂R(x)− ∂xΦ̂L(x)]

=
1

2
[−2πρ̂R(x)− 2πρ̂L(x)]

= −π[ρ̂R(x) + ρ̂L(x)]

= −
√
2πρ̂+(x), (128)

∂xϕ̂(x) = −
√
2πρ̂−(x). (129)

The total charge ρ̂T(x) ≡ ρ̂L(x) + ρ̂R(x) is given by

ρ̂T(x) = − 1

π
∂xθ̂(x). (130)

Therefore, we get the total Hamiltonian expressed with
the phase operators,

Ĥ0 = ℏv
∫ L

2

−L
2

dx

2π

∗∗
[
1

K
(∂xθ̂(x))

2 +K(∂xϕ̂(x))
2

]
∗∗ .

(131)
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Corresponding Fermionic field operator is given by

Ψ(x) =
1√
2πa

∑
ν

e∓ikF xF̂νe
−iΦ̂ν(x)

=
1√
2πa

∑
ν

F̂νe
∓i(kF x−θ̂(x))−iϕ̂(x). (132)

D. Fermion with spin

We then discuss Fermionic particles with spin 1/2.
Then we have the modes η’s represented with {ν, s},
where ν = L/S and s =↑ / ↓. For simplicity, we
do not discuss the effect of external magnetic field
(Zeeman term). Four density fluctuation operators
ρ̂L↑(x), ρ̂L↓(x), ρ̂R↑(x), ρ̂R↓(x) obey following Hamilto-
nian:

• Kinetic term

Kinetic energy is just the sum of each contribution
of spins,

Ĥkin =
∑
s

2πℏvF
∫

dx
1

2

∗∗
[
ρ̂2Ls + ρ̂2Rs

] ∗∗ . (133)

• Inter-mode scattering

There are two types of inter-mode scattering, g2∥
and g2⊥, and hence

Ĥinter =
∑
s

∫
dx

∗∗
[
g2∥ρ̂Lsρ̂Rs + g2⊥ρ̂Lsρ̂Rs̄

] ∗∗,(134)
where s̄ is opposite of s.

• Intra-mode scattering

There are two types of intra-mode scattering, g4∥
and g4⊥, and hence

Ĥintra =
∑
s

∫
dx

∗∗
[1
2
g4∥
(
ρ̂2Ls + ρ̂2Rs

)
+
1

2
g4⊥ (ρ̂Lsρ̂Ls̄ + ρ̂Rsρ̂Rs̄)

] ∗∗ . (135)

• Backscattering

For large momentum Q ∼ 2kF , a particle of k in L
mode with spin s is scattered to k +Q in R mode
with spin s. At the same time, another particle of
k′ in R mode with spin s (s̄) is scattered to k′ −Q
in L mode with spin s (s̄). The process between
the same spin s has the amplitude g1∥ and is rep-
resented with

ĉ†L,k′−Q,sĉR,k′,sĉ
†
R,k+Q,sĉL,k,s

= −ĉ†L,k′−Q,sĉL,k,sĉ
†
R,k+Q,sĉR,k′,s

→ −ρ̂Lsρ̂Rs, (136)

where we used anti-commutation rule. For spin-less
system, this term is equivalent to g2 process, and
was absorbed to the g2 term. The Hamiltonian is

Ĥex∥ = −
∑
s

∫
dx

∗∗ g1∥ρ̂Lsρ̂Rs
∗∗ . (137)

The process between opposite spins has the ampli-
tude g1⊥ and is represented with

ĉ†L,k′−Q,sĉR,k′,sĉ
†
R,k+Q,s̄ĉL,k,s̄

= ĉ†R,k+Q,s̄ĉ
†
L,k′−Q,sĉR,k′,sĉL,k,s̄, (138)

which cannot be expressed by the density opera-
tors. The Hamiltonian is

Ĥex⊥ =
∑
s

∫
dx

g1⊥
2

[
Ψ̂†

Rs̄(x)Ψ̂
†
Ls(x)Ψ̂Rs(x)Ψ̂Ls̄(x)

+h.c.
]
, (139)

where h.c. represents Hermite conjugate. Since this
term makes the Hamiltonian not diagonalizable, we
set aside this term until an adequate occasion.

The total Hamiltonian, excluding Ĥex⊥, is
3

Ĥ0 = Ĥkin + Ĥinter + Ĥintra + Ĥex∥

=
∑
s

∫
dx

∗∗
[
(2πℏvF )

1

2

(
ρ̂2Ls + ρ̂2Rs

)
+g2∥ρ̂Lsρ̂Rs + g2⊥ρ̂Lsρ̂Rs̄

+
1

2
g4∥(ρ̂

2
Ls + ρ̂2Rs) +

1

2
g4⊥(ρ̂Lsρ̂Ls̄ + ρ̂Rsρ̂Rs̄)

−g1∥ρ̂Lsρ̂Rs

] ∗∗ . (140)

The following discussion assumes usual Coulombic po-
tential occurring in the same one-dimensional subband,
which satisfies g4∥ = g4⊥ ≡ g4, g2∥ = g2⊥ ≡ g2 and
g1∥ = g1⊥ ≡ g1. Note that this may be changed if one
discusses other systems, for example, two or more edge
channels closely situated but separated with a thin insu-
lating region. In order to diagonalize the Hamiltonian,
we first introduce charge (ρ̂ν) and spin (σ̂ν) density op-
erators of mode ν,

ρ̂ν ≡ 1√
2
(ρ̂ν↑ + ρ̂ν↓), (141)

σ̂ν ≡ 1√
2
(ρ̂ν↑ − ρ̂ν↓). (142)

By using the inverse transformations

ρ̂ν↑ =
1√
2
(ρ̂ν + σ̂ν), (143)

ρ̂ν↓ =
1√
2
(ρ̂ν − σ̂ν). (144)
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in the Hamiltonian, we obtain

Ĥ0 =

∫
dx

∗∗
[2πℏvF + 2g4

2
(ρ̂2L + ρ̂2R) + (2g2 − g1)ρ̂Rρ̂L

+
2πℏvF

2
(σ̂2

L + σ̂2
R)− g1σ̂Rσ̂L

] ∗∗
≡ Ĥρ + Ĥσ, (145)

where the spin and charge parts of the Hamilto-
nian are decoupled (spin-charge separation), which is a
generic property of the one-dimensional interacting sys-
tem (without Zeeman term). Following the same pro-
cedures as in the spin-less case, these Hamiltonians are
diagonalized

Ĥρ = πℏvρ
∫

dx
∗∗
[

1

Kρ
ρ̂2+ +Kρρ̂

2
−

]
∗∗, (146)

Ĥρ = πℏvσ
∫

dx
∗∗
[

1

Kσ
σ̂2
+ +Kσσ̂

2
−

]
∗∗, (147)

where the average charge (spin) density fluctuation ‘+’
and charge (spin) ‘current’ fluctuation ‘−’ are introduced

ρ̂+ =
1√
2
(ρ̂R + ρ̂L), (148)

ρ̂− =
1√
2
(ρ̂R − ρ̂L), (149)

σ̂+ =
1√
2
(σ̂R + σ̂L), (150)

σ̂− =
1√
2
(σ̂R − σ̂L). (151)

Effective velocities are

vρ ≡

√(
vF +

g4
πℏ

)2
−
(
2g2 − g1
2πℏ

)2

, (152)

vσ ≡
√

v2F −
( g1
2πℏ

)2
, (153)

and the coupling constants are

Kρ ≡

√
2πℏvF + 2g4 − 2g2 + g1
2πℏvF + 2g4 + 2g2 − g1

, (154)

Kσ ≡

√
2πℏvF + g1
2πℏvF − g1

. (155)

In most cases, vσ < vF < vρ and Kρ < 1 ≤ Kσ is
satisfied. SU(2) symmetry requires Kσ = 1. Then,
Tomonaga-Luttinger liquid is characterized with three
parameters Kρ, vρ, vσ.

We introduce Boson field operators, Φ̂νs, which are
related to the density operators by

ρ̂νs(x) = ± 1

2π
∂xΦ̂νs(x) +

1

L
N̂νs, (156)

which satisfy commutation relations

[Φ̂νs(x), Φ̂ν′s′(x
′)] = −πiδνν′δss′Sgn(x− x′)sν ,

(157)

where sL = 1 and sR = −1. Then we introduce
charge/spin operators for mode ν,

Φ̂νρ ≡ 1√
2

[
Φ̂ν↑ + Φ̂ν↓

]
, (158)

Φ̂νσ ≡ 1√
2

[
Φ̂ν↑ − Φ̂ν↓

]
. (159)

These satisfy commutation relation

[Φ̂νρ(x), Φ̂ν′ρ(x
′)]

=
1

2

{
[Φ̂ν↑(x), Φ̂ν′↑(x

′)] + [Φ̂ν↓(x), Φ̂ν′↓(x
′)]
}

= −πiδνν′Sgn(x− x′)sν . (160)

Similarly,

[Φ̂νσ(x), Φ̂ν′σ(x
′)] = −πiδνν′Sgn(x− x′)sν . (161)

While,

[Φ̂νρ(x), Φ̂ν′σ(x
′)]

=
1

2

{
[Φ̂ν↑(x), Φ̂ν′↑(x

′)]− [Φ̂ν↓(x), Φ̂ν′↓(x
′)]
}

= 0. (162)

Therefore, we have

[Φ̂νµ(x), Φ̂ν′µ′(x′)] = −πiδνν′δµµ′Sgn(x− x′)sν ,(163)

where µ, µ′ are ρ or σ.
Moreover, we introduce

θ̂ρ/σ ≡ 1

2
√
2

[
Φ̂Rρ/σ − Φ̂Lρ/σ

]
, (164)

ϕ̂ρ/σ ≡ 1

2
√
2

[
Φ̂Rρ/σ + Φ̂Lρ/σ

]
. (165)

Then the commutation relations are[
θ̂ρ(x), ϕ̂ρ(x

′)
]

=
1

(2
√
2)2

{
[Φ̂Rρ(x), Φ̂Rρ(x

′)]− [Φ̂Lρ(x), Φ̂Lρ(x
′)]
}

=
1

8
{2πiSgn(x− x′)} =

iπ

4
Sgn(x− x′), (166)

and [θ̂ρ(x), θ̂ρ(x
′)] = [ϕ̂ρ(x), ϕ̂ρ(x

′)] = 0. Similarly,[
θ̂σ(x), ϕ̂σ(x

′)
]

=
iπ

4
Sgn(x− x′), (167)

and [θ̂σ(x), θ̂σ(x
′)] = [ϕ̂σ(x), ϕ̂σ(x

′)] = 0. Finally, not-

ing the relation Eq.(162), we have [θ̂ρ(x), ϕ̂σ(x
′)] =

[θ̂ρ(x), θ̂σ(x
′)] = [ϕ̂ρ(x), ϕ̂σ(x

′)] = 0.
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Then the charge density/current operators are

ρ̂+(x) =
1√
2
(ρ̂R + ρ̂L)

=
1√
2

(
1√
2
(ρ̂R↑ + ρ̂R↓) +

1√
2
(ρ̂L↑ + ρ̂L↓)

)
=

1

2
(ρ̂R↑ + ρ̂R↓ + ρ̂L↑ + ρ̂L↓)

∼ 1

2

1

2π
∂x

(
−Φ̂R↑ − Φ̂R↓ + Φ̂L↑ + Φ̂L↓

)
=

1

4π
∂x

(
−
√
2Φ̂Rρ +

√
2Φ̂Lρ

)
= −

√
2

4π
∂x

(
2
√
2θ̂ρ

)
= − 1

π
∂xθ̂ρ(x), (168)

ρ̂−(x) =
1

4π

(
−
√
2Φ̂Rρ −

√
2Φ̂Lρ

)
= − 1

π
∂xϕ̂ρ(x), (169)

and the spin density/current operators are

σ̂+(x) =
1√
2
(σ̂R + σ̂L)

=
1√
2

(
1√
2
(ρ̂R↑ − ρ̂R↓) +

1√
2
(ρ̂L↑ − ρ̂L↓)

)
=

1

2
(ρ̂R↑ − ρ̂R↓ + ρ̂L↑ − ρ̂L↓)

∼ 1

2

1

2π
∂x

(
−Φ̂R↑ + Φ̂R↓ + ˆPhiL↑ − Φ̂L↓

)
=

1

4π
∂x

(
−
√
2Φ̂Rσ +

√
2Φ̂Lσ

)
= −

√
2

4π
∂x

(
2
√
2θ̂σ

)
= − 1

π
∂xθ̂σ(x), (170)

σ̂−(x) =
1

4π

(
−
√
2Φ̂Rσ −

√
2Φ̂Lσ

)
= − 1

π
∂xϕ̂σ(x). (171)

Therefore, the final form of the phase Hamiltonian for
charge and spin is

Ĥρ/σ = ℏvρ/σ
∫

dx

π

∗∗
[ 1

Kρ/σ

(
∂xθ̂ρ/σ(x)

)2
+Kρ/σ

(
∂xϕ̂ρ/σ(x)

)2 ] ∗∗ . (172)

We express the phase operator Φ̂νs with θ̂ρ/σ and ϕ̂ρ/σ.
Since

Φ̂Rρ/σ =
√
2(ϕ̂ρ/σ + θ̂ρ/σ), (173)

Φ̂Lρ/σ =
√
2(ϕ̂ρ/σ − θ̂ρ/σ), (174)

we have

Φ̂L↑ =
1√
2

(
Φ̂Lρ + Φ̂Lσ

)
= ϕ̂ρ − θ̂ρ + ϕ̂σ − θ̂σ = ϕ̂↑ − θ̂↑, (175)

Φ̂L↓ =
1√
2

(
Φ̂Lρ − Φ̂Lσ

)
= ϕ̂ρ − θ̂ρ − ϕ̂σ + θ̂σ = ϕ̂↓ − θ̂↓, (176)

Φ̂R↑ =
1√
2

(
Φ̂Rρ + Φ̂Rσ

)
= ϕ̂ρ + θ̂ρ + ϕ̂σ + θ̂σ = ϕ̂↑ + θ̂↑, (177)

Φ̂R↓ =
1√
2

(
Φ̂Rρ − Φ̂Rσ

)
= ϕ̂ρ + θ̂ρ − ϕ̂σ − θ̂σ = ϕ̂↓ + θ̂↓, (178)

where we have introduced

ϕ̂s ≡ ϕ̂ρ + sϕ̂σ, (179)

θ̂s ≡ θ̂ρ + sθ̂σ, (180)

where s = ± corresponds ↑ / ↓. Although we do not need
them, their commutation relations are

[θ̂s(x), ϕ̂s′(x
′)] = [θ̂ρ(x) + sθ̂σ(x), ϕ̂ρ(x

′) + s′ϕ̂σ(x
′)]

= [θ̂ρ(x), ϕ̂ρ(x
′)] + ss′[θ̂σ(x), ϕ̂σ(x

′)]

=
iπ

4
(1 + ss′)Sgn(x− x′)

=
iπ

2
δss′Sgn(x− x′), (181)

and [θ̂s(x), θ̂s′(x
′)] = [ϕ̂s(x), ϕ̂s′(x

′)] = 0. Corresponding
Fermionic field operator is given by

Ψ̂(x) =
1√
2πa

∑
νs

e∓ikF xF̂νse
−iΦ̂νs(x)

=
1√
2πa

∑
νs

F̂νse
∓i(kF x−θ̂s(x))−iϕ̂s(x). (182)

VII. CORRELATION FUNCTIONS

VIII. CONCLUSIONS
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Appendix A: Operator identities

In this Appendix, we introduce various operator iden-
tities, where Â and B̂ are general operators and c is a
c-number. f(Â) is an operator-valued function.
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Th. I If the commutator is c-number, [Â, B̂] = c,

[Â, eB̂ ] = ceB̂ . (A1)

Proof: First we prove following relation:

e−B̂ÂeB̂ =

∞∑
n=0

[
Â, B̂

]
n
, (A2)

where the symbol
[
Â, B̂

]
n
means that for n ≥ 0,[

Â, B̂
]
0
= Â, (A3)[

Â, B̂
]
n+1

=
[[
Â, B̂

]
n
, B̂
]
. (A4)

Then we define an operator function with a param-
eter s,

Â(s) ≡ e−sB̂ÂesB̂ . (A5)

By formally differentiate this with s, we have

dÂ(s)

ds
= e−sB̂(−B̂)ÂesB̂ + e−sB̂ÂB̂esB̂

= e−sB̂
[
Â, B̂

]
esB̂ . (A6)

We can see for n ≥ 1,

dnÂ(s)

dsn
= e−sB̂

[
Â, B̂

]
n
esB̂ , (A7)

since

dn+1Â(s)

dsn+1
= e−sB̂

[[
Â, B̂

]
n
, B̂
]
esB̂

= e−sB̂
[
Â, B̂

]
n+1

esB̂ . (A8)

Then, we Taylor expand Â(s) around s = 0,

Â(s) =

∞∑
n=0

sn

n!

{
dnÂ(s)

dsn

∣∣∣∣∣
s=0

}

=

∞∑
n=0

sn

n!

[
Â, B̂

]
n
. (A9)

Then we set s = 1 and we have

e−B̂ÂeB̂ =

∞∑
n=0

1

n!

[
Â, B̂

]
n
. (A10)

When
[
Â, B̂

]
= c (c-number),

[
Â, B̂

]
n≥2

= 0 and

e−B̂ÂeB̂ = Â+ c. (A11)

By multiplying eB̂ from the left, we have[
Â, eB̂

]
= ceB̂ . (Q.E.D.) (A12)

Th. II If the commutator satisfies [Â, B̂] = cB̂,

f(Â)B̂ = B̂f(Â+ c). (A13)

Proof: From definition,

ÂB̂ − B̂Â = cB̂, (A14)

and hence

ÂB̂ = B̂(Â+ c). (A15)

By applying Â from the left, we have

Â2B̂ = ÂB̂(Â+ c)

= B̂(Â+ c)2. (A16)

In general, we can prove that for n ≥ 1,

ÂnB̂ = B̂(Â+ c)n. (A17)

Let us Taylor expand the operator-valued function
f(Â) around zero,

f(Â) =

∞∑
n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

Ân. (A18)

Using Eq. (A17),

f(Â)B̂ =

∞∑
n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

ÂnB̂

= B̂

∞∑
n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

(
Â+ c

)n
= B̂f(Â+ c). (Q.E.D.) (A19)

Th. III If the commutator is c-number, [Â, B̂] = c,

e−B̂f(Â)eB̂ = f(Â+ c). (A20)

Proof: From Th. I,

e−B̂ÂeB̂ = Â+ c, (A21)

and multiply each side with itself, we have

e−B̂Â2eB̂ =
(
Â+ c

)2
. (A22)

Repeating this procedure, we have for n ≥ 0,

e−B̂ÂneB̂ =
(
Â+ c

)n
. (A23)

Using the Tylor expansion of operator-valued func-
tion f(Â),

e−B̂f(Â)eB̂ = e−B̂
∞∑

n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

ÂneB̂

=

∞∑
n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

(
Â+ c

)n
= f(Â+ c). (Q.E.D.) (A24)
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Th. IV If the commutator is c-number, [Â, B̂] = c, (Baker-
Hausdorff-Campbel)

eÂeB̂ = eÂ+B̂e
c
2 . (A25)

Proof: Set T̂ (s) ≡ esÂesB̂ and differentiate with s,

dT̂ (s)

ds
= esÂÂesB̂ + esÂesB̂B̂. (A26)

Using Th. I with
[
Â, esB̂

]
= scesB̂ ,

ÂesB̂ = esB̂Â+ esB̂sc. (A27)

Therefore,

dT̂ (s)

ds
= esÂesB̂

(
Â+ B̂ + sc

)
. (A28)

It is obvious that T̂ (0) = 1̂.

Alternatively, if we define T̃ (s) ≡ es(Â+B̂)e
s2c
2 and

differentiate with s,

dT̃ (s)

ds
= es(Â+B̂)(Â+ B̂)e

s2c
2 + es(Â+B̂)sce

s2c
2

= es(Â+B̂)e
s2c
2

(
Â+ B̂ + sc

)
, (A29)

with T̃ (0) = 1̂. Therefore, we conclude T̃ (s) =

T̂ (s). Finally by putting s = 1, we have the given
relation. (Q.E.D.)

∗ Electronic address: tokura.yasuhiro.ft@u.tsukuba.ac.
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