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This short note summarizes formulas including an infinite sum with Matsubara frequencies and their
proofs. We define f = 1/(kgT) with Boltzmann constant kg and absolute temperature 7. /i is reduced
Planck’s constant. A function g(z) of a complex number z is assumed to be analytic near the imaginary
axis.

1 Bosonic system

First we define Bosonic Matsubara frequency v,, = Qg—r’: where n is an integer. Following relation holds
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where the path of the contour integration is depicted in Fig. 1. Let us examine the poles of the function
(exp[Bz] — 1)~! in the integral. Put z = z, + ¢, where z, is the zero-point and € is a small number and

require that exp[3(z, + €)] — 1 = 0 is satisfied. Then % =1 ¢ 2, = 2”7”1 = ihy,, are single poles and

their residues are ¢ = 371, Noting the contour shown in the right Figure 1 is clockwise, we evaluate the
contour integral as
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Figure 1: Integration contour in a complex plane. The two contours in the left and right figures are
equivalent.



1.1 Corollary of Eq. (1)
Using the formula (1), we will show following relation[1] (we assume w > 0) :
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Let us first define a function g(z),
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g(Z) = (hUJ)2 — 2 (4)

Putting this into the left hand side of Eq. (1), we have

The right hand side of Eq. (1) is
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then we deform the contour as shown in Fig. 2, which contains three single poles, z = 0, iw, —hw. Hence,
the integral becomes
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Equating this with Eq. (5), we have the relation Eq. (3).
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Figure 2: Deformed integration contour in a complex plane.



2 Fermionic system

(2n+1)w

We define Fermionic Matsubara frequency w,, = i where n is an integer. Following relation holds[2]
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where the path of the contour integration is depicted in Fig. 3. Let us examine the poles of the function
(exp[Bz] + 1)~! in the integral. Put z = z, + ¢, where 2, is the zero-point and € is a small number and
require that exp[S(z, + €)] + 1 = 0 is satisfied. Then e/ = —1 < z, = 2(n+1)ﬂz = thw,, are single poles
and their residues are e = —3~!. Noting the contour shown in the right Figure 3 is clockwise, we evaluate
the contour integral as
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Figure 3: Integration contour in a complex plane. The two contours in the left and right figures are
equivalent.

2.1 Corollary of Eq. (8)

We apply the formula (8) to the calculation of the gap equation.[3] The pair potential A satisfies following
so-called gap equation

A = —g%: % > F(kyiw,)e™ 0, (10)

where g and ¢ are the attractive potential between electron pair forming Cooper pair and small positive
value, respectively. The function, F'(k,ww,), is called anormalous Green’s function defined by
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where £ is the electron energy of wavenumber k measured from the Fermi energy.



We first define Q = /&2 + |A]* and the factor appearing in the gap equation, % >on F(k,iwy)e ™m0 is
just appearing in the formula (8). By identifying g(z) = —A*e™?°/(—22 + Q?), we have
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which can be evaluated by deforming the contour C' like in Fig. (2), but now there is no pole at the origin.
There are two new single poles at z = 42 and the integral is evaluated as
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The obtained result can be rewritten similar to Eq. (3), expanding Fermionic distribution functions as
an infinite sum,

where we had introduced Fermonic distribution function f(e) =
equation (10), we have

Then putting this in the gap

f(Q):;{l—i—Q;ZW}. (15)

In addition to this, the bosonic distribution function f,(2) = 1/(e#? — 1) is also rewritten as an infinite
sum using Eq. (3),
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