Sum formula including Matsubara frequencies

Yasuhiro Tokura

December 22, 2022

This short note summarizes formulas including an infinite sum with Matsubara frequencies and their proofs. We define $\beta=1 /\left(k_{\mathrm{B}} T\right)$ with Boltzmann constant k_{B} and absolute temperature $T . \hbar$ is reduced Planck's constant. A function $g(z)$ of a complex number z is assumed to be analytic near the imaginary axis.

1 Bosonic system

First we define Bosonic Matsubara frequency $\nu_{n}=\frac{2 \pi n}{\beta \hbar}$ where n is an integer. Following relation holds

$$
\begin{equation*}
\frac{1}{\beta} \sum_{n=-\infty(n \neq 0)}^{\infty} g\left(i \hbar \nu_{n}\right)=-\frac{1}{2 \pi i} \int_{C} d z \frac{g(z)}{e^{\beta z}-1}, \tag{1}
\end{equation*}
$$

where the path of the contour integration is depicted in Fig. 1. Let us examine the poles of the function $(\exp [\beta z]-1)^{-1}$ in the integral. Put $z=z_{z}+\epsilon$, where z_{z} is the zero-point and ϵ is a small number and require that $\exp \left[\beta\left(z_{z}+\epsilon\right)\right]-1=0$ is satisfied. Then $e^{\beta z_{z}}=1 \leftrightarrow z_{z}=\frac{2 n \pi}{\beta} i=i \hbar \nu_{n}$ are single poles and their residues are $\epsilon=\beta^{-1}$. Noting the contour shown in the right Figure 1 is clockwise, we evaluate the contour integral as

$$
\begin{align*}
-\frac{1}{2 \pi i} \int_{C} d z \frac{g(z)}{e^{\beta z}-1} & =-\left.\frac{1}{2 \pi i} \sum_{n \neq 0}(-2 \pi i) \frac{g(z)}{e^{\beta z}-1}\left(z-i \hbar \nu_{n}\right)\right|_{z=i \hbar \nu_{n}} \\
& =\sum_{n \neq 0} \frac{1}{\beta} g\left(i \hbar \nu_{n}\right) . \tag{2}
\end{align*}
$$

Figure 1: Integration contour in a complex plane. The two contours in the left and right figures are equivalent.

1.1 Corollary of Eq. (1)

Using the formula (1), we will show following relation[1] (we assume $\omega>0$) :

$$
\begin{equation*}
\operatorname{coth}\left(\frac{1}{2} \beta \hbar \omega\right)=\frac{2}{\beta \hbar \omega}\left(1+2 \sum_{n=1}^{\infty} \frac{\omega^{2}}{\nu_{n}^{2}+\omega^{2}}\right) \tag{3}
\end{equation*}
$$

Let us first define a function $g(z)$,

$$
\begin{equation*}
g(z) \equiv \frac{1}{(\hbar \omega)^{2}-z^{2}} \tag{4}
\end{equation*}
$$

Putting this into the left hand side of Eq. (1), we have

$$
\begin{equation*}
\frac{1}{\beta} \sum_{n \neq 0} g\left(i \hbar \nu_{n}\right)=\frac{1}{\beta} \sum_{n \neq 0} \frac{1}{(\hbar \omega)^{2}+\left(\hbar \nu_{n}\right)^{2}}=\frac{2}{\beta \hbar^{2}} \sum_{n=1}^{\infty} \frac{1}{\nu_{n}^{2}+\omega^{2}} \tag{5}
\end{equation*}
$$

The right hand side of Eq. (1) is

$$
\begin{equation*}
-\frac{1}{2 \pi i} \int_{C} d z \frac{g(z)}{e^{\beta z}-1}=\frac{1}{2 \pi i} \int_{C} d z \frac{1}{\left(e^{\beta z}-1\right)\left(z^{2}-(\hbar \omega)^{2}\right)} \tag{6}
\end{equation*}
$$

then we deform the contour as shown in Fig. 2, which contains three single poles, $z=0, \hbar \omega,-\hbar \omega$. Hence, the integral becomes

$$
\begin{align*}
& \frac{2 \pi i}{2 \pi i}\left\{\left.\frac{z}{\left(e^{\beta z}-1\right)\left(z^{2}-(\hbar \omega)^{2}\right)}\right|_{z=0}+\left.\frac{z-\hbar \omega}{\left(e^{\beta z}-1\right)\left(z^{2}-(\hbar \omega)^{2}\right)}\right|_{z=\hbar \omega}+\left.\frac{z+\hbar \omega}{\left(e^{\beta z}-1\right)\left(z^{2}-(\hbar \omega)^{2}\right)}\right|_{z=-\hbar \omega}\right\} \\
& =\frac{1}{\beta}\left(-\frac{1}{(\hbar \omega)^{2}}\right)+\frac{1}{\left(e^{\beta \omega}-1\right)(2 \hbar \omega)}+\frac{1}{\left(e^{-\beta \omega}-1\right)(-2 \hbar \omega)}=-\frac{1}{\beta(\hbar \omega)^{2}}+\frac{1}{2 \hbar \omega} \operatorname{coth}\left(\frac{1}{2} \beta \hbar \omega\right) \tag{7}
\end{align*}
$$

Equating this with Eq. (5), we have the relation Eq. (3).

Figure 2: Deformed integration contour in a complex plane.

2 Fermionic system

We define Fermionic Matsubara frequency $\omega_{n}=\frac{(2 n+1) \pi}{\beta \hbar}$ where n is an integer. Following relation holds[2]

$$
\begin{equation*}
\frac{1}{\beta} \sum_{n=-\infty}^{\infty} g\left(i \hbar \omega_{n}\right)=\frac{1}{2 \pi i} \int_{C} d z \frac{g(z)}{e^{\beta z}+1} \tag{8}
\end{equation*}
$$

where the path of the contour integration is depicted in Fig. 3. Let us examine the poles of the function $(\exp [\beta z]+1)^{-1}$ in the integral. Put $z=z_{z}+\epsilon$, where z_{z} is the zero-point and ϵ is a small number and require that $\exp \left[\beta\left(z_{z}+\epsilon\right)\right]+1=0$ is satisfied. Then $e^{\beta z_{z}}=-1 \leftrightarrow z_{z}=\frac{2(n+1) \pi}{\beta} i=i \hbar \omega_{n}$ are single poles and their residues are $\epsilon=-\beta^{-1}$. Noting the contour shown in the right Figure 3 is clockwise, we evaluate the contour integral as

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{C} d z \frac{g(z)}{e^{\beta z}+1} & =\left.\frac{1}{2 \pi i} \sum_{n}(-2 \pi i) \frac{g(z)}{e^{\beta z}+1}\left(z-i \hbar \omega_{n}\right)\right|_{z=i \hbar \omega_{n}} \\
& =-\sum_{n}\left(-\frac{1}{\beta}\right) g\left(i \hbar \nu_{n}\right) \tag{9}
\end{align*}
$$

Figure 3: Integration contour in a complex plane. The two contours in the left and right figures are equivalent.

2.1 Corollary of Eq. (8)

We apply the formula (8) to the calculation of the gap equation.[3] The pair potential Δ satisfies following so-called gap equation

$$
\begin{equation*}
\Delta^{*}=-g \sum_{\boldsymbol{k}} \frac{1}{\beta} \sum_{\omega_{n}} \tilde{F}\left(\boldsymbol{k}, i \omega_{n}\right) e^{-i \omega_{n} \delta} \tag{10}
\end{equation*}
$$

where g and δ are the attractive potential between electron pair forming Cooper pair and small positive value, respectively. The function, $\tilde{F}\left(\boldsymbol{k}, 1 \omega_{n}\right)$, is called anormalous Green's function defined by

$$
\begin{equation*}
\tilde{F}\left(\boldsymbol{k}, i \omega_{n}\right) \equiv \frac{-\Delta^{*}}{\left(\hbar \omega_{n}\right)^{2}+\xi_{\boldsymbol{k}}^{2}+|\Delta|^{2}} \tag{11}
\end{equation*}
$$

where $\xi_{\boldsymbol{k}}$ is the electron energy of wavenumber \boldsymbol{k} measured from the Fermi energy.

We first define $\Omega \equiv \sqrt{\xi_{\boldsymbol{k}}^{2}+|\Delta|^{2}}$ and the factor appearing in the gap equation，$\frac{1}{\beta} \sum_{n} \tilde{F}\left(\boldsymbol{k}, i \omega_{n}\right) e^{-i \omega_{n} \delta}$ is just appearing in the formula（8）．By identifying $g(z) \equiv-\Delta^{*} e^{-z \delta} /\left(-z^{2}+\Omega^{2}\right)$ ，we have

$$
\begin{equation*}
\frac{1}{\beta} \sum_{n} \tilde{F}\left(\boldsymbol{k}, i \omega_{n}\right) e^{-i \omega_{n} \delta}=\frac{1}{2 \pi i} \int_{C} d z \frac{-\Delta^{*} e^{-z \delta}}{\left(e^{\beta z}+1\right)\left(-z^{2}+\Omega^{2}\right)} \tag{12}
\end{equation*}
$$

which can be evaluated by deforming the contour C like in Fig．（2），but now there is no pole at the origin． There are two new single poles at $z= \pm \Omega$ and the integral is evaluated as

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{C} d z \frac{\Delta^{*} e^{-z \delta}}{\left(e^{\beta z}+1\right)\left(z^{2}-\Omega^{2}\right)} & =\frac{2 \pi i \Delta^{*}}{2 \pi i}\left\{\left.\frac{e^{-z \delta}(z-\Omega)}{\left(e^{\beta z}+1\right)\left(z^{2}-\Omega^{2}\right)}\right|_{z=\Omega}+\left.\frac{e^{-z \delta}(z+\Omega)}{\left(e^{\beta z}+1\right)\left(z^{2}-\Omega^{2}\right)}\right|_{z=-\Omega}\right\} \\
& =\Delta^{*}\left\{\frac{e^{-\Omega \delta}}{\left(e^{\beta \Omega}+1\right)(2 \Omega)}+\frac{e^{\Omega \delta}}{\left(e^{-\beta \Omega}+1\right)(-2 \Omega)}\right\} \\
& =\frac{\Delta^{*}}{2 \Omega}\left\{\frac{1}{e^{\beta \Omega}+1}-\frac{1}{e^{-\beta \Omega}+1}\right\} \\
& =-\frac{\Delta^{*}}{2 \Omega}\{1-2 f(\Omega)\} \tag{13}
\end{align*}
$$

where we had introduced Fermonic distribution function $f(\epsilon)=\frac{1}{e^{\beta \epsilon}+1}$ ．Then putting this in the gap equation（10），we have

$$
\begin{equation*}
\Delta^{*}=g \sum_{\boldsymbol{k}} \frac{\Delta^{*}}{2 \sqrt{\xi_{\boldsymbol{k}}^{2}+\left|\Delta^{2}\right|^{2}}}\left\{1-2 f\left(\sqrt{\xi_{\boldsymbol{k}}^{2}+|\Delta|^{2}}\right)\right\} \tag{14}
\end{equation*}
$$

The obtained result can be rewritten similar to Eq．（3），expanding Fermionic distribution functions as an infinite sum，

$$
\begin{equation*}
f(\Omega)=\frac{1}{2}\left\{1+\frac{2 \Omega}{\beta} \sum_{n} \frac{1}{\left(\hbar \omega_{n}\right)^{2}+\Omega^{2}}\right\} \tag{15}
\end{equation*}
$$

In addition to this，the bosonic distribution function $f_{b}(\Omega)=1 /\left(e^{\beta \Omega}-1\right)$ is also rewritten as an infinite sum using Eq．（3），

$$
\begin{align*}
f_{b}(\Omega) & =2-\operatorname{coth}\left(\frac{1}{2} \beta \Omega\right)=2-\frac{2}{\beta \Omega}-\frac{4 \Omega}{\beta} \sum_{n=1}^{\infty} \frac{1}{\left(\hbar \nu_{n}\right)^{2}+\Omega^{2}} \\
& =2\left\{1-\frac{\Omega}{\beta} \sum_{n=-\infty}^{\infty} \frac{1}{\left(\hbar \nu_{n}\right)^{2}+\Omega^{2}}\right\} . \tag{16}
\end{align*}
$$

References

［1］T．Dittrich，P．Hänggi，G．－L．Ingold，B．Kramer，G．Schön，and W．Zwerger，＂Quantum Transport and Dissipation＂，Wiley－VCH（1998）．
［2］阿部龍蔵，「統計力学」東京大学出版会．
［3］田仲由喜夫，「超伝導接合の物理」名古屋大学出版会（2021）．pp．30．

