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This short note summarizes formulas including an infinite sum with Matsubara frequencies and their
proofs. We define β = 1/(kBT ) with Boltzmann constant kB and absolute temperature T . ℏ is reduced
Planck’s constant. A function g(z) of a complex number z is assumed to be analytic near the imaginary
axis.

1 Bosonic system

First we define Bosonic Matsubara frequency νn = 2πn
βℏ where n is an integer. Following relation holds

1

β

∞∑
n=−∞ (n ̸=0)

g(iℏνn) = − 1

2πi

∫
C

dz
g(z)

eβz − 1
, (1)

where the path of the contour integration is depicted in Fig. 1. Let us examine the poles of the function
(exp[βz] − 1)−1 in the integral. Put z = zz + ϵ, where zz is the zero-point and ϵ is a small number and
require that exp[β(zz + ϵ)] − 1 = 0 is satisfied. Then eβzz = 1 ↔ zz = 2nπ

β i = iℏνn are single poles and

their residues are ϵ = β−1. Noting the contour shown in the right Figure 1 is clockwise, we evaluate the
contour integral as

− 1

2πi

∫
C

dz
g(z)

eβz − 1
= − 1

2πi

∑
n ̸=0

(−2πi)
g(z)

eβz − 1
(z − iℏνn)

∣∣∣∣
z=iℏνn

=
∑
n ̸=0

1

β
g(iℏνn). (2)

Figure 1: Integration contour in a complex plane. The two contours in the left and right figures are
equivalent.
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1.1 Corollary of Eq. (1)

Using the formula (1), we will show following relation[1] (we assume ω > 0) :

coth

(
1

2
βℏω

)
=

2

βℏω

(
1 + 2

∞∑
n=1

ω2

ν2n + ω2

)
. (3)

Let us first define a function g(z),

g(z) ≡ 1

(ℏω)2 − z2
. (4)

Putting this into the left hand side of Eq. (1), we have

1

β

∑
n ̸=0

g(iℏνn) =
1

β

∑
n ̸=0

1

(ℏω)2 + (ℏνn)2
=

2

βℏ2
∞∑

n=1

1

ν2n + ω2
. (5)

The right hand side of Eq. (1) is

− 1

2πi

∫
C

dz
g(z)

eβz − 1
=

1

2πi

∫
C

dz
1

(eβz − 1)(z2 − (ℏω)2)
, (6)

then we deform the contour as shown in Fig. 2, which contains three single poles, z = 0, ℏω,−ℏω. Hence,
the integral becomes

2πi

2πi

{
z

(eβz − 1)(z2 − (ℏω)2)

∣∣∣∣
z=0

+
z − ℏω

(eβz − 1)(z2 − (ℏω)2)

∣∣∣∣
z=ℏω

+
z + ℏω

(eβz − 1)(z2 − (ℏω)2)

∣∣∣∣
z=−ℏω

}

=
1

β

(
− 1

(ℏω)2

)
+

1

(eβω − 1)(2ℏω)
+

1

(e−βω − 1)(−2ℏω)
= − 1

β(ℏω)2
+

1

2ℏω
coth

(
1

2
βℏω

)
. (7)

Equating this with Eq. (5), we have the relation Eq. (3).

Figure 2: Deformed integration contour in a complex plane.
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2 Fermionic system

We define Fermionic Matsubara frequency ωn = (2n+1)π
βℏ where n is an integer. Following relation holds[2]

1

β

∞∑
n=−∞

g(iℏωn) =
1

2πi

∫
C

dz
g(z)

eβz + 1
, (8)

where the path of the contour integration is depicted in Fig. 3. Let us examine the poles of the function
(exp[βz] + 1)−1 in the integral. Put z = zz + ϵ, where zz is the zero-point and ϵ is a small number and

require that exp[β(zz + ϵ)] + 1 = 0 is satisfied. Then eβzz = −1 ↔ zz = 2(n+1)π
β i = iℏωn are single poles

and their residues are ϵ = −β−1. Noting the contour shown in the right Figure 3 is clockwise, we evaluate
the contour integral as

1

2πi

∫
C

dz
g(z)

eβz + 1
=

1

2πi

∑
n

(−2πi)
g(z)

eβz + 1
(z − iℏωn)

∣∣∣∣
z=iℏωn

= −
∑
n

(
− 1

β

)
g(iℏνn). (9)

Figure 3: Integration contour in a complex plane. The two contours in the left and right figures are
equivalent.

2.1 Corollary of Eq. (8)

We apply the formula (8) to the calculation of the gap equation.[3] The pair potential ∆ satisfies following
so-called gap equation

∆∗ = −g
∑
k

1

β

∑
ωn

F̃ (k, iωn)e
−iωnδ, (10)

where g and δ are the attractive potential between electron pair forming Cooper pair and small positive
value, respectively. The function, F̃ (k, ıωn), is called anormalous Green’s function defined by

F̃ (k, iωn) ≡
−∆∗

(ℏωn)2 + ξ2k + |∆|2
(11)

where ξk is the electron energy of wavenumber k measured from the Fermi energy.
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We first define Ω ≡
√
ξ2k + |∆|2 and the factor appearing in the gap equation, 1

β

∑
n F̃ (k, iωn)e

−iωnδ is

just appearing in the formula (8). By identifying g(z) ≡ −∆∗e−zδ/(−z2 +Ω2), we have

1

β

∑
n

F̃ (k, iωn)e
−iωnδ =

1

2πi

∫
C

dz
−∆∗e−zδ

(eβz + 1)(−z2 +Ω2)
, (12)

which can be evaluated by deforming the contour C like in Fig. (2), but now there is no pole at the origin.
There are two new single poles at z = ±Ω and the integral is evaluated as

1

2πi

∫
C

dz
∆∗e−zδ

(eβz + 1)(z2 − Ω2)
=

2πi∆∗

2πi

{
e−zδ(z − Ω)

(eβz + 1)(z2 − Ω2)

∣∣∣∣
z=Ω

+
e−zδ(z +Ω)

(eβz + 1)(z2 − Ω2)

∣∣∣∣
z=−Ω

}

= ∆∗
{

e−Ωδ

(eβΩ + 1)(2Ω)
+

eΩδ

(e−βΩ + 1)(−2Ω)

}
=

∆∗

2Ω

{
1

eβΩ + 1
− 1

e−βΩ + 1

}
= −∆∗

2Ω
{1− 2f(Ω)} , (13)

where we had introduced Fermonic distribution function f(ϵ) = 1
eβϵ+1

. Then putting this in the gap
equation (10), we have

∆∗ = g
∑
k

∆∗

2
√
ξ2k + |∆2|2

{
1− 2f

(√
ξ2k + |∆|2

)}
. (14)

The obtained result can be rewritten similar to Eq. (3), expanding Fermionic distribution functions as
an infinite sum,

f(Ω) =
1

2

{
1 +

2Ω

β

∑
n

1

(ℏωn)2 +Ω2

}
. (15)

In addition to this, the bosonic distribution function fb(Ω) = 1/(eβΩ − 1) is also rewritten as an infinite
sum using Eq. (3),

fb(Ω) = 2− coth

(
1

2
βΩ

)
= 2− 2

βΩ
− 4Ω

β

∞∑
n=1

1

(ℏνn)2 +Ω2

= 2

{
1− Ω

β

∞∑
n=−∞

1

(ℏνn)2 +Ω2

}
. (16)
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