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Abstract

In this study, predictability for the barotropic component of the atmosphere is examined based on analog
weather maps in the historical data. The limit of predictability P is defined as the time taken for the initial
error to reach the climate noise level which is defined by one standard deviation from the long term mean
of the fluctuation in the observed atmosphere. According to the quadratic error growth model by Lorenz
(1982), the predictability P is expected to obey a logarithmic function rather than a linear function of the
initial error. Although we searched 15,667,760 combinations of weather maps, there are no good analog
pairs to investigate the error growth for a sufficiently small initial error. For this reason, model experiments
were conducted to demonstrate that the quadratic error growth model is applicable to infer the behavior of
a small error from the distribution of a large error. From the results of the model experiments, and the best
analog pairs in the historical data, we estimated that the predictability for the real atmosphere increases
about 6.3 days when the initial error energy is reduced to 1/10. Hence, we may extend the predictability
for the barotropic component of the atmosphere if we can reduce the initial error in the vertical mean of
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the atmosphere.

1. Introduction

In the 1990’s, medium-range forecasting by the
ensemble mean has been carried out at some opera-
tional weather forecasting centers. While the fore-
casting skill has steadily increased and the range
of skillful forecasts has been steadily extended, it
has also been established that deterministic pre-
diction of the instantaneous state of the weather is
impossible for an extended range. This limit of pre-
dictability was first pointed out by Lorenz (1963)
who subsequently demonstrated that, due to the
inherent nature of instability and nonlinearity, at-
mospheric flows with only slightly different initial
states will depart from each other and evolve even-
tually to flows that are just randomly related. It
is our contention that deterministic medium-range
forecasting may be impossible beyond two weeks of
the chaotic barrier, even if we can have a perfect
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prediction model.

Previous studies of the limit of predictability are
divided into two groups; one with empirical ap-
proach using analog pairs in the historical data and
the other with dynamical approach using numeri-
cal model experiments (Lorenz 1969a). The empir-
ical approach estimates the predictability of the ob-
served atmosphere based on the growth rate of the
difference between the two analog weather maps
(e.g., Lorenz 1969b; Gutzler and Shukla 1984). Al-
though Lorenz (1969b) could not find good analog
pairs, he indicated that the small error would be
double in about 2.5 days. Similar to Lorenz’s ap-
proach, Gutzler and Shukla (1984) estimated the
doubling time as nearly 8 days. It is difficult, how-
ever, to estimate the predictability for small error
using this approach because it is highly improbable
that the truly good analog pair will be found in the
historical data (van den Dool 1994).

On the other hand, the dynamical approach es-
timates the predictability with “identical twin” ex-
periments in which two integrations started from
slightly different initial conditions and diverge from
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each other, providing information about the limit
of predictability (e.g., Lorenz 1982; Dalcher and
Kalnay 1987, Schubert and Suarez 1989; Chen 1989;
Simons et al. 1995). Lorenz (1982) estimated a
doubling time for small errors of only 2.4 days,
using a quadratic error growth model constructed
from the growth of rms (root mean square) differ-
ence in 500 hPa geopotential height between two
forecasts. With the same approach, the doubling
time for the recent forecast model developed by
ECMWF appears to be around 1.5 days (Simons
et al. 1995). Dalcher and Kalnay (1987), however,
pointed out that the doubling time of small error is
not a good measure of the error growth because the
result is very sensitive for small error to the error
growth model. Therefore, they defined the limit
of predictability as the time taken for the error to
reach 95% of the climatological mean range of fluc-
tuation in 500 hPa geopotential height, and found
the limit of predictability is close to 20 days in win-
ter. In a similar way as Dalcher and Kalnay (1987),
Chen (1989) adopted the limit of predictability as
the time taken for the error to reach one standard
deviation from the climatological mean range of
fluctuation, and found the limit of predictability
is about 14 days without using the Lorenz’s error
growth model. However, in order to extrapolate
his result to the small initial error, Chen (1989)
assumed a linear relationship between the initial
error and the limit of predictability. Such a lin-
ear relationship was used further by Toth (1991) in
a study of predictability based on circulation ana-
logues. From those experiments, it was concluded
that the limit of predictability is of the order of two
weeks.

For the purpose of extending the limit of pre-
dictability, an ensemble of numerical forecasts from
slightly perturbed initial conditions was often used
for the medium range forecasts at some operational
weather forecasting centers (e.g., Molteni et al.
1996; Toth and Kalnay 1997). On the other hand,
Miyakoda et al. (1986) constructed a one-month
prediction model which predicts the 5-day or 10-
day mean field by separating slowly moving low-
frequency variability from unpredictable high-
frequency eddies. It is hoped, therefore, that some
averaged physical quantity may extend the limit of
predictability. According to Tanaka and Nohara
(2000), a barotropic model developed by Tanaka
(1998), which predicts vertical mean state, had a
predictability beyond two weeks for the model at-
mosphere. It may therefore be interesting to pursue
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the limit of predictability for the barotropic com-
ponent of the observed atmosphere.

The purpose of this study is to estimate the pre-
dictability for the barotropic component of the ob-
served atmosphere using empirical and dynamical
approaches. Since the barotropic component of the
atmosphere includes much low-frequency compo-
nents, we may expect a longer upper bound of pre-
dictability for the observed atmosphere. In this
study, our approach is described as follows. First,
we seek for good analog pairs for the barotropic
component of the observed atmosphere using the
historical dataset of NCEP/NCAR reanalysis.
From the behavior of the difference in the good
analog pairs, we may estimate the predictability
of the barotropic component of the observed atmo-
sphere. As in Lorenz (1969b), Gulzler and Shukula
(1984), and van den Dool (1994), such a good ana-
log pair, however, may not be found. Therefore, in
the second, we use a barotropic model in order to
discuss the behavior of the small error in the model
atmosphere.

Although the growth in the difference for the
analog pairs is measured for the barotropic com-
ponents, the growth may be largely affected by the
baroclinic-barotropic interactions. Therefore, the
examination of the predictability of the barotropic
component of the observed atmosphere implicitly
includes the influence from the baroclinic compo-
nents. Yet, for simplicity, we will call it the pre-
dictability of the barotropic component of the real
atmosphere.

In Section 2, the dataset and analysis method
are described. In Section 3, results of the limit of
predictability for the observed atmosphere are pre-
sented as a function of the initial error. In Section
4, the same results are presented for the model at-
mosphere. Concluding remarks are given in Section
5.

2. Data and analysis scheme

The data used in this study is NCEP/NCAR re-
analysis (Kalnay et al. 1996). The dataset contains
four times daily meteorological variables of hori-
zontal wind vector (u, v) and geopotential ¢ at 2.5°
longitude by 2.5° latitude grids on 17 mandatory
vertical levels of 1000, 925, 850, 700, 600, 500, 400,
300, 250, 200, 150, 100, 70, 50, 30, 20, 10 hPa for 17
years from January 1979 to December 1995. The
data at the grid points are transformed into normal
mode expansion coefficients in order to reduce the
degree of freedom. The normal mode expansion is
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described in detail by Tanaka and Kimura (1996),
and a brief description is presented here.

A system of primitive equations of the atmo-
sphere with a spherical coordinate may be reduced
to three prognostic equations of horizontal motions
and thermodynamics for three dependent variables
of U = (u,v,¢)T. Here, u and v are zonal and
meridional components of horizontal velocity. The
variable ¢ is a departure of local isobaric geopoten-
tial from the global mean reference state, and the
superscript 7' denotes a transpose. Using a matrix
notation, these primitive equations may be written
as

M%—?+LU=N+F. (1)
Here, t is time, and the left-hand side represents
linear terms with matrix operators M and L and
the dependent variable vector U. The right-hand
side represents a nonlinear term vector N and a
diabatic term vector F, which includes zonal and
meridional components of frictional force and a. di-
abatic heating rate.

In order to obtain a system of spectral primitive
equations, we expand the vectors U and F in 3-
D normal mode functions in a resting atmosphere,

Hnlm(’\ygyp):
U\ 6,p,t)
N L M
= Z Z Z wntm(t)XmHnlm()"e'ap)) (2)
n=—N (=0 m=0
F(\0,p,t)
N L M
= Z Z Z fnlm(t)YmHnlm(’\797p)7 (3)
n==~N [{=0 m=0
where X, and ¥;, are scale matrices. Here, the ex-
pansion coefficients wpim(t) and fron(t) are func-
tions of time alone. The subscripts represent zonal
wavenumbers 7, meridional indices !, and vertical
indices m. They are truncated at N, L, and M,
respectively. The vertical indices m = 0 and m # 0
represent barotropic and baroclinic modes, respec-
tively.

The 3-D normal mode functions are given by a
tensor product of vertical structure functions (ver-
tical normal modes) and Hough harmonics (hor-
izontal normal modes) associated with the linear
operators M and L, respectively. It is known that
they form a complete set and satisfy an orthonor-
mality condition under an inner product ¢, )
defined as:
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(Hnlmy rIn'l'm')

1 P 5 27
- / / % T c08 8 dAdO dp
2m s JO -5 J0

= dnp 5!!’5m'm’; (4)

where the asterisk denotes the complex conjugate,
the symbols d;; is the Kronecker delta, and the
surface pressure p, is treated as a constant near
the earth’s surface (see Kasahara and Puri 1981).
Based on the orthonormality condition, the normal
mode expansion coefficients wn;., may be obtained
by the following inner product:

Woim (2) = (U, X7 ). (5)

Using Eq.(5), we can transform the NCEP/
NCAR reanalysis dataset into the normal mode
expansion coefficients wp, for n = 0 ~ 20, I =
0 ~ 20, and m = 0. Here, m = 0 means the
barotropic component, and only Rossby modes are
retained. Only the Northern Hemisphere data are
used by the symmetric extension to the Southern
Hemisphere.

The total energy Er (the sum of kinetic energy
and available potential energy) for a component of
the normal mode expansion may be written as:

1
ET = §P5h0 zn: z!: lwn10|21 (6)

where p, is a constant surface pressure (= 1013
hPa), and hg is an equivalent depth of the atmo-
sphere (= 9728 m). The total energy Er has phys-
ical units of Jm~2. During winter, the average of
Er is about 1,700 x 10 Jm~2.

Using the method of the normal mode expansion,
we define error energy as a magnitude of the dif-
ference between two weather maps (Tanaka et al.
1989). When normal mode expansion coefficients
for two maps A and B are denoted as wni(A) and
Wnio(B), the error energy (E) between the maps is
defined as:

E[B - A
- %psho S5 |waio(B) = waio(A). (7)
n ]

The same dimensional factor as (6) is used, so that
FE has physical units of Jm=2. The rms difference in
the 500 hPa geopotential height has been assessed
for the analog weather maps in previous studies.
It is considered that the error index E is superior
to the rms because E has the same form as total
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energy which considers the differences in variables
u, v, and ¢. The best analog pair of maps A and
B by this criterion is that it minimizes E in all
combinations of the historical data.

3. Growth of error energy for the observed
atmosphere

In this section, we focus on the time series of the
error energy between two barotropic weather maps
for the best analog pair. One thing we need to men-
tion here is that the error growth for the barotropic
component of the observed atmosphere contains
the influence of that from the baroclinic component
of the observed atmosphere. The contribution from
the baroclinic component appears as if it is a sys-
tematic external forcing, which has no relation to
the state variables of the barotropic component of
the atmosphere. Therefore, such an external forc-
ing is unpredictable from the barotropic compo-
nent.

In order to estimate the limit of predictability for
the barotropic component of the observed atmo-
sphere, we need to first find the best analog pairs
in the past, then analyze the time series of the in-
creasing difference between the two weather maps.
When the difference is sufficiently small, it would
necessarily grow as the time proceeds. Therefore,
the key to the successful analysis for discussing the
error growth is to search for sufficiently good ana-
log pairs. Although a similar approach was at-
tempted by Lorenz (1969b), Gutzler and Shukla
(1984), and Toth (1991), they failed to determine
the limit of predictability since they could not find
such good analog pairs for certain pressure levels.
Based on their studies, we attempted in this study
to seek for analog pairs for the vertical mean com-
ponent of the atmosphere, using the normal mode
expansion. Since the degree of freedom in the state
variable is sufficiently small, we can compare more
historical data than in previous studies.

In this study, we analyze the dataset for the
months of December, January and February — a
total of 6012 maps during the 17 years. First,
we calculate E in (7) for all combinations of all
weather maps. Following Gutzler and Shukla
(1984), every weather map for a single winter is
compared with all maps of other winters. This
procedure is followed to ensure that a good ana-
log pair is not merely due to persistence, but ac-
tually represent a recurrence of a circulation pat-
tern. The total number of combinations compared
by this procedure, 15,667,760, is much larger than
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that in Gutzler’s study.

Figure 1 illustrates the frequency distribution of
E resulted from all combinations of weather maps.
We note that the smallest value encountered by
this method is 393 x 10* Jm=2. Only two cases are
detected from 300x 10% to 400x 103 Jm~2. The fre-
quency peak is seen over 1,000 x 103 to 1, 100 x 103
Jm~? with 2,931,157 cases, and the average E for
all combinations is 1,083 x 10° Jm~2. This value
corresponds to the expected value of the difference
between two randomly chosen weather maps. It
is found that the best analog pair is about half
the average value of E. The standard deviation is
213 x 10° Jm~2, with a larger spread in the higher
values. Only 15.7% of the samples in all combina-
tions are less than one standard deviation from the
mean. From this result, we find it extremely dif-
ficult to get a very good analog pair with current
observation error (about 20 x 10° Jm~2 or 10 m
of rms), even though the magnitude of the dataset
has dramatically increased. From other method,
van den Dool (1994) showed that it was neces-
sary to take a historical data library of the order
103 years in order to find two observed flows that
match within the current observation error over the
Northern Hemisphere. Therefore, it is difficult to
determine the limit of predictability by this method
alone.

Table 1 contains a sample list of the best ten
independent analog pairs. Because some flow pat-

Frequency Distribution
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Fig. 1. Frequency distribution of E of all
pairs. The total number of the analog
pairs is 15,667,760, and the number on

the column shows count of each analogous
level.
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terns persist one day or more, many of the best
analog pairs are chosen from the same synoptic sit-
uation with one or two days apart. Following Gut-
zler and Shukla (1984), the dependent analog pairs

Table 1. The list of the best ten indepen-
dent analog pairs. The first two digits in
each date represent the year; the second
two digits represent the month; the third
two digits represent the day; the last two
digits represent the hour (e.g., 8312100
means 0000 Z 10 December 1983).

. Error energy
Dates of the pair

x10% Jm~?

1 83121000 - 86010312 393
2 80021612 - 86021218 405
3 84012418 - 88021206 405
4 91121118 - 92122312 416
5 87011806 - 90010400 417
6 80122112 - 83020718 424
7 84021018 - 86122318 426
8 88020906 - 91010718 430
9 80022206 - 92012206 430
10 82021518 - 91020218 436
mean error energy = 1,083
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are subjectively removed by examining the list of
the best analog pairs.

The similarity of the best analog pair can be
confirmed visually. Figure 2 illustrates barotropic
geopotential heights of the best analog pair in the
Northern Hemisphere at 0000Z 10 December 1983
(designated as 83121000), 1200Z 3 January 1986
(86010312), and their difference. The contour in-
terval is 60 m. Since the geopotential height is de-
fined as a deviation from the global mean reference
state, the contours are positive for low latitudes
and negative for high latitudes. This pair is very
similar over the middle latitude, but not over the
Arctic. The figure shows that the difference in the
geopotential height is at most 240 m over Siberia,
and E over the Hemisphere is 393 x 10 Jm~2. The
error energy E of this pair gradually increases as
time proceeds.

Figure 3 illustrates time variation of E (solid
curve) for 10 days from the date of the best ana-
log pair. The heavy and thin straight lines repre-
sent the climatological mean of fluctuation (about
1,083 x 10° Jm~2) and the one standard devia-
tion from the mean (about 870 x 10® Jm~2) in the
observed atmosphere, respectively. Hereafter, we
refer to this range as a noise range. The error en-
ergy £ increases exponentially for 0-3 days. When
E reaches the noise range, it may be no longer
considered as an analog pair. For the analogy in
weather prediction, it may be the criterion that the
predictability is lost. For this reason, we define a

Geopotential Height
860103 12Z

difference

error energy = 393218.

Fig.2. Maps of the geopotential height. Shown are the best analog pairs for 0000Z 10 December 1983
(left), 1200Z 3 January 1986 (middle), and their difference (right). Contour interval is 60 m.
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Growth of Prediction Error
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Fig.3. Time variation of E. The solid curve
represents the E for the best analog pair.
The heavy and thin straight lines repre-
sent the climatological mean range of fluc-
tuation (about 1,083 x 10° Jm~2) and
the one standard deviation from the mean
(about 870 x 10® Jm~?) in the observed
atmosphere, respectively.

limit of predictability (designated as P) as the time
taken for E to reach the noise range. In this case,
P for the best analog pair is about 3 days.

In order to expect higher accuracy in the pre-
dictability of the atmosphere, we calculated the
average of the best 50 analog pairs to measure the
predictability P. Figure 4 illustrates time varia-
tions of E for the best 50 individual analog pairs

Growth of Prediction Error

best 50 analog case

1400 -

1200 -

1000 -

800 4

600 -

400 ™

Error Energy ( 10% Jm2)

200 -
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(dotted curve), and the average (solid curve). The
most rapid event of the error growth reaches the
noise range at 2.5 days. In contrast, the slowest
cases reach the noise range after 10 days. The av-
erage of E reaches the noise range at 4.5 days. Ac-
cordingly, the predictability P for the average of
the best 50 analog pairs is about 4.5 days when
the initial error energy (designated as Ey) is about
430 x 10° Jm~2.

Similar to the solid curve in Fig.4, the error
growth for various magnitudes of Ey are calculated.
Figure 5 illustrates the scatter diagram of P as a
function of Ey in reference to Chen (1989). A linear
regression between Ey and P yields:

P=-103x10"°E; +10.2. (8)

The correlation coefficient is —0.86. This intercept
means that if there is a very good analog pair in
which E is almost 0 Jm~2, the predictability P
is 10.2 days. The predictability for the barotropic
component would have an upper bound if the re-
lationship lays on a linear line. The predictability
P would be 10.2 days for an infinitesimal initial
difference in the observed atmosphere.

We consider a logarithmic function for the fitting
function based on a quadratic error growth model

Initial Data Error Versus Limit of Predictability

(analogous flows)
l6 ! L 1 1

Limit of Predictability (day)

Forecast Range (day)

Fig.4. As in Fig.3, but the dotted curves
represent the individual £ for the best

50 analog pairs and solid curve represents
the average.

0 200

U
400

600

800

1000

Ecror Energy of Initial Data ( 10° Jm2)

Fig.5. Scatter diagram of the E, against
P in the observed atmosphere. The solid
line is the best fit of linear regression of
those solid circles and the dashed line is
the extrapolation of the solid line.
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(Lorenz 1969b; Lorenz 1982; Stroe and Royer 1993).
The error growth model is written as

dE o _,
T aE EooE , (9)
where E is a saturated error value (equal to the
climatological mean of the fluctuation). The equa-
tion allows an exponential growth of error with a
growth rate given by a for small differences, and
the error will saturate at a sufficiently long time.
In previous studies, the error growth was fit on this
equation to obtain . However, it is difficult to fit
the relation between dE/dt and E for a small error
because the term dE/dt is very sensitive to com-
pute in differential form. We thus attempted to fit
the error growth on the integrated form of (9).
The integral form of this equation is given by
Stroe and Royer (1993) as

Eoo

Eoo )
__1 —at
1+(E0 )e

Eq.(10) may be written for P using Ej as

1 Ey EOQ—E,]}
== —F| +log | ——| ¢
P a{log[Ew_E0]+og[ E,

(11)

where E; is the error energy at t = P. If Ej is
closed to 0, then the relation between P and Fq
will be logarithmic.

Figure 6 illustrates the same scatter diagram as
in Fig. 5, but with a logarithmic scale in Ey and
the fitting curve using (11) for E;. The regression
between Fy and P yields:

E= (10)

Ey
P =-6.31 _— 8.
081 (Eoo—E0>+38 (12)

This equation means that the limit of predictability
P extends 6.3 days when Ej is reduced to 1/10
for sufficiently small Ey (the corresponding error e-
folding time is 5.4 days). The predictability for the
barotropic component would be unbounded for the
limit as Ey approaches 0 if the relationship lays on
a logarithmic line. In this case, we can extend the
predictability as long as we can reduce the initial
error.

However, we can not conclude whether the pre-
dictability is bounded or unbounded since E, in
the observed atmosphere is too large even for the
best analog pair to assess the features of the small
range of error energy. We will discuss this problem
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Initial Data Error Versus Limit of Predictability

analogous flows

Limit of Predictability (day)
(=2}

2_

0

100 200
Error Energy of Initial Data ( 103 Jm?)

1000

Fig.6. Same as Fig. 5, but with a logarith-
mic scale in Ep and the regression using
the quadratic error growth model.

using a barotropic model in the next section.

4. Growth of error energy for model atmo-
sphere

In this section, we focus on a behavior of the
small initial error using a barotropic model devel-
oped by Tanaka (1991; 1998) for Monte Carlo ex-
periments. Even with a perfect model, a slight
initial difference would grow as time goes due to
the dynamical instability and nonlinearity. We can
thus estimate the predictability for the model at-
mosphere from the behavior of the small initial er-
ror. A detailed description of the model is provided
by Tanaka (1991; 1998), so only a brief description
is presented here.

Applied the inner product (4) to the system of
spectral primitive equations (1), the weak form of
the equation becomes

<M%—Itj +LU-N-F, Y,,:ll'[nlm> =0. (13)
Substituting (2) and (3) into (13), rearranging the
time-dependent variables, and evaluating the re-
maining terms, we obtain a system of 3-D spectral
primitive equations in terms of the spectral expan-
sion coefficients:
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d‘w,‘
dr

+iojw; = —1 Zrijkwj'wk + fis
jk
1= 1l2)31(14)

where 7 is a dimensionless time scaled by 292, o; is
the eigenfrequency of the Laplace’s tidal equation,
and r;j is the interaction coefficients for nonlin-
ear wave-wave interactions. The triple subscripts
are shortened for simplicity as wpim = w;. There
should be no confusion in the use of 7 for a subscript
even though it is used for the imaginary unit.

In the 3-D spectral primitive equations, the ver-
tical expansion basis functions may be divided into
barotropic and baroclinic components. We may
construct a simple spectral barotropic model, us-
ing only the barotropic components of the Rossby
modes, by truncating all the baroclinic modes and
high-frequency gravity modes (see Kasahara 1977):

dw; . .
di-r + 0w = —'LZ?'ijkwj'lUk + fi
jk
i=1a2$3$'”’ (m:O)’(ls)

where the indices of the subscripts run only for
the barotropic modes (m = 0), and the zonal and
meridional wave truncation is equivalent to rhom-
boidal 20 with an equatorial wall. In this study, we
consider only the following five physical processes:

fi=(BC)i + (TF): + (DF);
+(DZ); + (DE);, (16)

where (BC); represents the baroclinic instability,
(TF); the topographic forcing, (DF); the bihar-
monic diffusion, (DZ); the zonal surface stress,
and (DE); the Ekman pumping for eddies. Apart
from the energy source of the (T'F);, the sole en-
ergy source of the model is (BC); induced by the
barotropic-baroclinic interaction. The rest of the
three physical processes are the energy sinks of this
model. Refer to Tanaka (1991; 1998) for more com-
prehensive description of these forcing.

Using the barotropic model, a perpetual winter
time integration is conducted as a control run for
600 days. The initial state is an axisymmetric flow.
Disturbances are soon excited by topographic forc-
ing, and the eddy is saturated at an equilibrium
energy level about 70 days after the time integra-
tion. Some pronounced blockings appear repeat-
edly in the model atmosphere, especially over the
North Pacific and North Atlantic sections.

Next we integrate 50 test runs for 300 days with
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initial conditions of contiguous each 5 days during
255 to 500 days in the control run. A very small
white noise (0.05% of the total energy) is superim-
posed on each initial data to examine the growth
of the initial error. Figure 7 shows individual E of
50 test runs (dotted curve). The heavy and thin
straight lines represent the climatological mean of

Growth of Prediction Error
50 test runs

1000 L L 1 Il

800

600

400

200 A

Error Energy ( 103 JIm?2)

’ 0 20 40 60 80 100
Time ( days )

Fig.7. Time variation of E. The dotted
curves represent the individual E for the
50 test runs. The heavy and thin straight
lines represent the climatological mean of
the fluctuation and its one standard devi-
ation from the mean in the model atmo-
sphere. The dotted straight line repre-
sents a specified error level Eo (100 x 10°
Jm~?%).

Growth of Prediction Error’
50 test runs
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400 -1

Error Energy ( 103 Jm?)

O T T Ll v T
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Time ( days )

Fig.8. Same as Fig. 7, but individual E of
the test run (dotted curve) and the aver-
age (solid curve) started from these struc-
tures of the error at the error energy level
of 100 x 10° Jm~2 in Fig. 7.



February 2001

the fluctuation and its one standard deviation from
the mean in the model atmosphere.

The error growth for the white noise depends
on the background flow and the structure of white
noise. We often observe an initial decrease of E to
adjust the background flow. For this reason, we let
the very small error grow to a specified error level
Eo (100 x 10° Jm=2 in Fig. 7) and use the structure
of the error for the next test run.

Figure 8 shows individual F of the test run (dot-
ted curve) and the average (solid curve) started
from these structures of the error at the error en-
ergy level of 100 x 10°® Jm~2 in Fig. 7. The limit of
predictability P is defined here as the time taken
for the averaged E to reach the one standard de-
viation in the model atmosphere (about 400 x 10°
Jm~2). In this case, the predictability P for the
averaged E is about 25 days when the initial error
Eq is 100 x 10% Jm~2.

In order to obtain the relationship between P
and Ej, we measure the value of P for various val-
ues of Ey ranging from 1.0 x 10° Jm~2 to 400 x 10°
Jm~2. Figure 9 illustrates a scatter diagram of P
as a function of Fy in the model atmosphere. As we
can clearly see from the Fig.9, it fits the logarith-
mic relation between P and Ey. The logarithmic
regression using (11) yields:

Initial Data Error Versus Limit of Predictability

model atmosphere
80 1 L 1 i L L | Il

Limit of Predictability (day)

0 T T T

T 1 L} L) 1
1 2 5 10 20 50 100 200 500 1000
Error Energy of Initial Data ( 10° Jm™?)

Fig.9. Scatter diagram of the Fy against
the P in the model atmosphere. The solid
line is the regression using the quadratic
error growth model.
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P = —23.7log,, ( ) +11.6. (17)

0

Ex — By
The result implies that the limit of predictability
extends 23.7 days when the initial error decreased
to 1/10 (20.6 days of error e-folding time) for suffi-
ciently small Ey. The logarithmic relation implies
that the predictability for the model atmosphere is
unbounded in theory.

" To infer the limit of predictability for the real
atmosphere from the result of the model, we need
to compare the regression using a wide range of Ey
with that using only large Fjy, because the real at-
mosphere offers only large Ey. Figure 10 illustrates
the same result as Fig. 9, but with a new dotted re-
gression line calculated only with the large Ey over
200 x 10 Jm~2 (black circles). The logarithmic
regression yields:

P = -21.2logy, (%) +10.3. (18)
co — 40

The comparison of (17) and (18) shows that the
logarithmic coefficients differ by only 10%. The
result suggests that we may infer the predictabil-
ity for small initial error based on the logarithmic
regression using only the large initial error.

Initial Data Error Versus Limit of Predictability

model atmosphere
80 A 1 1 1 J 1 L ]

Limit of Predictability (day)

0 T Ll * 1 1 T L}
12 5 10 20 50 100 200 500 1000
Error Energy of Initial Data ( 10° Jm2)

Fig.10. Same as Fig. 9, but with a new dot-
ted regression line calculated only with
the large Ep over 200 x 10° Jm™% (black
circles).
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Although it is difficult to discuss the growth of
a small error in the observed atmosphere, the be-
havior of the small error may be estimated from
the extrapolation using the result of the model ex-
periments. In a similar study, Toth (1991) esti-
mated the predictability for the real atmosphere
using analog weather maps and model atmosphere.
He concluded that the relation between Ej and P
fits well on a linear regression, although there was
no argument for the behavior of sufficiently small
error. On the other hand, we demonstrated in this
study that the regression fits well on a logarith-
mic line rather than the linear line as shown by
Toth (1991) for sufficiently a small error. Hence,
it is suggested that the predictability of the ob-
served atmosphere also obeys a logarithmic line as
in Fig. 6. If this is the case, the limit of predictabil-
ity extends 6.3 days when the initial error energy
decreases to 1/10.

Nevertheless, the error growth rates for the ob-
served and model atmospheres are different from
each other. The discrepancy may be explained,
first, by the different background conditions with
a low-frequency intraseasonal anomaly caused by
SST or other external forcings. For example, the
analog pairs are not necessarily chosen from the
same day of the year. The climatological forcing
would be different for the different days of the year,
which may result in the faster error growth in the
observed atmosphere. Second, the simple external
forcing in the model atmosphere compared with
the complexity of the real atmosphere may result
in a slow error growth. The faster error growth
for the observed atmosphere are largely derived by
the systematic external forcing from the baroclinic
component of the atmosphere which has no rela-
tion to the barotropic component. For these rea-
sons, the error growth rate appears to be smaller in
the model atmosphere than in the observed atmo-
sphere. However, the true reason for the discrep-
ancy would be reserved for a future work.

5. Conclusion

In this study, we estimated predictability for the
barotropic component of the observed atmosphere.
The dataset used in this study is the NCEP/NCAR
reanalysis.  First, we transformed the NCEP/
NCAR reanalysis into normal mode expansion co-
efficients for 17 years (January 1979 to Decem-
ber 1995) using the Northern Hemisphere data.
The barotropic components of the Rossby modes
are compared to look for analog pairs in the spec-
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tral domain. The number of the total combina-
tions of the possible analog pair of weather maps
is 15,667,760.

As a result, we found that the average of error
energy E in all combinations of all weather maps is
1,083 x 10° Jm~2. Among those, the best analog
pair appears to be 393 x 10® Jm~2; about a half
of the average value. The limit of predictability
P is then defined as the time taken for the error
(i.e., the difference between the two analog maps)
to reach the climate noise level defined by the one
standard deviation from the climatological mean of
the fluctuation in the observed atmosphere (about,
870 x 10° Jm~2). If the predictability P is a lin-
ear function of the magnitude of the initial error,
the result would imply that the predictability is
bounded at the limit of vanishing initial error. If
this is the case, P becomes 10.2 days. Accord-
ing to the quadratic error growth model by Lorenz
(1982), however, the predictability P is expected
to obey a logarithmic function rather than the lin-
ear function of the initial error. In this case the
predictability increases about 6.3 days when the
initial error energy reduced to 1/10, implying that
P is unbounded in theory.

For the observed atmosphere, however, we could
not estimate the limit of predictability because even
for the best analog pair, the error is too large to
assess the behavior of the growth for small error.
This result agrees well with previous studies such
as Lorenz (1969b) and Gulzler and Shukula (1984).

In order to infer whether the relationship is lin-
ear or logarithmic, we examined this problem us-
ing a barotropic model developed by Tanaka (1991;
1998). As aresult, it turns out that the relationship
is logarithmic in the model atmosphere, suggesting
that the predictability is unbounded. It is demon-
strated that the limit of predictability increases at
about 23.7 days, when the initial error energy was
reduced to 1/10 in the model atmosphere. We also
demonstrated that the error growth rate could be
estimated by using only the large initial error based
on the quadratic error growth model.

The result of the logarithmic relation in the
model atmosphere is extrapolated to the observed
atmosphere. It is concluded in this study that the
predictability increases at about 6.3 days when the
initial error energy reduced to 1/10 in the observed
atmosphere. The corresponding error e-folding time
is 5.4 days. Hence, we may extend the predictabil-
ity for the barotropic component of the atmosphere
if we can reduce the initial error for the vertical
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mean component of the atmosphere.
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