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ABSTRACT

[n this study, we conducted a series of numerical experiments of breaking Rossby waves in the
barotropic atmosphere using a simple barotropic model which implements parametrization of
baroclinic instability. Exponential growth of unstable modes must terminate eventually when
the waves become finite amplitude. The non-linear evolution of amplified Rossby waves is
examined by analyzing the potential vorticity (PV) field in order to assess the criterion of the
Rossby wave breaking in a barotropic model atmosphere. For a control run of the wave-6
experiment, growing unstable wavenumber n =6 is saturated when the wave energy attains
approximately 20% of zonal energy of the basic flow. The energy supply at n =6 is balanced
with energy transfer to zonal flow and to its harmonics of n =12 and 18 by weak non-linear
interactions, maintaining a steady configuration of a surf zone structure. The existence of the
negative meridional gradient of PV is the necessary condition for the wave saturation. We then
attempted to break the waves intentionally by increasing the growth rate of the unstable mode.
It is found that the regularity of Rossby wave progression is lost and the overturning of high
and low PV centers occurs when the growth rate is increased by 30%. Associated with the
Rossby wave breaking, not only the harmonic waves but all zonal waves are amplified by the
fully non-linear interactions among all waves. It is demonstrated that the transition from the
weakly non-linear regime to fully non-linear regime in the energy transfer is the key factor for
the Rossby wave breaking so that the supplied energy is effectively dissipated by all waves.

1. Introduction

Rossby wave breaking (or planetary wave
breaking) has long been studied extensively,
especially in middle atmosphere in relation to
stratospheric sudden warming. A wave—mean flow
interaction associated with the stratospheric
sudden warming is a realization of Rossby wave
breaking, where amplified planctary waves ulti-
mately break down to deposit the easterly
momentum into the mean flow. The dynamical
stability of robust polar vortex draws great atten-
tion in relation to a study of ozone hole in the
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Southern Hemisphere (Juckes and Mclntyre, 1987,
Juckes, 1989). Intrusion of a tongue of low poten-
tial vorticity (PV) into the Arctic results in an
enhanced material mixing in and outside the polar
vortex which prevent the extreme low temperature
in the Northern Hemisphere. Such a material
mixing is another realization of Rossby wave
breaking.

In the troposphere the Rossby wave breaking
has been studied in the context of non-linear life
cycle of baroclinic waves (Simmons and Hoskins,
1976; Throncroft et al, 1993; Whitaker and
Snyder, 1993; Govindasamy and Garner, 1997;
Balasubramanian and Garner, 1997, Hartmann
and Zuercher, 1998). The detailed studies of the
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life cycle are conducted in response to latent heat
release, spherical geometry, and barotropic shear,
among others. Recently, the Rossby wave breaking
draws more attention in conjunction with the
onset of blocking in the troposphere. According
to a modei simuiation of biocking by Tanaka
(1998), a breaking Rossby wave leads to the onset
ol blocking, and the blocking itself causes sub-
sequent breakdown of travelling Rossby waves. In
that model, travclling Rossby waves grow expo-
nentially by means of parameterized baroclinic
instability, so the waves must break down some-
where. A Rossby wave, which grows critical in
amplitude, breaks down at a topographically
induced stationary ridge and is captured by the
stationary ridge. Then, overturning of high and
low PV centers takes place there to create a
blocking.

An example of blocking formation triggered by
a breaking Rossby wave is illustrated in Fig. 1. In
the figure, contours of shallow water PV are
plotted with latitude in the ordinate and longitude
in the abscissa in descending order, respectively,
in order to mimic the progression and breaking
of waves in analogy of shallow water system at
the shore. The high PV in the polar region is
hatched to illustrate the breaking waves at the
surfl zone. The elongation of trough and ridge axes
from northwest to southeast and the anti-clock-
wise overturning of the vortex pair are the major
characteristics of Rossby wave breaking induced
by baroclinic instability. Fig. 2 illustrates longi-
tude-time section of potential vorticity along 58°N
for a life-cycle of a blocking in the barotropic
model atmosphere in Tanaka (1998). In the model
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atmosphere, topographic forcing produces station-
ary ridges along the west coast of the major
continents. A progressively travelling Rossby wave
is captured by the topographic ridge and breaks
down there to creatc a blocking. Subsequent
Rossby waves are then blocked by the blocking.
The decelerated waves exhibit meridional stretch
in PV field upstream of the blocking and eventu-
ally break down to deposit the fresh low PV into
the main body of blocking and high PV into the
cut-off low south of it to maintain the blocking
system (Shutts, 1983; Tanaka, 1998). In this
blocking theory, the Rossby wave breaking
appears to play the key role both for the onset
and maintenance of blocking. Therefore, it is
important to understand the mechanism and cri-
terion of the Rossby wave breaking in more detail
for the study and prediction of blocking formation.

Rossby wave breaking was discussed as an
analogy of gravity wave breaking by many authors
(MclIntyre and Palmer, 1983, 1984, 1985; Leovy
et al., 1985; Robinson, 1988; Garcia, 1991). The
non-linear behavior of overturning waves near the
critical layer was analytically investigated by Warn
and Warn (1978). Fig. 3 schematically compares
gravity wave breaking in the vertical section and
Rossby wave breaking in the meridional section.
When the isentropic surface overturns wrapping
up the contours, negative vertical gradient of
potential temperature appears as indicated in the
figure. The convective instability is the principal
mechanism for gravity wave breaking which elim-
inate the instability through the convective mixing
(Fritts, 1984). Once the gravity waves become
convectively unstable, they will be dissipated at a

Breaking Rossby Waves

Fig. 1. A blocking formation triggered by breaking Rossby waves, redrafted from the distribution of potential
vorticity (PV) in the barotropic model atmosphere. Ordinate and abscissa are the latitudes (70~20°N) and the
longitudes (360~ 0°E), respectively, in descending order. The contours of PV are in the units 107'm™"'s™". The
high PV in polar region exceeding the value of 120 is hatched.
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Fig. 2. Longitude—time series of potential vorticity along 58°N for a life-cycle of a blocking in the barotropic model
atmosphere. The units are 10™'°m~"'s™! (after Tanaka, 1998).

rate just sufficient to prevent further amplitude
growth. This situation is referred to as wave
saturation (Lindzen, 1981). The wave breaking
and wave saturation seem to be indistinguishable
for gravity wave.

For the Rossby wave, the dynamical analogy is
illustrated with potential vorticity contours in the
meridional plane. When the high and low PV
centers roll up to exhibit surf zone structure,
negative meridional gradient of potential vorticity
appears as indicated in the figure, this being the
necessary condition for barotropic-baroclinic

instability of the flow (Charney and Stern, 1962;
Haynes, 1989). According to Garcia (1991), the
breaking criterion for Rossby wave was defined
as the wave amplitude for which the magnitude
of the perturbation PV exceeds the background
PV. This is a reasonable criterion at which nega-
tive meridional gradient of PV appears in the
domain.

Although the analogy of Rossby wave breaking
is perfectly clear, the theoretical basis of Rossby
wave breaking is not well established. For instance,
laboratory and field observations indicate that
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_ Fig. 3. Schematic illustration of gravity wave breaking
in the vertical section (upper) and Rossby wave breaking
in the meridional scction (lower).

inertial gravity wave breaking leads to the genera-
tion of three-dimensional turbulence, whereas the
Rossby wave breaking may be treated within the
framework of two-dimensional turbulence
(Mclntyre and Palmer, 1985). The former would
produce a number of small eddies, through energy
cascade by the gravity wave breaking. The latter,
on the other hand, would produce even larger
coherent vortices through the inverse energy cas-
cadc by the Rossby wave breaking. Namely, syn-
optic-scale wave breaking may result in excitation
of planetary waves. A splitting jet and zonalization
are the realization of such a Rossby wave breaking.
Two paradigms of cyclonic and anticyclonic evolu-
tions of the vortex pair overturning lead to oppos-
ite direction of eddy momentum flux (Thorncroft
et al., 1993; Whitaker and Snyder, 1993; Akahori
and Yoden, 1996; Govindasamy and Garner, 1997;
Balasubramanian and Garner, 1997; Hartmann
and Zuercher, 1998). Further study is thus desir-
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able to understand the Rossby wave breaking to
confirm if Garcia’s analogy is applicable to the
study of the blocking onset.

The purpose of this study is to examine the
breaking Rossby waves in the barotropic atmo-
sphere using a simple barotropic model which
implements parameterization of baroclinic instab-
ility. Within the linear framework the para-
meterized unstable wave with a small amplitude
grows exponentially by the baroclinic instability.
The exponential growth must, however, terminate
at a finite amplitude leading to a wave breaking
at certain energy level. We examine the non-linear
evolution of the growing Rossby waves and the
criterion of the wave breaking in the barotropic
atmosphere. The energy flows associated with the
Rossby wave breaking are extensively examined
in the wavenumber domain.

The paper is organized as follows. In Section 2
model description is presented especially for the
detail of the parameterization of baroclinic instab-
ility for a barotropic model. The result of experi-
ments are described in Section 3, first for a control
run with zonal wavenumber 6. Here, it will be
shown that the wave energy is saturated at an
approximately constant level, but the wave
breaking is not achieved since the surf zone struc-
ture is stably maintained in this experiment. For
this reason, we attempt to break the wave inten-
tionally by increasing the growth rate of the
unstable modes. The results of the breaking
Rossby waves and the energetics analysis are
discussed in the latter half of Section 3. Concluding
remarks are given in Section 4.

2. Model description

2.1. Primitive equation model

The model description is detailed in Tanaka
(1998), and a brief description is presented here.
A system of primitive equations with a spherical
coordinate of longitude A, latitude 0, pressure p,
and time t may be reduced to 3 prognostic equa-
tions of horizontal motions and thermodynamics
for three dependent variables of U = (u,v, )"
Here. u and v are the zonal and meridional
components of the horizontal velocity. The vari-
able ¢ is a departure of the local isobaric geopoten-
tial from the global mean reference state, and the
superscript T denotes a transpose. Using a matrix
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notation, these primitive equations may be written

ou

M—+LU=N+F. (1)
)

The left-hand sidc of (1) represents linear terins

with matrix operators M and L and the dependent
variable vector U. The right-hand side represents
a non-linear term vector N and a diabatic term
vector F which includes the zonal and meridional
components of frictional forces and a diabatic
heating rate.

Then, 3-D normal mode functions I1,,,(, 0, p)
are calculated by a tensor product of vertical
structure functions (vertical normal modes) and
Hough harmonics (horizontal normal modes)
which are associated with the linear operators M
and L, respectively. It is known that they form a
complete set and satisfy an orthonormality condi-
tion under a proper inner product. In order to
derive a system of spectral primitive equations, we
expand the vectors U and F in the 3-D normal
mode functions in a resting atmosphere:

U(4, 0, p, t)
N L M

= Z z Z wnhrl(r)Xm nﬂf}ll(){'ﬂ 01 p]a (2)

n=—N1I1=0m=0

F(4,0,p, 1)
M

N L
= Z Z Z frm:i(t)Knﬂrm”(’L U,P) (3}

n=—NI=0m=0

Here the expansion coefficients w,,,(t) and £, (¢)
are the functions of time alone. The subscripts
represent zonal wavenumber n, meridional index
l, and vertical index m. They are truncated at N,
L, and M, respectively. The scaling matrices X,
and Y, should be defined for each vertical index.

By transforming (1) into a spectral form using
the basis of 3-D normal mode functions, we obtain
a system of 3-D spectral primitive equations in
terms of the spectral expansion coefficients:

dw; “
5, ioiw=—i Y FieWiW, + fi,
T W

i=1,2,3,..., (4)

where t is a dimensionless time, the symbol o
denotes the eigenfrequency of the normal mode at
a resting atmosphere, and r,; is the interaction
coeflicient for non-linear wave—wave interactions.
For simplicity, the triple subscripts nim are
shortened to i.
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The spectral primitive eq. (4) was integrated by
Tanaka (1995) for the study of a life-cycle of non-
linear baroclinic waves. The result clearly shows
that baroclinic waves draw energy from baroclinic
components of the atmosphere and feed the energy
to the barotropic components. It was found that
the important baroclinic-barotropic interactions
are accomplished by baroclinic instability, which
transfers the zonal baroclinic energy to barotropic
components of the atmosphere.

2.2. Eigenvalue problem for linear instability

The process of baroclinic instability may be
readily analyzed by linearizing (4) with respect to
a proper zonal basic state. In order to solve the
most unstable linear mode, a perturbation method
is introduced using notations Ww; for a time-inde-
pendent zonal basic state and w’ for small per-
turbations superimposed on the basic states (the
same symbols with the original variables are used
for convenience). The equation for the first-order
term of perturbations becomes

dw, . o -
h-d_ + 10} "Vl' = —1 Z Z (:I'iﬂ: + n"fkj)wk “‘IJ 3
k=1

& i=1

i=1,9,8 ..o /(5)

where the index k is used for the basic state and i
and j for the perturbations. Here, inviscid and
adiabatic eddy is examined, disregarding the for-
cing for perturbations. For a zonal basic state
(W, # 0 if n=0), we can rewrite the equation in
terms of a matrix form for each n > 0:

d
o w/:r e ED?! H":! == ';'Bu ‘JI{;I"

T n=1,2:. o N;

(6)
where
W = (W gig Wty W) (7)
D =diag(ay, ..., 61, ..., 6g), (8)

and K =(L+1)(M + 1). The (i, j) entries of the
matrices B, namely b,;, are evaluated by the expan-
sion coefficients of the basic state w,:

K
bij= ), (rip+ Fit i)Wy, W (9)

k=1

hj=1,2, ..

The zonal-wave interaction B, vanishes for a basic
state at rest (W, =0), thus the eq. (6) satisfies the
normal mode relation for Laplace’s classical tidal
theory.
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Because (6) is linear, we can assume the solution
of W, as:

W,(2) = & exp(—ivz). (10)

The initial value problem (6) is then reduced to
an eigenvalue problem for a real matrix to obtain
eigenvectors ¢ and eigenvalues v as:

vE=(D,+ B,)¢. (11)

Those eigenpairs n and ¢ are evaluated by the
standard matrix eigenvalue solver. They will be
used as the important tools of the parameteriz-
ation of baroclinic instability for a barotropic
model. The distribution of the growth rates and
the structure of the unstable modes are discussed
by Tanaka and Kung (1989) and Tanaka and Sun
(1990) for a basic state of monthly mean FGGE
(First GARP Global Experiment) data for January
1979. The growth rate of the most unstable
Charney mode is about 0.47 day™! at the zonal
wavenumber 7, which corresponds to the e-folding
time about 2 days.

2.3. Modified basic non-linear equation

We now return to the fully non-linear equation
retrieving thc wave—wave interactions and external
forcing disrcgarded in (35).
dw;

— + iUiW,‘

dt

K K
= —i z ( Z (rije+ ".‘kj)%) W;
i=1

k=1

=i rawiw+ [ i=1,2,3...K. (12)
ik
The first term in the right-hand side represents
linear zonal-wave interactions as appeared in (5),
and the second term represents the rest of nonlin-
ear wavc-wave interactions. Note that the state
variables here are finite-amplitude deviations from
the time-independent zonal basic state.
Supposing that the eigenspace for the matrix
(D, + B,) in (11) is full rank without any multiple
roots, we have K linearly independent non-
orthogonal eigenvectors &,, I=1,2,3,..., K. The
state variable w; may then be expanded in the
basis of the cigenvectors &, for each zonal wave-
number:

wi(t) = Z a(t)Ci,

{

(13)

where the amplitude cocfficients a,(t) are supposed
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to be determined by solving a linear system. Since
w;(t) is a function of time, so is the amplitude
coefficient a,(t). Substituting (13) into the Lst term
of the right-hand sidc of (12), the linear operators
associated with the zonal-wave interactions may
be reduced to thcir cigenvalues of v, in reference
to (11) for each zonal wavenumber:

dw;, ]
e +iow= —1 Z(Vx —a)ay
T [
—i Y rpwiwe+ fiy
e

i=1,2,3,..,K, (14)

Note that the complicated zonal-wave inter-
actions are represented by the summation of eigen-
modes. The real part of eigenvalues are modified
by a;.

When the model eq.(14) is integrated [rom
infinitesimal white noise of w; superimposed on
the basic state, the most unstable mode a,¢;
would soon dominate the other modes, growing
exponentially with the growth rate determined by
v;, as predicted by the linear theory. The baro-
tropic components grow in proportion to baro-
clinic components maintaining the normal mode
structure ¢&,;. It is in this process of zonal-wave
interactions where the baroclinic energy in the
basic state is converted to barotropic energy in
eddies. Refer to Tanaka (1995) for the energy
flows associated with the baroclinic instability
which explains the energy flow from baroclinic to
barotropic components in the observed atmo-
sphere with the FGGE data. When the waves
reach finite amplitudes, the non-linear wave-wave
interactions play the role to saturate the exponen-
tial growth. For this reason, the most unstable
mode &,; is anticipated to cxplain the largest
fraction of the zonal-wave interactions.

2.4. Construction of a barotropic model

We now attempt in this study to construct a
barotropic spectral model, using only the baro-
tropic components (i.e., m =0) of w; for (14). The
barotropic components capture the essential fea-
tures of the low-frequency variability of planctary-
scale motions. Such a model is equivalent to the
predicting vertical average of meteorological vari-
ables. The spectral equation for such a barotropic
model may have the same form as the baroclinic
model of (4), except for an additional term of
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barotropic-baroclinic interactions. When a baro-
tropic subset is written for (14), linear terms retain
the same form, but the non-linear wave-wave
interactions are divided into interactions among
barotropic components and those between baro-
tropic and baroclinic components.

We assumec first that the important energy
supply to the barotropic component of the atmo-
sphere is accomplished by the zonal-wave inter-
actions represented by &, rather than the
wave-wave interactions of transient eddies. There
are non-linear wave-wave interactions between
barotropic and baroclinic components which may
contribute to the barotropic-baroclinic inter-
actions to some extent. However, those second
order terms of transient eddies are considered of
secondary importance in magnitude, compared
with the dominant zonal-wave interactions.
Second, the barotropic-baroclinic interactions are
dominated by baroclinic instability associated
with the most unstable mode a,¢,;. All contribu-
tions from higher order eigenmodes are assumed
to be less important due to the slow growth rates.
With these assumptions, we attempt to close the
system using only the barotropic components of
w; and &,; for each zonal wavenumber as follows:

dw; . . v .
=7 Hiowi=—i DWW — ivia &+
T P

i=1,23,..,L+1. (15)

The st term of the right-hand side represents the
non-linear wave-wave interactions among baro-
tropic components of w;. The second term in the
right-hand side of (15) represents the wavemaker
introduced in this study to amplify barotropic
eddies in synoptic scale. It is a part of dynamical
processes rather than an external forcing. Similar
to the disregard numerous almost neutral eigen-
modes, the term ig;a, &y, is also ignored since it is
a neutral mode. Only the growing modes are
considered to supply energy for the barotropic
atmosphere. The barotropic model without the
wavemaker is equivalent to the shallow water
system. A similar barotropic model with the
Hough mode expansion was successfully integ-
rated first by Kasahara (1977) without the wave-
maker. We have confirmed that the non-linear
behavior of Rossby-Haurwitz wave as shown by
Kasahara (1977) is successfully simulated with this
model when the wavemaker is removed.

H. L. TANAKA AND Y. WATARAI

The amplitude coefficient a,(z) is supposed to
be determincd by solving a linear system (13) at
every time step as mentioned before. It indicates
a [raction of the state variables w; explained by
¢1i- Since we have assumed to employ only one
eigenmaode, it is reasonable to approximale it by
an orthogonal projection of the state variable w;
onto the most unstable mode &,;. It is known that
the orthogonal projection tends to overestimate
the fraction ¢,; compared with solving a linear
system since the eigenmodes are non-orthogonal.
The orthogonal projection is supposed to be per-
formed in the baroclinic atmosphere. However,
the purpose of this study is not to integrate the
baroclinic model (14), but to construct a baro-
tropic model (15). There is no way to assume
baroclinic components of w; which is outside the
model domain. Because the meaning of the ampli-
tude coefficient a, is a fraction of the state variables
w; represented by ¢,;, we performed the orthogonal
projection within the barotropic atmosphere as
follows:

wi(7) = a,(1)¢y; + (1), (16)

where the vectors are reduced to include only
the barotropic component, ¢,; is normalized to
have a unit norm Y, K&, =1, and ¢(7) is the
orthogonal complement of the projection, ie.,
2 &he; = 0. The amplitude coefficient a, (1) is thus
evaluated every time step by a vector inner product
for complex numbers:

a (1) =Y &hwi. (17)

With the amplitude coefficient so obtained, the
resulting wavemaker based on baroclinic instabil-
ity is given as:

(BC); = —ivya, (1), (18)

The amplitude coeflicient by (17) may over-
estimate the fraction &,; compared with the case
for the baroclinic atmosphere. When a, &,; domin-
ates the other eigenmodes in the baroclinic atmo-
sphere as discussed in the linear framework, we
can assume w; is in proportion to a,¢,;. For this
special case, the amplitude coefficient by (17)
evaluated in the barotropic atmosphere coincides
with that evaluated in the baroclinic atmosphere.
However, in general, w; is not proportional to
a,&y;, and not every [raction so projected may be
associated with the baroclinic instability. An
assessment for the performance of the present
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wavemaker is conducted in reference to the result  tory moves chaotically around the origin. When
with the non-linear baroclinic model. the system is linearized with respect to a zonal

Fig. 4a schematically illustrates an evolution of  basic state as in (5) and small perturbations are
the solution trajectory W for the non-linear system  superimposed on it, the trajectories of the small
(4) in multi-dimensional phase space. The trajec-  perturbations would bchave as in Fig. 4b. Here,

(a) (b)

(c)

Fig. 4. Schematic illustration of a time evolution of the solution trajectory W in a phase space (a) for the nonlinear
system (4): (b) for the unstable lincar system (6); and (c) for the orthogonal projection of W onto the unstable
direction & (16).

Tellus S1A (1999), 5
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the trajectories starting at random initial points
approach eventually to the most unstable direction
¢y and grows along the vector &, at the speed of
the given growth rate. The situation and behavior
in Figs.4a,b should be the same even if we
consider only the barotropic subset of W and ¢,.
Namely, the trajectory of the barotropic compon-
ent of W approaches to the barotropic component
of ¢; and grows along the vector &, at a given
growth rate as in Fig. 4b. The amplitude factor
a,(r) is determined by the orthogonal projection
(16) and (17) as in Fig. 4c at every time step. The
orthogonal projection is a reasonable representa-
tion of the exponential growth of the linear baro-
clinic instability as long as the non-linear term is
negligible. A structure expected from baroclinic
instability emerges from the infinitesimal white
noise. Therefore, the parameterization (18) accur-
ately traces the exponential growth of the vertical
mean structure of baroclinic instability within the
linear framework.

The linear theory no longer holds when the
non-linear term becomes comparable to the for-
cing term by the baroclinic instability. The eddy
growth would be reduced when the solution tra-
Jectory deviates from the unstable subspace «, ¢,.
In practice, the baroclinic growth would com-
pletely vanish when the solution trajectory W
becomes orthogonal to a, &, due to the non-linear
effect. As will be shown in the results, the exponen-
tial growth of the small perturbation eventually
saturates when the non-linear wave-wave inter-
actions begin to play the role. The encrgy supply
due to the instability appears to balance with non-
linear scattering toward the different scales. The
performance of the present wavemaker at such a
finite amplitude is the subject Lo be pursued in the
future study.

2.5. External forcing and energetics

In this study, we consider only the following
four physical processes as an external forcing:

Ji=(TF);+(DF), +(DZ); + (DE);, (19)

where (TF); rcpresents the topographic forcing,
(DF); the biharmonic diffusion, (DZ); the zonal
surface stress, and (DE); the Ekman pumping for
eddies. Apart from the energy source of the topo-
graphic forcing, the solc cnergy source of the
model is (BC); induced by the baroclinic instability.

H. L. TANAKA AND Y. WATARAI

The rest of the three physical processes are the
encrgy sinks of the model. Refer to Tanaka (1998)
for more comprehensive description of these
forcings.

In the model, the total energy (i.e., the sum of
kinetic energy and availabie potential energy) is
monitored as one of the fundamental variables
representing the global state of the atmosphere.
In the spectral domain, the total energy is simply
the sum of the energy elements E;, which is defined
by the squared magnitude of the state variable w;:
Ei = %pshmlwilz’ (20)
where the subscript m is zero. By differentiating it
with respect to time and substituting (15), we
obtain the energy balance equation:

% =NL;+BI;+ TF,+ DF,+ DZ,+ DE,.
We use similar symbols as in (18) and (19), but
without the parentheses for real-valued energy
variables of dynamical and physical processes. The
non-linear wave-wave interaction is designated by
NL;. Note that the linear term in the left-hand
side of (15) does not contribute to the energy
balance equation.

(21)

3. Results of the experiments

3.1. Control run

The model equation (15} is integrated in time,
starting from an infinitesimal white noise superim-
posed on a zonal flow. In order to isolate the
exponential amplification of unstable modes, the
baroclinic instability is imposed in this study only
at the zonal wavenumber 6. Fig 5 illustrates the
time evolution of the total energy for the zonal
wavenumber 6 and the zonal motions. The energy
level of the initial white noise superimposed on a
zonal flow is of the order of 10 J m~2 The energy
level decreases for the first 20 days to 2 J m =2 due
to the [rictional dissipation. The cnergy level then
starts to increase exponentially for days from 25
to 50 as expected from the lincar theory. We can
mfer that the solution trajectory W is in parallel
with &, as discussed in Fig. 4b. The exponential
growth, however, must terminate when the wave
amplitude becomes finite so that the non-linear
wave-wave interactions become comparable to
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Fig. 5. Time series of total energy in the zonal (thick
solid line) and eddy (thin solid line) components during
the first 200 days. The crossing of dotted and dashed
line represents the saturation point.

the linear terms in (15). This may be the stage of
wave saturation. The eddy energy is equilibrated
at 2x 10°J m~2 According to observation
(Tanaka, 1985), the corresponding mean value for
n==6is 3x10*Jm~2% ic, about 10x smaller
than the saturation level here.

By drawing two lines from the equilibrium level
(dashed) and the exponential growth (dotted), we
can determine the date of the wave saturation as
day 55 in this example. Accordingly, the growth
rate may be evaluated as 0.20 day ™' from the fact
of increase by 5 orders of magnitude during
30 days in energy level. Since the growth rate for
n==6is given as 0.34 day ™! by the linear stability
analysis, we found that an appreciable fraction of
growth rate was lost by the viscosity and [rictional
damping. Therefore, planctary waves of n=1to0 4
may be hardly amplified by the lincar instability
alone since the growth rate is too small. The zonal
barotropic enecrgy is approximately constant at
1 x 10°)m~2 It is interesting to note that the
eddy energy reaches its cquilibrium when the
energy level becomes 20% of the zonal baro-
tropic energy.

Fig. 6 illustrates hemispheric distributions of
shallow water potential vorticity (PV) for days 48,
50, 52, 54, 100, 101, 102, and 200. A rotating
wavenumber 6 emerges from infinitesimal noise in
mid- to high-latitudes. When the wave amplitude
is sufficiently small as for day 48, the structure 1s
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similar to the vertical mean of unstable Charney
mode anticipated from baroclinic instability.
Trough axis tilts from northwest to southeast at
the northern flank of the Charney mode near
45°N, whereas it tilts from southwest to northeast
at the southern flank of the Charney mode. The
eddy momentum flux, thus, converges to mid-
latitudes accelerating the westerly jet. When the
amplitude becomes large enough as for day 54,
high PV in the Arctic spreads away to lower
latitudes maintaining the trough axis from north-
west to southeast. At the same time, low PV in
lower latitudes intrudes toward the Arctic. A
positive and negative vorticity pair appears to
rotate anti-clockwise at each sector. This is the
time when wave saturation takes place according
to the result in Fig. 5. The wave is about to break
down, indicating a characteristic “surf zone” shape
as shown in Fig. 3. Evidently, the meridional
gradient of potential vorticity indicates negative
area at the surf zone latitudes. The existence of
the negative PV gradient is the necessary condition
for the pattern to be unstable (see Charney and
Stern, 1962; Garcia, 1991). Such an area appears
on day 48 when the exponential growth of the
unstable mode deviates [rom the theoretical
straight line in Fig. 5.

However, it is interesting to note that the wave
breaking has not occurred in this experiment as
seen from PV distributions for days 100, 101, and
102. The surf zone shape of PV distributions attains
a steady configuration, and it advects simply from
west to east as is confirmed from the map of day 200.
Although the meridional PV gradient is negative at
some locations, the surf zone shape is stabilized in
present model without developing into the wave
breaking. Since the wave amplitude has saturated
by definition as demonstrated in Fig. 5, the result of
this study suggests that there is a case of equilibrium
in the model atmosphere where the energy supply
into the system balances with small [rictional damp-
ing of harmonic waves.

Fig. 7 illustrates longitude—time section of poten-
tial vorticity along 58°N for this control run of the
wave-6 experiment. Regular Rossby waves of wave-
number 6 are amplified by the parameterized baro-
clinic instability. The waves travel castward and
saturate the amplitudes around day 55. Then, the
travelling waves maintain their amplitudes after the
saturation. The eastward phase speed is approxi-
mately (2.4 day~". The regular movement of the
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Fig. 6. Hemispherical distributions of potential vorticity with the wave-6 model for model days on 48, 50, 52, 54,
100, 101, 102, and 200. The units are 107" m~'s~" with the contour interval 15.
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Fig. 7. Longitudc—time section of potential vorticity along 58°N as in Fig. 2, but for the control run with the wave-6

mode!l without topography during days 31 to 130.

wave-6 indicates the fact that the waves are saturat-
ing but not breaking. It may be possible, however,
that the wave breaks down for a higher resolution
model due to a small-scale instability. This equilib-
rium may be an artifact of the fixed shape of the
parameterized baroclinic instability. We reserve it
for the subject of the future study.

3.2. Experimental run

In this section of an experiment run, the regular
travelling waves are intentionally destroyed by
increasing the growth rate, Im(v), until the waves
break down. The first symptom of the Rossby

Tellus SIA (1999).5

wave breaking occurs when the growth rate is
magnified by the factor 1.3. The same longit-
ude-time section of potential vorticity as in Fig. 7,
but with the magnification factor 1.3 is presented
in Fig. 8. Here, we start the time integration from
larger white noise than in Fig. 5 to save the
computational time. The wave-6 is amplified
quickly by baroclinic instability and is saturated
around day 30. This time, the regularity in the
phase speed is lost at day 50. Simultaneously,
the wave amplitude is reduced substantially.
Compared with the result in Fig. 7, we define this
irregularity in the phase spced as a signal of
Rossby wave breaking. The characteristics are
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Potential Vorticity (58°N)
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120

consistent with the breaking Rossby wave discus-
sed in Fig. 2 in relation to the onset of blocking
in the model atmosphere. The travelling wave-6
once recovers the regular progression around day
60. Yet, the wave breaking takes place repeatedly
after day 80 indicating larger amplitudes and
irregular phase speed.

Fig. 9 shows the hemispheric distributions of
PV as in Fig. 6, but for the growth rate magnifica-
tion factor 1.3 for days 49 to 52 when the Rossby
wave undergoes breaking. For this experiment, the
six cores of PV peaks in high latitudes exhibit
different configurations, so it is realized that the
sectorial symmetry of PV is now lost. Some well
developed vortices undergo overturning of high

1 éO
Longitude

Fig. 8. As in Fig. 7, but for the experiment run with 1.3 times the growth rate during the first 100 days.

and low PV distributions. Therefore, the wave
breaking is characterized by the loss of sectorial
symmetry and the overturning of the high and
low PV distributions.

Fig. 10 illustrates the breaking Rossby waves
expressed by the collection of 120 PV unit con-
tours as functions of longitude and time for days
11 to 60. The wave amplitudes increase as time
progresses, and the meridional gradient of PV
turns to be negative around day 20. The sutf zone
shapes develop around day 25, but the waves keep
moving forward preserving the surfl zone shapes.
The deformation of the 120 PV unit contours
increases for days 40 to 50; this is the period when
the wave breaking is identified. Some contours are

Tellus 51A (1999), 5
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Fig. 9. As in Fig. 6, but for the experiment run with 1.3 times the growth rate for days 49 through 52 when the first

wave-breaking occurs.

disconnected to produce a filament of PV con-
tours. The wave amplitudes then gradually
decrease for days 50 to 60.

The wave-6 experiment is repeated now with
doubled growth rate to examine the wave breaking
in an exaggerated situation. Fig. 1 is the same
longitude—time section as Figs. 7, 8, but with the
magnification factor 2.0 for the growth rate. The
wave-6 amplifies quickly and attains a saturation
point around day 25. The wave progression slows
down after the saturation and irregularity begins
after day 35. By the day 50, the dominant wave-
number is no longer 6, and the flow appears to
be rather chaotic. The hemispheric distributions

Tellus 51A (1999), 5

of PV for the doubled growth rate experiment are
presented in Fig. 12 for days 53 to 56. Isolated
coherent vortices are located irregularly within
the domain. The number of cyclonic vortices may
be counted as 6 for day 53, but it is no longer 6
by day 56 due to the vortex merging. The pattern
may be recognized as very much turbulence.

3.3. Energetics analysis

Fig. 13 plots mean energy spectra over the zonal
wavenumber domain for the wave-6 experiment
during days 30 to 100 with various magnification
factors for the growth rate. For the control run
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Fig. 10. Schematic illustration of breaking Rossby waves
expressed by the contours of 120 PV in Fig. 9 as func-
tions of time (day) and longitude.

with the magnification factor 1.0, the energy spec-
trum indicates sharp spectral peaks at n=6, 12,
and 18. Because of the amplified wave-6, its har-
monics of n=12 and 18 are excited through the
weak non-linear interactions. As shown in Fig 6

H. L. TANAKA AND Y. WATARAI

the control run maintains the steady configuration
of the surl zone structure by the combination of
those harmonic waves. The background noise
energy in this case is of the order 10? ] m~2. When
the growth rate is magnified by a factor 1.3, the
three spectral peaks at n=6, 12, and 18 remain
recognizable. However, the main difference is seen
in the high noise level at the rest of wavenumbers.
The background noise in this case is enhanced by
the strong non-linear wave-wave interactions
reaching the order of 10* J m ™2 When the growth
rate is doubled, the noise level becomes compar-
able to the spectral peaks. The spectral peaks at
n=12 and 18 are almost filled with the back-
ground noise. A result for the magnification factor
5.0 is plotted by a thick line. The spectral peak at
n =6 is recognizable, but its harmonics at n =12
and 18 are completely lost in this case. More
energy is accumulated in planetary waves than in
n =6, especially at n=1 by means of the inverse
energy cascade of the 2-D turbulence. The flow
pattern (not shown) is strongly chaotic. It is inter-
esting to note that the energy levels of the spectral
peaks at n=06 and its harmonics remain at the
approximately same energy level despite the
increased background noise level by the increased
magnification factors for the growth rates.

Since the energy source is imposed only at
n=06 for this model, its harmonics and also the
background noise must be excited by the unstable
wave through the weak and strong non-linear
wave-wave interactions, respectively. In Table 1,
the energy flow within the zonal spectral domain
is analyzed following the energetics scheme for the
3-D spectral model by Tanaka (1991). For the
control run (Table 1a), energy is concentrated only
at n=0, 6, 12, and 18. The unique energy input
of 0973 Wm™2 at n=6 is dissipated by the
amount of 0.288 W m~2 due to surface friction
and eddy viscosity. The rest of 0.654 Wm™2 is
redistributed mostly to zonal flow by 0.595 W m 2
and to its harmonics of n=12 and 18 by 0.046
and 0.012 W m™2 respectively. The steady con-
figuration of travelling Rossby waves presented in
Fig. 6 is maintained by the energy balance lisied
in Table 1a. For the experiment run with the
magnification factor 1.3, the wave—wave inter-
actions redistribute the energy at n = 6 to all waves
when Rossby waves break down for days 52 to 62
(Table 1b). For days 80 to 100 (Table 1c) the non-
linear energy interactions become more active due
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to the repeated Rossby wave breaking. Since
energy has been accumulated in all waves, strong
non-linear interactions can draw the energy from
n =6 and dissipate it effectively.

Finally, time series of zonal energy, unstable
wave energy, and noise energy are presenied in
Fig. 14 for the control run and the experiment run
with the magnification factors 1.3 and 2.0. Here.
the unstable wave energy (dashed line) is the sum
of n=6, 12, and 18, and the noise energy (dashed
line) is defined as the sum of the remaining eddy
energy. For the control run in Fig. 14a, unstable
waves arc sclectively amplified from the white
noise after day 20. While the unstable waves grow
exponentially for days 20 to 30, the noise energy

Tellus 51A (1999), 5
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Fig. 11. As in Fig. 7, but for the experiment run with the doubled growth rate.

keeps decreasing monotonically during the ana-
lysis period. The eddy energy (thin solid line)
reaches its saturation point around day 40 and
maintain the constant level thereafter. The zonal
energy (thick solid line) keeps approximately the
same level during the growing and breaking stages
of wave-6. This is a special case of wave saturation
without proceeding to wave breaking.

When the growth rate is enhanced by the factor
1.3 as in Fig. 14b, unstable waves grow rapidly
after day 15 and saturate by day 25. The important
difference between this experiment run and the
former control run is seen in the increasing noise
energy after the wave saturation for days 25 to
50. Energy transfer from unstable waves to back-
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Fig. 12. As in Fig. 6, but for the experiment run with doubled growth rate for days 53 through 56.

ground noise 1s enhanced when the noise level
becomes finite amplitude as inferred from the out-
of-phase variation around day 50 between the two
lines. When the noise energy level becomes com-
parable to the unstable wave energy, the unstable
waves undergo wavce breaking. The Rossby waves
once recover the regularity around day 60 when
noise level decreases as confirmed from Fig. 8. Yet,
the flow pattern returns to the chaotic by the
increased noise encrgy after day 80. The result for
the doubled growth rate is presented in Fig. 14c.
As in Fig. 14b the noise energy starts to increase
after the unstable waves have saturated around
day 15. Once the noise cnergy becomes compar-
able to the unstable wave energy, the flow appears

to be chaotic owing to a sequence of wave breaking
and vortex merging.

We consider the wave breaking as the realiza-
tion of the increased background noise energy. It
is suggested [rom the result that the energy supply
by the dynamical instability must be large enough
to excite the background noise for the criterion of
the wave breaking.

Three different cnergy flow patterns are found
associated with linear process, weakly non-linear
process, and fully non-linear process. In the lincar
process, no wave-wave interactions, except for the
zonal-wave interactions, are allowed. The energy
supply must balance with dissipative damping of
the given wave. In the weakly non-linear process,
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Fig. 13. Mean energy spectra over the zonal wavenumber domain for the wave-6 model during days 30 to 100 with

various magnification for the growth rates.

harmonic waves in higher wavenumbers are
allowed to amplify for a given unstable wave. The
energy supply is then balanced with dissipation at
all the harmonic waves. In the fully non-linear
process, supplied energy can be transferred to all
waves and balanced with the dissipative damping
at all waves. The result of present study demon-
strates the different class of equilibria, depending
on the given energy supply controlied by the
variable growth rate of the parameterized baro-
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clinic instability. Since the weakly non-linear pro-
cess has an upper bound in wave amplitudes due
to the saturation, energy supply beyond the upper
bound causes the excitation of the background
noise energy. It is found in this study that the
transition from weakly non-linear regime to fully
non-linear regime in the energy transfer is the key
factor for the Rossby wave breaking so that the
supplied energy 1s effectively dissipated by all
waves.



570

H. L. TANAKA AND Y. WATARAI

Table 1. Time mean encrgy levels (J m~2) and energy interactions (1073 Wm™2 ) as functions of the
zonal wavenumber n for (a) the control run of the wave-6 experiment for days 30100, (b) the experiment
run with 1.3 times the growth rate for days 52-62 and (c¢) that for days 80-100 (the s ymbol E represents
energy level, BC baroclinic instability, NL non-linear wave-wave interaction, and DD the sum of diffusion

and surface friction)

(@) (b) (©
n E(n) BC(n) NL@m DD E(m) BC(n) NL@mn) DD(n) E(n) BC(n) NL#n) DDn)
0 10748 0 595 =575 10705 0 644 —534 11031 0 771 —~1766
1 0 0 0 0 20 0 ] -3 176 0 33 —26
2 0 0 0 0 12 0 1 -2 140 0 26 -28
3 1 0 0 0 6 0 0 0 106 0 16 -17
4 0 0 0 0 79 0 -7 =11 629 0 79 -78
5 0 0 0 0 14 0 0 -2 143 0 34 -22
6 1616 973  —654 —288 1762 1329 —-717 =304 © 2008 1505 —1122  —353
7 i 0 0 0 19 0 0 -2 80 0 18 —15
8 0 0 0 0 6 0 I -1 56 0 19 —17
9 0 0 0 0 2 0 0 0 34 0 12 -10
10 0 0 0 0 9 0 1 -3 62 0 22 =21
11 0 0 0 0 2 0 1 —1 27 0 16 —12
12 49 0 46 —44 63 0 53 —49 34 0 27 -27
13 0 0 0 0 2 0 I -1 6 0 5 -4
14 0 0 0 0 1 0 1 0 7 0 7 -5
15 0 0 0 0 0 0 0 0 3 0 4 -3
16 0 0 0 0 0 0 1 0 5 0 6 -6
17 0 0 0 0 0 0 0 0 2 0 4 —4
18 4 0 12 -11 6 0 14 —-12 4 0 9 =7
19 0 0 0 0 0 0 0 0 1 0 2 -2
20 0 0 0 0 0 0 0 0 0 0 2 -1

4. Concluding remarks

In this study, we conducted a series of numerical
experiments of breaking Rossby waves in the
barotropic atmosphere using a simple barotropic
model which implements parameterization of
baroclinic instability. We examined the non-linear
evolution of the finite amplitude Rossby waves in
order to assess the criterion for the wave breaking.
The baroclinic instability is imposed in this study
only for zonal wavenumber 6 to isolate the process.
Within the linear framework for small wave ampli-
tudes, the parameterized baroclinic instability
gives rise to a correct exponential growth of an
unstable mode as expected from the linear theory.
The expected structure of the most unstable mode
cmerges in the barotropic atmosphere from the
infinitesimal white noise.

However, the exponential growth of the
unstable waves must terminate ultimately when
the wave amplitude becomes finite and the nonlin-

ear wave-wave interactions become comparable
to the linear terms. The energy supply for the
growing waves is balanced with non-linear energy
transfers to different waves. The phenomenon may
be regarded as wave saturation. It is found in this
study that the exponential growth of the unstable
wave-6 is saturated when the wave energy reaches
approximately 20% of zonal energy of the basic
flow.

For the ordinary growth rate, we found a case
such that the waves are saturating but not
breaking. For a control run of the wave-6 experi-
ment, the saturated waves travel castward main-
taining the steady configuration of surf zone shape.
The appearance of the negative meridional gradi-
ent of PV is the necessary condition for the wave
saturation according to Charney and Stern (1962)
and Garcia (1991). Despite the fact of the apparent
negative meridional gradient around the surf zone
latitudes, the Rossby wave has not undergone the
wave breaking. According to the energetics ana-
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Fig. 14. Time series of total encrgy in the zonal (thick solid linc) and eddy (thin solid line) components during the
first 100 days. The eddy components are further divided in the sum of harmonic waves of n =6, 12, and 18 (dashed
ling) and the rest of the non-harmonic waves (dotted line). (a) for the control run; (b) for the 1.3 times the growth

rate; and (c) for the doubled-growth rate, respectively.

lysis, the energy supply at wave-6 is equilibrated
with energy transfer to zonal motions and to its
harmonics in higher wavenumbers. This is a
special case of an equilibrium attained by the
weakly non-linear energy transfers.

Next, we attempted to break the equilibrated
waves artificially by increasing the growth rate of
the unstable mode. It is found that the regularity
of steady Rossby wave progression is lost and the
overturning of high and low PV centers begins
when the growth rate is increased by 30%. This
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phenomenon may be recognized as wave breaking.
The overturning of the vortex pair is mostly anti-
clockwise for present wave-6 model. The major
difference compared with the control run is seen
at the creased energy level of background noise
through the fully non-linear intcractions among
all waves. Associated with the Rossby wave
breaking, not only the harmonic waves but all
zonal waves are amplified by the fully non-linear
interactions among all waves. The Rossby wave
breaking may be the realization of the increased
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background noise energy. It is demonstrated in
this study that the transition from the weakly non-
linear regime to fully non-linear regime in the
energy transfer is the key factor for the Rossby
wave breaking so that the supplicd cnergy is
effectively dissipated by all waves.

Finally, we note that the result of this study is
based on first 100-day simulations of a simple
barotropic model with a rather coarse resolution.
The result should be confirmed using a higher
resolution model. The stable surfl zone structure
in the control run might be destabilized by small
disturbances as demonstrated by Haynes (1989).
The parameterization of baroclinic instability in
this study is useful to excite required amount of
synoptic eddies in a barotropic model. However,
the detail of the non-linear evolution indicates
some contradictions compared with previous stud-
tes with full baroclinic models (Simmons and
Hoskins, 1976; Thorncroft et al., 1993; Whitaker
and Snyder, 1993; Tanaka, 1995; Balasubramanian
and Garner, 1997; Hartmann and Zuercher, 1998).
Because the computational domain is restricted

H. L. TANAKA AND Y. WATARAI

to the barotropic component of the atmosphere,
baroclinic structure of the zonal field is assumed
to be fixed. Therefore, there is no eddy feedback
to the zonal baroclinicity. This assumption may
be inappropriate for the correct parameterization
for the life-cycle of baroclinic waves. However,
present study is concerned only with the breaking
Rossby waves in the barotropic atmosphere. In
this regard, present parameterization of baroclinic
instability may be referred to simply as a wav-
emaker, or baroclinic stirring. Further modifica-
tions of present wavemaker are desired for
quantitative application of general circulation
studies.
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