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1. INTRODUCTION

Simmons and Hoskins (1978) conducted a numeri-

cal simulation of a life-cycle of nonlinear baroclinic waves.

According to their simulations, an initial perturbation
superimposed on a zonal field grows exponentially by
baroclinic instability drawing zonal available potential
energy. The amplified baroclinic waves start to trans-
fer the energy back to the zonal kinetic energy by the
barotropic conversion. The nonlinear baroclinic waves
appear to accelerate the zonal jet at the end of their
life-cycle as an expense of the zonal available potential
energy.

There should be no contradiction between the re-
laxed meridional temperature gradient and the acceler-
ated zonal jet with reference to the thermal wind re-
lation. The acceleration of zonal wind is supposed to
occur at the lower troposphere and deceleration at the
tropopause level so that the wind shear diminishes. In
this regard, more detailed analysis would be necessary
to understand the role of the baroclinic disturbances for
the changes in the vertical structures of zonal and eddy
fields.

In the present study, the life-cycle experiment is
demonstrated for Simmons and Hoskins’ 45°jet with ini-
tial perturbations of zonal wavenumber n=6 by inte-
grating the three-dimensional spectral primitive equa-
tion model (see Tanaka, 1991). Here, the vertical nor-
mal mode expansion is applied for the discretization of
governing equations in the vertical, which is straight-
forward for the analysis of energy redistribution in the
vertical spectral domain. We analyze the energy trans-
fer within the vertical spectral domain associated with
the life-cycle of the baroclinic disturbances. The energy
evolution and corresponding energy transformations are
presented in the framework of baroclinic-barotropic de-
composition of atmospheric energy.

2. MODEL DESCRIPTION

A system of primitive equations in a spherical co-
ordinate of longitude A, latitude ¢, normalized pressure
& = p/ps, and normalized time 7 = 2(2¢ may be reduced
to three prognostic equations of horizontal motions and
thermodynamics. The three dependent variables are
horizontal wind speeds, V = (u,v), and geopotential
deviation ¢ from the global mean reference state. Here,
s and §) are bottom pressure of the reference state and
angular speed of Earth’s rotation, respectively. Using a
matrix notation, these equations (refer to Tanaka and
Sun 1990) may be written as:
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where

U = (u,v, )", (2)
The symbols M and L designate linear matrix differen-
tial operators with respect to the vertical and horizontal
domains, N the nonlinear advection terms, and F the
diabatic processes including frictional forces.

A 3-D spectral representation of the primitive equa-
tions can be derived by taking an inner product of (1)
and basis functions of the 3-D normal mode functions
Hnl:n('\sgyg):
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Y, = 2S2diag(vg7im, vgli,,,, 1), (5)
and the inner product is defined as
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Here, Hum(A,0) and G,,(o) are Hough harmonics and
vertical structure functions for zonal wavenumber n, merid-
ional index I, and vertical index m, respectively. These
three indices will be reduced to a single index ¢ for short.
The scaling matrix Y,, is defined with the Earth's grav-
ity g, and equivalent height h,,, for every vertical index.
Refer to Tanaka and Sun (1990) for the detail of the
definitions and the derivation.

The resulting spectral primitive equations become
a system of ordinary differential equations for Fourier
expansion coefficients of variables:
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i=1,2,....M, (7

where w; and f; are the expansion coefficients of the de-
pendent variables and diabatic processes, o; are Laplace’s
tidal frequencies, ;1. are interaction coefficients, and M
is the total number of the series expansion for the 3-D
atmospheric variables.

In this study, we consider diffusion DF as a single
physical process. The scale dependency of diffusion is
parameterized using the 3-D scale index o; based on the
wave dispersion relating the wave scale and wave fre-
quency. We approximate biharmonic-type diffusion for

the Rossby (rotational) wave dispersion (for wavenum-
ber n # 0) by:

(DF) = K (>)ws, (®)
gi

where K is a diffusion coefficient. Haurwitz waves on

a sphere have phase speeds represented by the total

wavenumber of the spherical surface harmonics [ (see

Swarztrauber and Kasahara 1985):

(9)



Since the diffusion is often approximated with i(f +1),
the present form of diffusion in (8) tends to be the

biharmonic-type diffusion for higher order Rossby modes.

For the zonal component, the meridional index g is sub-
stituted for I.

The system of nonlinear equations (7) is truncated
to include only the Rossby modes for m=0-6, n=0 and
6, and 15=0-19. Note that the truncation is imposed
in the frequency domain as well as in the wavenumber
domain by excluding high-frequency gravity modes.

The initial condition is a northern zonal field of
January 1979 which is assumed to be symmetric about
the equator. Small amplitude unstable normal modes
are superimposed on the initial zonal field. The time
integration is hased on a combination of leap-frog and
a periodic use of Euler-backward scheme. By virtue of
the closure with the low-frequency subspace, our model
requires no implicit scheme and no artificial smoothing.

3. ENERGETICS ANALYSIS

The total energy, E; for each basis function is de-
fined in a dimensional form by

1 ;
E" = -2-})5 hm |wi|2. (10)

In order to explore the origin of this energy supply, an
energy flow hox diagram describing energy interactions
between barotropic and baroclinic components is con-
structed. By differentiating (10) with respect to time
and substituting (7), we obtain for eddy:
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Note that the linear term in the left-hand side of (7) does
not contribute to the energy balance equation. The first
term of the right-hand side of (11) stands for energy

Fig.1 Energy flow box diagram within zonal and eddy
energies decomposed in barotropic and baroclinic com-
ponents. (a) FGGE observation, (b) unstable Charney
mode for n=6. Units are 105Jm™ for energy and Wm™?
for energy conversions. Percentile contributions are sub-
stituted for (b).
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transformations from the barotropic component of the
zonal field Bp»=g into E;, and the second term repre-
sents those from the baroclinic components of the zonal
field B,,nzo into E;. By adding all indices for m=0, and
for m # 0, (11) becomes:

dEm=0

dt = C(Bm"=0, Em:(l) + C(Bm";é(h Em=0)s (12)

dE,, .
‘_d-tig = C(Bm"=0’ Em#ﬂ) + C(Bm"#(h Em#O)- (13)

The resulting energy flow box-diagrams are pre-
sented in Fig. 1 for the most unstable Charney mode
at n=6. Upper boxes (m” # 0,m # 0) denote the baro-
clinic component and lower boxes (m” = 0,m = 0) the
barotropic components. It is shown that large propor-
tions of energy are transformed from zonal baroclinic en-
ergy to eddy baroclinic energy then to eddy barotropic
energy for the growing modes. The result with FGGE
observation represents the characteristics of energy flow
by the baroclinically unstable modes.

4. RESULTS OF THE SIMULATION

Figure 2 shows the time variations of energy and
energy conversions discussed in Fig.1 for the life-cycle of
the nonlinear baroclinic disturbances. As shown in Fig.
2, the initial perturbations of n=6 grow exponentially
drawing zonal baroclinic energy. This early evolution is
reasonably described by linear baroclinic instability of
the 45°jet. Both the baroclinic energy and barotropic
energy of n=6 increase simultaneously since the unsta-
ble mode maintains its consistent structure to grow. The
energy flow is characterized as from zonal baroclinic en-
ergy via eddy baroclinic energy and to eddy barotropic
energy. These energy transformations are also synchro-
nized since they are proportional to the eddy energy
levels in the linear framework.

When the waves reach finite amplitude, barotropic
conversion increases, transferring the accumulated eddy
barotropic energy toward zonal barotropic energy. As
the result, zonal barotropic energy increases when the
synoptic waves decay. It is shown that the zonal jet is ac-
celerated so that the structure hecomes more barotropic.
The results are consistent with previous studies.

The important process in baroclinic instability is

the eddy heat flux due to the zonal-wave interaction
and simultaneous baroclinic conversion at each zonal
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wavenumber. This baroclinic conversion is fundamen-
tally a linear process. In contrast, the up-scale zonal-
wave interaction of the barotropic conversion is essen-
tially a nonlinear process. We find that the important

baroclinic-barotropic interactions are coupled with baro-
clinic instability rather than the barotropic conversion.

Figure 3 illustrates the time variations of energy
and energy conversions as seen in Fig. 2. During this
simulation, the largest meridional components of the
zonal haroclinic field (m=4) are fixed as steady to main-
tain the meridional temperature gradient. The diffusion
coefficient is increased in order to balance with the in-
creased energy supply. As the result, we find that the
baroclinic disturbances repeat the life-cycle for several
times, drawing the energy from the zonal baroclinic com-
ponents and feeding the zonal barotropic jet. The role of
the baroclinic disturbances is therefore evident to pump
the zonal energy from the baroclinic to the barotropic
components.

5. CONCLUDING REMARKS

A life-cycle of nonlinear baroclinic waves is exam-
ined in terms of the barotropic-baroclinic decomposition
of zonal and eddy fields. We can clearly observe the
time lag between the relaxation of the meridional tem-
perature gradient and the acceleration of the zonal jet
due to the activities of the nonlinear baroclinic distur-
bances. The jet is accelerated so that the structure be-
comes more barotropic in the vertical. This means that
the zonal wind is accelerated at the lower troposphere,
where the frictional dissipation is most efficient.
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Fig.2 () Time variations of eddy baroclinic energy {dashed

line), eddy barotropic energy (dotted line), and zonal
barotropic energy (solid line with its scale at right or-
dinate) for n=6. Units are 10%Jm=2. (b) Time varia-
tion of energy conversion from zonal baroclinic to eddy
baroclinic energies (dashed line), from eddy baroclinic
to eddy barotropic energies (dotted line), and from eddy
barotropic to zonal barotropic energies (solid line). Units
are Wm~2.

It is concluded by this study that the role of the
nonlinear baroclinic disturbances is to convert the zonal
baroclinic energy toward the barotropic component of
motions so that the energy is most efficiently dissipated
by the frictional drag near the ground.
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Fig.3 Time variations of energy and energy conversion
as in Fig.2, but for an experiment with restoring zonal
baroclinic field. The eddy energy (dashed line) is the
sum of the barotropic and baroclinic components.



