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Abstract

A diagnostic encrgetics scheme is developed in order to investigate the energy flows in the
three-dimensional spectral domain  (Hough modes in horizontal) in the atmosphere. This
energetics scheme is applied to the GFDL version of the FGGE level 11b duta during the winter
from December 1978 to February 1979.

The resultant cnergy flow of the general circulation is summarized as follows: Atmospheric
energy is generated at zonal baroclinic components, especially at the vertical mode m=4. The
generated zonal energy at the baroclinic components (referred to as baroclinic energy) is first
converted to eddy baroclinic energy. then to eddy encrgy at the barotropic component (referred
to as barotropic encrgy). Accumulated cddy barotropic encrgy at the synoptic-scale disturbances
is finally transformed to zonal barotropic energy by the process of up-scale energy cascade.
Henee, atmospheric jet stream is accelerated by eddics so that the jet structure becomes more
barotropic in the vertical.

Parameterizing the horizontal scale of waves by their cigenfrequencies of the Hough maodecs,
we find that the encrgy spectrum of the synoptic-scale Rossby modes obeys approximately the 3
power of the eigenfrequency. as expected from the 2-dimensional turbulent theory. Howcever. for
the largest-scale Rossby modes in the planetary waves. the spectrum obeys the -5/3 power law
and merges with the spectrum of the largest-scale gravity modes. it is concluded from the results
that the energy spectrum of the global circulation has both 3 and -5/3 power regimes within the
barotropic planetary waves.

1. Introduction role of the atmospheric cddies has been
Since the atmospheric cnergy flow  was extensively  investigated.  Saltzman  (1957)
discusscd by Lorenz (1955) using the concept expanded the energy equations into the

of available potential energy. the encrgetical wavenumber  domain and  showed that  the
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kinetic cnergy of the cyclone-scale waves is
transformed into both the planctary waves and
the short waves in terms of nonlinear wave-
wave interactions. The study by Saltzman was
followed by Kao (1968) and Hayashi (1980)
who extended this approach to  the
wavenumber-frequency domain making use of
the two-dimensional Fourier expansion or the
space-time  spectral method. The encrgy
decomposition  was  further pursucd in  the
meridional wavenumber domain using spherical
harmonics (Eliasen and Machenhaucr, 1963)
and in the vertical wavenumber domain using
empirical functions  (Holmstron,
1963).

Kasahara (1976). on the other hand. showed
a computational scheme of Hough functions
(called horizontal normal mode functions) in
the barotropic atmospherc. The Hough

functions are the cigensolution of lincarized

orthogonal

primitivc cquations over a sphere and have
been applied extensively to nonlinear normal
mode initialization techniques. He applied the
Hough functions to an orthonormal basis for
the cnergy decomposition in the meridional
wavenumber domain. Since Kasahara and Puri
(1981) first
eigensolutions  to  the vertical  structure
equation, it became possible (o expand the
atmospheric data into the threc-dimensional

obtained orthonormal

harmonics of the eigen-solutions. The normal
mode approach is uscful especially for the
rescarch of (ropical waves because Kelvin
mixed

waves  or Rossby-gravity waves are

obtained as thc normal modes in the

atmospheric  oscillations.  Recently,  some
oscillation in the middle latitude atmosphere.
such as 5-day waves or 16-day waves, are
identified with external Rossby waves of (1.1)
and (1.3) modes, respectively (see Madden,
1978). According to Lindzen ct al. (1984), the
observed  planetary  scale  oscillation  arc
identilied with the low-order external Rossby
waves which are expected by the theorctical

rescarch. They compared two versions of the
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FGGE data by the Europcan Center for
Medium Range Weather Forecast and the
Goddard Laboratory for Atmospheric Science,
and verificd that the waves are not the
artificial products by the Gencral Circulation
Models but the characteristics of the observed
atmosphcre.

It is still
modes are created, amplified or dissipated.
This
amplification of planetary waves in conjunction
with  the

uncertain, however, how these

problem is  closcly related with an
blocking  phenomena  in  the
troposphere and the sudden warming in the
(1981)

are created by

stratosphere.  Garcia  and  Geisler

suggested that the waves
stochastic noise. Regularly oscillating  zonal
wind (Hirota. 1971) may bc one of the
explanations  for the variations of the
atmosphcric normal mode. Although scveral
researchers  investigated the  statistics
(Kasahara. 1976) or time variations (Linzen ct
al.. 1984) of the normal modes by projecting
the encrgy onto the Hough tunctions, the
cnergy flow among these modes has not been
investigated in the previous rescarch so far.

In this paper we have developed a diagnostic
energelics scheme which describes the energy
flow among the different modes in the
atmospherc. Hereafter, we will call such a
scheme a normal mode cnergetics scheme in
reference to the spectral energetics scheme by
Saltzman. In order to devclop the normal
mode encrgetics scheme, we have applied the
technique of the three-dimensional expansion
into normal mode functions developed by
Kasahara and Puri (1981). This scheme can
provide much information concerning the
energetics for particular normal modes such as
5-day waves or 16-day waves. By summing the
normal mode energetic terms within the same
physical categories, for example, barotropic
mode,  baroclinic mode, Rossby mode or
gravity mode. it is also possible to investigate
interactions them. By

the cnergy among

applying the normal mode cnergetics scheme
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to a data set of the Fiust GARP (Global
Atmosphcric Global
Experiment (FGGE) by the Geophysical Fluid

Rescarch  Program)
Dynamics Laboratory (GFDL), we investigated

the encrgy distributions and  the energy
interactions as functions of zonal wavcnumber,
meridional

vertical wavenumber and

wavenumber. Since each normal mode s
associated with one eigenfrequency. it is also
attempted to present the encrgy distributions

in the cigenfrequency domain.

2. Data

The GFDL version of the 'GGL 11b data
for I Dccember 1978 though 30 November
1979 wcere obtained from the World Data
Center A for Meteorology at Asheville, North

Carolina, U.S.A. The FGGE data on a 1.8737

X 1.8757  latitude-longitude
interpolated to a 47X 5 grid with 46 latitudes
from 90°S to Y0°N and 72 longitudes trom 0 to
355" E. The twice daily (0000 and 1200 GMT)
meteorological variables of horizontal wind.

grid  were

vertical p-velocity. temperature and
geopotential height are defined at 12 vertical
levels of 1000, 850. 700, 500, 400, 300. 250.
200, 150, 100, 50. 30 hPa. These FGGE data
are the same as used by Kung and Tanaka
(1983, 1984) for the spectral encrgetics analysis
of the global circulation (refer to these papers
for details). The winter three months from
December 1978 to February 1979 arc analyzed
although the vertical eigenfunctions and the
Hough vector functions arc computed based on
the annual mean global mean temperature.
The GEDL version is selected from several
versions of the 'GGLE data because a global
optimum interpolation analysis in the final
stage of 4-dimcnsional assimilation process
(Miyakoda et al.. 1982) scems to ¢nhance the
quality of data as the observed atmosphere.
The gravity wave component should be
retaincd as well as the Rossby waves cven
though the statistical

interpolation  process

tends to lose the dynamical consistency of the

data.

3. Scheme of Analysis

A normal mode in a realistic mean zonal
wind has not been obtained so far. It is
discussed by Kasahara (1980) and Salby (1981)
that thc¢ Hough functions in a motionless
atmosphere would be distorted by the presence
of the realistic basic state. As is pointed out by
Ahlquist  (1982), however, the distortion is
small for the lowest-order Hough modes. In
this study, the atmospheric data have been
projected onto the Hough functions obtained
for motionless atmosphere as in Kasahara
(1976) or Lindzen et al. (1984).

A set of
coordinate in the vertical may be written as

primitive equations with p-

%IT{ ~2Qsingv + a ('l()ié %
=—V-Vu—m%;; +“%“9111’+F,,, 0
% +2@Qsindu + % %
=—V.Vy— ,,,g—l‘; - I«(r't(} wtF,(2)
% Haip f;—i/a%)siblﬁ7 v
:a_a!) ﬁy(—v- V'l'—wg_;)l
where
Y= RCII' —p % )

The symbols used in the cquations are
customary and summarized in the Appendix.
In order to obtain the energy conscrvation law,
one term has been neglected in (3) assuming
that the perturbation temperature, T, is
the basic state
Holton, 1975). The
stability parameter, y, which is determined by

negligible compared with

temperature. Ty  (scc

the basic state temperature is a function of p
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only. The right hand sides of (1)-(3) involve
nonlinear terms, frictional forces and a diabetic
heat source.

By a variables for the
linearized version of (1)-(3). we obtain a

separation  of

vertical structure equation which constitutes an

cigenvaluc  problem to obtain equivalent
heights. #,,,
d p*d_ . 1
(dp ﬁ; tl'p) Gulp)t+ & G.(p)=0. (5)

Applicd to the proper boundary conditions,
Eq. (5) is solved by a finite difference method.
The m-th vertical eigenvectors, G, (p). satisly
the orthonormal condition:

% j;‘ G,,,([)) G,-([)) dp:ami' (6)
where the subscript j refers to a different
eigenvector, and &, denotes Kronecker delia,
Global mecan surface pressure, p,. is substituted
for (6). Refer to Kasahara and Puri (1981) and
Kasahara (1984) for discrete and continuous
formula 1o get a sct of orthonormal
eigenvectors. The basic state temperature, 7,
stability parameter, y. and equivalent hcight,
listed in Table 1. Global mcan
temperature of the FGGE data is averaged for
onc vear from Dccember 1978
November 1979 to obtain 7.

Fig. | illustrates the orthonormal vertical

h,,. are

through

eigenvectors obtained by the finite difference
scheme with 12 vertical levels. The vertical
mode m = 0 is called a barotropic mode
because the wvalues of the mode are
approximately constant and have no node in
the vertical. The vertical mode m =1 has onc
node in the vertical, m =2 has two nodes and
so on. The vertical mode numbcr is defined in
this paper so that the
corresponds to the number of nodes in the

mode number
vertical. The modes m > 1 arc regarded as
baroclinic modes. The vertical structure for the
higher modes may depend on the selection of
vertical levels for finite difference method.

Table 1. Global mean temperature 75, stability
parameter y, and cquivalent height #

nre

P{mb} TalK) 7 (K) m i, (m)
30 215.56 66.841 0 9623.9
50 212.72 67.91 1 2297.1
100 205.19 57.62 2 175.9
150 2144 39.55 3 272.0
200 219.17 33.77 4 150.0
250 225.94 28.65 5 79.5
300 233.47 22.5) 6 42.4
400 247.63 20.23 7 26.3
500 258.97 24.19 8 21.6
700 274.38 31.36 9 13.4
850 282 .48 37.07 10 9.4
1000 289.82 33.84 11 9.0

w; ~_ 7 o s ?

o |

N

gm_

e 500 |- 5

S T I

Fig. 1. Vertical eigenvectors for (a) vertical

modes m=0-2, and (b) m=3-5.

Using the orthonormal condition (6). we can
construct a set of vertical transforms:

)= 2, fnGulp). )
- 1 I‘/'J’A
fw= e fip) G..(p) dp. (8)

where f(p) ia an arbitrary function of pressure.
By applying the vertical transforms to (1)-(3),
we obtain a dimensionless cquation in a vector
form:

2}

y Wm+ LWm= BIH + (‘m—l- Dmv (0)
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where
"Il
l1’]‘" = || "‘:I{ .l

n

)

i igh, 0 0 ~,_' y
=| 0 igh 0| v )
Yoo 0 gh, ' el (10)
(200, 1" 0 0,
B,= 0 200gh, 0|
L 0 20!
. fe] anf
| V'Vu—ma*;:—i::*m', |
_ v
i U VITE g;) - “nguu,
i !
: 0 Voo (11)
;2Qigh, )" 0 0.
szl 0 29‘:}{’1.,,]':3 () :
' 0 0 20!
i 0 t
[
| a .p . ar |
— = [=V 97— ~ [ 12
!3[)‘7 [ 1 (uap ]J"m (12)
o 2Qigh, 0 (I
D,=| 0 200k, 0|
S| 0o 29
Foo
! |
I 5 F, |
9 .U,
' ap ..('pf ,}.u (13)

The subscript m denotes the m-th component
of the vertical transform. After obtaining the
m-th vertical componcnt, we make the vectors
dimensionless by a scaling matrix involving the
equivalent height #,, and 2Q for time. The
linear operator. L., is given by

. am O
l' b g cosfl 9) “
. 2
1= sinf) 0 LYy ‘ (14)
| ew 3 ew iy

s 21 cos§ ab

where the dimensionless coelficient. a,,. IS
defined as

am— 204

? L
_ (gha) ' (15)

The linearized equation (9) substituted by
zero for the right hand side is called a
horizontal structurc cquation (Laplace’s tidal
cquation), and the solutions are called Hough
harmonics. H,,,,. The Hough harmonics are
obtained as an

eigenvalue problem with

eigentrequencies for the {ree waves:

- l.o'\.,,,,H.\,,,,"'l' LHAnnzo' (l())
where

H ol A 8)=6,,u(8) exp (is). (a7
and the Hough vector functions, ©,,,. arc
given by

Uy
6=(-V) @) (18)
) Z sro

Refer to Longuet-Higgins (1968) and Kasahara
(1976) for details concerning the Hough vector
functions. The subscripts s and r denote zonal
wavenumber and meridional mode number,
respectively. The meridional mode number is
defined as a sequence of the three distinct
modes. The one is a westward propagating
Rossby mode specified by /. ‘T'he other two
are westward and castward propagating gravity
modes, fy and {z. The Hough harmonics
satisly  the

orthonormal condition in the

following sense:

[ Il*xnn * H,\ it (‘().\'0(!/\ (10

(19)

where the asterisk  denotes a  complex
conjugate and the primes refer to another
Hough harmonics.

Using the orthonormal condition, we can

construct a sct of Fourier-Hough transforms:

WalR. 0.0= 5 Swolt) HonlA. 8). (20)
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wan)= 3, | [ H e W coraarda. 1)
By applying the Fouricr-Hough transforms to
(9). we obtain

W w,\'rm+ iU.vmwsnn= brrm+ C.\‘rm+ dsrmv (22)
where the complex variables wy,,. Dyume Come
and d,,, are the Fouricr-Hough transforms of
the vectors of  (10)-(13), respectively.
According to (22). the timc change of the
complex expansion coefficient of a normal
mode, wy,,. is causcd by four terms, ie., a
lincar term related with phase change of the
nonlinear terms due to wind field and
mass ficld, and a diabatic process. Since the

wave,

eigenfrequency gy, is always real, the lincar
term contributes only to the phasc change of
the wave, but not to the amplitude change.

On the other hand, the summatton of kinctic
energy, K. and available potential energy, A.
is conserved provided that F,,=F,=0 and Q=0
(see Kasahara and Puri, 1981):

d 1 (P
i [ggf]n Edpt ) ; -RT $2ds|=0,  (23)

where
E=K+ A, (24)
i
K= T(“ +v%), (25)
l
A= 26
5 Ry( (26)

and the subscripts s for the coefficients denote
surface value of the basic state here. By
cxpanding the dependent variables in (23) into
the vertical
equation of energy conservation is reduced to a

normal modes using (7), the

sum of squares of dimensionlcss variables u,,,
V. and ¢,

d

hl"
AP f(u.,,+v,,,+¢,,,) asj=0. @)

Moreover, by expanding them into the Hough
harmonics using (20), we finally obtain the
equation of cnergy conservation in terms of a
summation of cnergies associated with cach
mode:

e ([
wmEN =0 = d’ E"""" ()’ (~8)
where
[ Y
E()nn: T px’hnl”hrm‘ . (29)
| Y
Exrmz 7 Px, ’m'w.vml ~ (30)

The energy of a normal modc is defined as the
squarc of the absolute value of the complex
expansion  coefficient, multiplicd by a
dimensional factor chosen so that the energy is
expressed in Im ~. The kinetic encrgy of zonal
and meridional components, K, and K, and
the available potential encrgy, A, for each
mode, may be approximated by £, trough
multiplication by cocfficients, g,, 8., 8. which
represent cnergy rations of U, V, and Z of the
normalizcd Hough vector functions:

[ K“ " \ Bu i
[K ] =Ew] 8
! ! +
A sm ﬂ: srm
7
w2 | b !
= srmJ ,l v | cosd dg. (31)
A
AR

In general,
correct because U, V, Z are not orthogonal to
one another. However, the energy separation

this scparation of energy is not

in K and A so oblained is comparable to the
physical separation by thc established spectral
This fact suggests that
good

energetics by Saltzman.
the present cnergy separation is a
approximation to the reality.

In order to obtain energy balance equations
for the normal modes. Eqgs. (29) and (30) are
differentiated with

Substituting (22) into the time derivatives of

respect  to  time. .
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Wy, We obtain finally:

d
i Fon= Buwt Cont D, (32)
where
B\"’m = pA\ {3 hulll‘t’.\':nb\'rm + w\!u.‘b\'l"'l‘ill‘ (;3)
, * * :
(‘.\TI": I)\‘(z hllll u’\.'lll(l‘,!lﬂ+ "I.\"Il“(‘dl"l! I » (}4)
_ * X * 25
DA‘! l"_ p&Q hllll“’\"l"d‘l'l"‘lﬁ "‘A.\'"l(['vllﬂl' (' - )

According to (32). the time change of £,
is caused by the three terms which appear in
the right hand side of (32). The terms 8, and
C,yy, are respectively associated with nonlincar
mode-mode interaction of kinetic and available
potential energics, and D, represents an
energy source or sink duc to the diabatic
process and dissipation. The linear term in (22)
does not appcar in the energy balance cquation
because this term does not contribute to the
time change of the magnitude of w,,,. Egs.
(33)-(35) should be multiplied by 0.5 for s —0
as in (29). The energetics terms of gravity
modes for s =0 were multiplied by 0.5 in this
study because a set of Hough vector functions
associated  with  positive  and  ncgative
cigenfrequencies are the complex conjugate of
each other (refer to Kasahara. 1978).

By mcans of the inverse transforms of the
vertical and Fourier-Hough transforms. it can
be shown that the summations of all nonlinear
mode-mode interactions, B,,, and C,,,. are
zero because they represent global integrals of
the flux convergences of the kinetic and the
available potential energies. respectively:

i; L"' z‘ B.\Im

=il e =l =0

(] Py ak
[ 1=9 kv = 2% dpas o,

=8 <1y - ap
JAREE I (36)
Z 2 i: ("\'."I.'l
17 ol?s A
N Ei\' J\' Jn =V -av - §a7)g| dpds 0.

(37)

The vertical change of ¥ i1s assumed to be
negligible, and the vertical geopotential flux is
also assumed to be negligible for the surface
integral at p.. so as to obtain the relation (37).
The sccond term in (23) represents the vertical
geopotential flux at the lower surface. This
term has been considered in this study as the
sccondary importance for the global energetics
analysis.

The Hough vector functions are truncated at
26 Rossby modes (I = 0-25) and 12 gravity
modes (fy,=0-11, [, =0-11). Energetics terms
are computed for cach observation time and
averaged during the data period.

4. Energy Distributions

A summation of cnergies for all the normal
modes 1s equivalent to the encrgy integrated
over the entire mass of the atmosphere as was
discussed before. If we take @ summation of
energies for all meridional and vertical modes,
the resultant encrgy becomes a function only
of the zonal wavenumber. Because both
Rossby and gravity modes are involved in
Hough harmonics, the energy spectra of those
two modes arc presented separately.

The distributions of kinetic and available
potential energies for Rossby and gravity
modes arc illustrated in Fig. 2 as a function of
zonal meridional

components of the Kinetic energy [or the

wavenumber, The

Rossby modes are also illustrated in the figure.
The kinctic encrgy spectrum for the Rossby
modes follows approximately the -3 power law
for s> 7 (Leith, 1971). The available potential
cnergy spectrum also follows the -3 power law
(Chen and Wiin-Nielsen. 1978). This range is
regarded as an inertial subrange for two
dimensional  isotropic  turbulence in  the
atmosphere. The kinctic encrgy level is lower
than that expected by the -3 power law for s=
I to 6. This energy
distribution is attributable to the meridional

deflection  of  the

component of the kinetic encrgy. These results
are consistent with previous research (e.g.,
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Fig. 2. Energy distributions in the wavenumber
domain. K : kinetic energy. A : available
potential encrgy, K, : v-component of K

Wiin-Nielsen, 1967). The cnergy distributions
for the gravity modes {ollow the -5/3 power
law, which is also the characteristics of two-
in the

dimensional turbulence

atmosphere.

isotropic

Synthesizing the energies with respect to all
the zonal wavenumbers and meridional indices
for Rossby and gravity modes separatcly, we
obtain the energy spectra in the vertical
wavenumber domain. Fig. 3 illustrates the
cnergy distributions of eddy kinetic and eddy
1-15)

Rossby and gravity modes, respectively. The

available potential energies (s for
fcatures arc the same for s=0 (not shown). In
this study the normal modes for s = 0 are
obtained according to Kasabhara (1978). A
large amount of kinetic energy of the Rossby
mode is included in the barotropic mode (m=

0). Another cnergy peak is scen at m=4 which

TANAKA
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L ]
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10° |-
\._. Rossby
h ot
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1 I | L 1 1 | [ ] 1 1
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VERTICAL MODE
Fig. 3. Eddy encrgy distributions in the vertical

mode domain.

is one of the baroclinic modes. As is seen in
Fig. 1, the cigenvector for m =4 has a node
near 600 hPa and maximum near 250 hPa. The
. tropospheric jet ncar 250 hPa level may cause
the sccondary maximum of Kinctic energy at m
=4. This secondary pcak was found at m=3
according to Kasahara and Puri (1981). The
distribution of available potential energy for
thc Rossby mode shows an cnergy maximum at
m=4. Small temperature deviations from the
global mcan near 250 hPa may be reflected at
m = 4. The reservoir of available potential
energy (but
barotropic mode. The energy reservoir of this
mode should vanish if the vertical eigenvector

is  small not vero) for the

m =0 were exactly constant with respect to
pressure. The distribution of both the kinetic
and available potential cnergics for the gravity
modcs indicate their energy peaks at m =4,
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This result differs from that obtained by Puri
(1983) who obtained the energy maximum at m
=0 in his model analysis.

The kinctic energy spectra in the meridional
wavenumber domain are illustrated in Fig. 4
for s =1 through 6. With the results in Fig. 3,
the distributions are presented for m=0 and m
=4. The kinetic cnergy spectrum for s =0 (not
shown) indicates the energy peaks at the first
two symmetric modes of the barotropic mode.
These two symmetric modes. 7 =1 (3.3 X 10°
Jm™" and 1 =3 (1.9 X 10" Jm -}, contain
about 50% of the kinetic energy for s=0. The
distribution of available potential cnerpy for s
= (0 shows an cnergy peak at the first
symmetric mode of m=4. This single mode, I
=1 (22.7X 10" Jm ™) contains aboul 50% of
the available potential energy of v = (). The
kinetic energy distribution for the Rossby
modes of s=[. m =0 shows the energy peaks
at {g=4 and 6. The distribution approximately
follows the -3 power of the meridional mode
number at the range of large meridional
modes. A similar result was {ound by Kasahara
and Puri (1981). There is an apparent cut-off
of cnergy at the range of fx<4. Tt is discussed
in Tanaka (1984) that for s = 1.
transition of energy peaks was observed during

m =10, a

January 1979 form /=8 via 6 to 4. The wave
cnergy started o propagate vertically when the
energy peak reached I =4 or 3 which is the
critical meridional  scale  for the vertical
propagation (see Dickinson, 1968). It is found
by the intermediate results of the present study
that the encrgy of m=0is transformed to m=
1 while the vertical propagation occurred. For
this results. the meridional index with  the
energy peak is considered as the critical
meridional scale for the vertical propagation of
wave energy. The range where the -3 power
law is applicable is regarded as pertaining to
trapped mode.

Conversely the  range  of

smallest  meridional index  represents  the

propagative mode. The cnergy peaks are scen
at fp=3 for s=2, 3. Sand at {,=2 for s=06.

The kinetic cnergy spectra for m = 4 show
energy peaks at [p==6. 7 for s=35 and 6. These
cnergy associated  with  the

characteristic meridional scale of the cyclone-

peaks are

scale waves. The encrgy peaks for m =4 are
flattened in s =1 or s =2. The cnergy spectra
for the gravity modes approximately follow the
-5/3 power of the meridional mode. The cnergy
level for m = 0 tends o decrcase as the
wavenumber  increases.  but it remains
unchanged for m=4.

A Hough function is associated with an
eigenfrequency which is determined by the
horizontal scale of the wave. Using the
cigenfrequency  as  a  coordinate.  we can
investigate the energy spectra in the {requency
domain. In Fig. 5 the kinetic energy
distribution of barotropic mode is plotted as a
function of dimensionless frequency ¢. The
westward  propagating  Rossby modes  (large
symbols) and gravity modes (small symbols)
are plotted in the left half of the figure.
whereas the small symbols in the right half
indicate  the  castward  propagating  gravity
modes. Since the energy levels of the gravity
modes are low and are accommodated with
high frequencies, the energy distributions for
the gravity modes are positioned in the lower
left and lower right corners of the figure. The
distributions show clear energy peaks at the
frequency (period) ¢ =0.03 (16 day) for s=1,
and ¢=0.07 (7day) for s=06. The energy peak
is a function of the wavenumber. These cnergy
maxima correspond to those in the meridional
mode domain (Fig. 4). As was discussed
previously, the frequency for which the energy
peak is observed, corresponds to the critical
meridional scale for the vertical propagation.
The cnergy spectra follow approximately the 3
power of the frequency at the low frequency
range. On the other hand, the spectrum
follows approximately the -5/3 power at the
high frequency range of the gravity modes. As
is scen in Fig. 2 and 4. the cnergy spectra of
the gravity modes seem to follow the -5/3
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and
meridional index. Because the phasc velocity

power of the zonal wavenumber
of the gravity mode is a function of the depth
of the fluid (equivalent height), and taking into
account the relation ¢ = /s, we thus have an
analogy with the -5/3 power law for the
frcquency domain. By using the dispersion
relationship of the Rossby-Haurwitz waves, the
same argument gives us an analogy of the 3
power law for the low frequency range. ‘The
most interesting featurcs of this result arc that
the cnergy distribution of the largest-scale
Rossby modes not only scems to follow the -
5/3 power law, but also mcrges continuously
with the distribution of the gravity mode. The
mixcd Rossby-gravity modes are positioned
the types of The
frequency in the abscissa is determined by the

between two modes.
theory for free waves in the motionless
atmospherce. Nevertheless. the energy peaks in
the frequency domain may be significantly
rclated with forced and free stationary waves
in thc westerlies. Supposing that the energy
peaks correspond to the stationary waves, the
spectral distribution turns out to be similar to

that found in previous rescarch concerning the
space-time¢  spectra  of  progressive  and
retrogressive waves (c.g.. Hayashi, 1982). Tt is
conjectured that the meridional scales of the
waves arc adjusted so that the energy spectra
follow the 3 or the -5/3 powcr law in the
motionless atmosphere.

Fig.6 shows the energy distributions of the
kinetic energy of =0 and 4 and the available
potential energy of m = 4 for the westward
propagating Rossby modces as a function of the
dimensionless phase velocity (¢ = ¢/5). It may
be readily noted that the distributions of
kinetic cnergy follow approximately the 3
power of the phasc velocity independently of
the wavenumber. The distribution of available
potential energy seems to obey the 5 power
law (see Mcrileces and Warn, 1972).

Before leaving  this the
distributions are shown for Kclvin modes and
mixed Fig.  7(a)
illustrates the encrgy distributions for these

section, cnergy

Rossby-gravity  modes.

modes as a function of wavenumber by

summing all the contributions relative to the
vertical modes. Most of the energy is included

(b) (¢c)
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Fig. 6. Energy distributions in the dimensionless phase velocity domain for Kinetic energy (a) m —0, (b)

m=4 and for availablc potential cnergy (¢) m=4.
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in the planetary waves for the Kelvin modes,

whereas the mixed Rossby-gravity modes
indicate an cnergy peak in the cyclonc-scale
Fig. 7(b) the energy
distributions as a function of vertical mode
obtained by a the

wavenumbers. Most of the energy is included

Waves. illustrates

summation over all
in the barotropic mode for the mixed Rosshy-
gravity modes. ‘The Kelvin modes show an
energy maximum in the range of m=2 (o 4.

and the energy level is very low at the
barotropic mode.
5. Energy Interactions

We start the examination of the energy

interactions in the wavenumber domain by
synthesizing all the vertical and mcridional
modes. The results for all the vertical modes
(m=0-11) are illustrated in Fig. 8(a). Fig. 8(b)
and () show the scparation into barotropic (m

= 0)
respectively. The results are presented only for
the Rossby modes excluding the gravity modes
unless otherwise mentioned. The distribution

and  baroclinic modes (m = 1-11),

for m=0-11 is equivalent to Fig. 1 in Kung and
Tanaka (1984). The term C corresponds to
R(n)+ S(n) and the term B to M(n)+ L(n) in
the mentioned paper except that these results
are for the Rossby mode only.

The the

mteraction ¢ means that the zonal available

positive  valuc  of nonlinear
potential energy is transformed into the eddy

available  potential encrgy. By means of
the

barotropic and the baroclinic modes, it is

separation  of this interaction into
found that most of the interaction is included
in the barotropic mode. In particular, the
wavenumber 2 show large intcraction. The
interaction by the baroclinic mode is small for

all the wavenumbers. Flowever. this result is
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modificd in Tanaka and Kung (1988) by
assuming the vanishing wind at the lower
surface. This assumption should be physically
correct duc to the surface friction, and the
vanishing heat advection at the lower surfacc
in (12) appears to reduce the barotropic
component of the term C. The incrcased C at
the baroclinic components can balance with the
negative valuc of B. This interpretation of the
atmospheric  cnergy  flow is  physically
rcasonable. Henee, the result described by
Tanaka and Kung (1988) would represent the
real cnergy flow, and the result illustrated in
this Fig. 8 can be incorrect. It is found in this
study that the analysis result is extremely
sensitive to the treatment of the lower surface
wind.

On the other hand. the nonlinear interaction
for the kinetic cnergy. B. for m=0-11 shows
negative values. This mecans that the eddy
kinetic energy is transformed into the zonal
kinetic

energy. The separation of the
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Fig. 9. Encrgy interactions (Rossby mode) in the
vertical mode domain for (a) s=0-15, (b) s=0
and (¢) s=1-15.

interaction into  the  barotropic  and the
baroclinic modes reveals that these features are
valid only for the baroclinic mode. On the
contrary, the direction of the energy [low for
the barotropic mode is oppuosite to that for the
baroclinic mode.  This  result  would  be
important for an investigation of barotropic
instability because the result suggests the
possibility of an energy flow from the zonal
kinctic cnergy to the cddy kinetic energy in a
climatological sense. Nevertheless, the kinetic
cnergy of the barotropic mode seems to be
supplicd by the baroclinic modes instead of by
the zonal motions as will be shown later.

Fig. 9 illustrates the distributions of the
nonlinear interaction in the vertical mode
domain for all wavenumbers (s=0-15), zonal (s
=0) and eddy (s =1-15) obtaincd by a similar
procedure as in Fig. 8. The available potential
cnergy generated in the zonal baroclinic mode,
cspecially m =4, is transformed into both the
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zonal and cddy avaslable potential energies of
the barotropic mode. Similarly the kinetic
cnergy is transformed from the barochnic
mode to the barotropic mode. Evidently. the
kinctic c¢nergy of the barotropic mode is
supplicd by the baroclinic mode. The nonlincar
interactions for the available potential cnergy
and the kinctic energy are visibly expressed in
Fig. 10, where the abscissa corresponds to
zonal wavenumber and the ordinate to the
vertical index. The arrow in Fig. 10(a)
indicates the cnergy {low of the available
potential energy from the zonal baroclinic

C )

mode to the planetary scale barotropic mode.
If we assume the vanishing lower surface wind
as discussed above, however, the result will
show the cnergy flow from zonal baroclinic
components to eddy baroclinic components.
Likewise. the arrows in Fig. 10(b) indicate the
energy flow of the kinetic energy from the
cddy baroclinic mode to the zonal and eddy
barotropic modes. Zonal kinctic energy s
supplicd by the cddy kinctic energy of the
baroclinic mode.

Finally, the normal mode energetic variable
are summarized in Table 2 in terms of the
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Fig.10.  Energy interactions (Rossby mode) in the wavenumber and vertical mode domains for («)
available potential energy and tor (b) kinetic energy, Large negative values {energy outflow) are

hatched. Unit : 10 % Wm ™ *,

Table 2. Lincrgy balance for the classificd modes in the wavenumber, vertical mode and meridional mocde
domains. Units arc 107 Jm "= for cncrgy. Wm™ = for interactions.

mode K. K. N

s=0 10.6 0.0 10.7
s=1-5 1.6 | .4 5.9
s—=6-10 0.9 0.9 1.8
s=11-15 0.2 0.2 0.5
m=0 8.6 1.5 10,1
m=1-11 7.1 [ 8.9
Rossby 16.1 2.3 18.41
Wesl-gr. 0.1 0.2 0.3
Fast-gr. 0.1 0.1 .3
Sy¥m. 12.5 1.3 13.7
Antisym. 3.9 1.3 0.2

I 3 C B+C
5 61.2 0.39 —1.93 —1.54
7 9.6 —0.38 1.73 1.35
B 2.4 —0.25 0.60 0.36
2 0.7 0.01 0.07 0.08
1 12.2 0.78 3.86 4.64
8 Gl.7 —=1.00 —=3.39 —1.39
i ‘3.1 —-0.21 0.44 0.23
| 0.4 0.02 —-0.02 —0.01
2 0.4 —0.03 0.05 0.03
5 62.2 0.07 —0.52 —0.44
R 1.7 —0.29 0.99 0.70
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classified modes in thc wavenumber vertical
The
zonal and eddy cncrgy levels are respectively
10.7 and 8.2 (10" Jm *) for the kinetic energy
and 50.5 and 4.5 (10" Jm™>) for the available
potential  cnergy.  These agree
reasonably well with previous results (Kung
and Tanaka, 1983) despite the fact that the
kinetic and available potential energies have

mode and meridional mode domains.

values

been retricved by the total cnergy through
multiplication by the coefficients g, 8. 8-
The energy interactions between zonal and
cddy kinetic energies and between zonal and
eddy available potential energics are (0.39 and -
1.93 (Wm <), respectively.
interactions are also reasonably close (o those

These  cnergy

found in previous research notwithstanding the
fact that the period of analysis is slightly longer
the
the
the
the

in this study and the stability parameter for
available potential energy is fixed by
annual mean statc. Decompositions of
and energy
barotropic and the baroclinic modes reveal that

energy interactions  into
a large amount of energy is transformed from
the baroclinic mode to the barotropic mode.
This indicates that the cnergy is generated in
thc baroclinic mode and dissipated in the
barotropic modc. This energy flow s
reasonable because large amount of available

Table 3.
Units are 10% Jm

potential encrgy (s = 0) is converted to eddy
kinetic energy in the atmosphere, where the
former must be
but the is dominated in the
barotropic mode. Decompositions into the
Rossby mode and the westward and eastward

included in thce baroclinic

modc latter

gravity modes show that the encrgy of the
gravity modes is about 1% of that of the
Rossby mode for the case of the GFDL
version of the FGGL data. Dccompositions
into the symmetric and antisymmetric modes
show that 75% of the energy is included in the
symmectric mode and 15% in the antisymmetric
mode. Although. as a total, the energy is
the
mode.

transformed  from symmetric  to  the

antisymmetric the kinctic energy

interactions indicate a reverse cncrgy flow

from the antisymmetric (o the symmetric
mode.

The same c¢nergetic variables are listed in
Table 3 for the Kelvin mode.

Rossby-gravity mode and several low-order

the mixed

Hough modes which appcared in the recent
papers. The values for the Kelvin and the
mixed Rossby-gravity modes arc obtained by
all and
The the
parentheses for these single Hough modes
denote wavenumber s, meridional mode /; and

thc summation over wavenumbers

vertical  modes. numbers  in

Energy balance for Kelvin, mixed Rossby-gravity modes and low-order Hough modes (s, r, m).
* for energy, and 107 Wm ™ for interactions.

B+C

mode K, K, I i I B ¢
Kelvin 5.4 0.0 5.4 5.7 11.1 1.5 0.4 1.8
Mix Ro-pr. 1.9 14.2 16.1 1.4 17.5 —1.4 1.9 0.1
{1.1,0) 0.4 0.1 0.5 0.3 0.8 —0.2 -1 —-1.3
(1.2,00 1.7 0.5 2.3 0.9 3.1 —0.1 —1.8 —41.9
{(1.3.01 5.8 1.5 7.3 1.8 9.1 0.7 2.3 3.0
(1.4,0) 9.4 2.0 11.4 1.8 13.3 1.9 2.1 4.0
{2.1,0) 0.3 0.3 0.5 0.1 0.6 —0.2 1.3 1.1
{2,2,0) 2.3 1.6 3.9 0.7 1.6 —-1.8 6.9 5.1
(2.3.0) 7.7 1.1 1.7 I.6 13.4 —0.9 6.7 5.8
(3,1.0) 0.3 0.6 0.9 0.1 1.1 -0.2 0.1 -0.1
(3.2.0) 1.2 1.3 2.5 0.3 2.8 0.0 1.5 1.5
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vertical mode m, respectively. The Kelvin
mode involves about the same amount of
kinctic cnergy (u- component) and available
potential Both the
available potential encrgies gain their energy
through the nonlinear interactions. The mixed
Rossby-gravity mode has a large part of energy

energy. kinetic and

in the meridional component of the kinetic
energy. ‘This mode gains available potential
energy and loses kinetic energy through the
nonlinear nteractions. The Hough modes
(1.1.0) and (1.3.0) were proposed by Madden
(1978) as S-day waves and
respectively. The former loses energy and the

l6-day waves,
latter gains energy through the nonlinear
interactions.

6. Summary and Conclusions

The results of the normal mode encrgetics
analysis applied to the GFDL version of the
FGGE data during the winter period from
December 1978 (o February 1979 arc
summarized as follows:

The energy vertical
wavenumber domain for the Rossby mode

spectrum  in the

indicates an available potential encrgy peak in
the vertical wavenumber m =4, and a Kinctic
energy peak in the barotropic component (in=
0). The Kkinetic energy spectrum  shows a
secondary energy peak at m=4. The available
potential energy  generated  at  the  zonal
baroclinic components (especially m = 4) is
transformed to the cddy available potential
cnergy of barotropic components. 'This result
is, howcver. modified as to eddy baroclinic
components by Tanaka and Kung (1988) by
the assumption of vanishing the lower surface
wind for the data analysis. On the other hand.
the kinctic cnergy of the cyclone-scale
baroclinic mode (mm = 2-4) is transformed to
and  eddy
barotropic  mode by nonlinear interactions.

ronal kinetic energics  of  the
Consequently, the atmospheric energy flow is
characterized by the encergy interaction from
baroclinic mode to barotropic mode. Thus.

most of the kinetic energy is dissipated by the
barotropic mode.

Parameterizing the horizontal scale of waves
by their eigenfrequencies, wc find in the
frequency domain that the Kkinetic cnergy
spectra for the barotropic mode indicate clear
energy peaks at the frequency 6= 0.03 (16
day) for the wavenumber | and &= 0.07 (7
day) for the wavenumber 6. The spectral
characteristics are  distinguished by the 3-D
scalc of the waves. The energy spectra follow
approximately the 3 power of the frequency for
the smaller-scale waves in the low [requency
range. However. for the largest-scale Rossby
modes in the high frequency range, the
spectrum obeys the -3/3 power law and merges
continuously with the spectrum of the gravity
modcs. It is concluded from these results that
the energy spectrum of the planctary Rossby
waves is similar to that of gravity waves for the
global scale waves.
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APPENDIX: List of Symbols

A
]

me

SR

N R 2

~

~

: longitude

- latitude

. pressure

: time

: zonal

- meridional velocity

: vertical p-velocity

: perturbation temperature

: perturbation geopotential

: frictional force in zonal direction

- frictional force in meridional direction
- diabetic heat source

- radius of the carth

: gravity of the earth

- angular velocity of the earth’s rotation
: specific gas constant

: specific heat at constant pressure

: surface pressure of basic stale

- surface temperature ol basic statc
- temperature of basic statc

: stability parameter in Eq. (4)

: whole arca of isobaric surfacc

: zonal wavenumbcar

. meridional mode

- vertical mode

. meridional mode for Rossby mode

meridional mode for westward gravity
mode
meridional mode for castward gravity
mode

O:\’v' M
H,m

W..
B.‘”

.
("Il'

DIN

Wom
b
C‘ vy
sy

B‘w!n

Corny

DAI'H!

: equivalent height

: vertical cigenvector

. dimensionless paprameter in Eq. (15)
:total energy A+K.

. available potential encrgy

- kinetic energy K, + K,

: kinetic energy of u-component

. kinetic cnergy of v-component

. energy ratio of Hough function g,+ 8, +

g=1

: eigenfrequency
: Hough harmonics
eﬂ'l'l

. dimensionless variable vector

Hough vector function

- dimensionlcss nonlinear term vector for

wind ficld

- dimensionless nonlinear term vector for

mass field

. dimensionless vector ol friction and di-

abatic hcating

: Fourier-Hough transform ol W,
: Fourier-Hough transform of B,,,
: Fourier-Hough transform of C,,
: Fouricr-Hough transform of D,,

nonlinear mode-mode  interaction  of
kinctic energy

interaction of
available potential energy

nonlinear mode-mode

. energy source and sink













