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Abstract

This study investigates low-frequency, unstable planetary waves in realistic basic states of
January 1979. using three-dimensional spectral primitive equations derived by orthonormal
vertical structure functions and Hough harmonics. Eigenfrequencies, modal structures, and
cnergetics arc contrasted for different unstable modes. Three sclected unstable modes are
extensively examined. One is the Green mode in the planetary waves, and the other two are
deep Charney modes having differnt meridional structures. We find that the Green mode of
wavenumber [ in the zonally varying basic state shows notable transient growth in the first
internal vertical component during its life-cycle. One of the deep Charncy modes becomes
stationary at a preferred geographical location with nearly barotropic structure. The other decp
Charney mode, which shows a monopole structure in the zonal basic state. becomes a dipole
structure in the zonally varying busic state. The northern part of the dipole structure shows
westward propagation with transient growth at a preferred location. The results suggest that
large-scale Pacific blocking during the winter are. at least in part. related to the low-frequency
Charney mode having a dipole structure. A possible connection between the amplification of
planetary waves and the Green mode in zonally varying basic states is also discussed.

1. Introduction

The problem of
more
attention in association with low-frequency
variabilities in the

planctary waves attracts  increasingly
atmosphere.  Energetics
analyses of the observed circulation field often
assert an enhanced baroclinic conversion in the
amplificd planetary waves. implying that the
amplification involves a process of baroclinic

large  amplification of

instability (¢.g.. Schilling, 1986). Howcver, the
linear stability analyses of planetary waves with
zonal basic states (e.g.. Simmons and Hoskins,
1976 1979)  indicate  major
discrepancies with obscrvation. The expected
growth rate is insufficient to explain the
amplification. the unstable planetary waves
propagate castward, and the wave structure of
the most unstable mode is confined to the

Hartmann,
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troposphere, even though less unstable mode
may penetrate into the deep atmosphere.
Comprehensive case  studics of  blocking
episodes during the First GARP (Global
Atmosphere  Research  Program)  Global
Experiment (FGGE) indicate that synoptic
baroclinic waves fecd large amount of cnergy
into the planetary waves by means of an up-
scale, nonlincar energy cascade (se¢ Hansen
1982; Kung and Baker, 1986,
Holopainen and Fortelius, 1987). Long-tcrm

and Chen,

statistics of blocking formations also suggest an
important rolc of high-frequency  transient
eddics in reinforcing the vorticity ficld of
blocking waves (see Colucci, 1985 Mullen,
1987). Although energetics analyses and the
enstrophy  budget

may be helpful in

understanding  the  cause  of  blocking
formations, thc characteristic structure and
behavior of blockings are not fully explained
by the cncrgy redistribution due to the wave-
wave interaction.

Unstable eigenmodes in a zonally varying
basic state werc numerically investigated by
Simmons et al. (1983). using a barotropic

model. They demonstrated that  various
tropical forcings tend to cxcite a unique
mode in the modcl

unstable  normal

atmospherc. Moreover. with his two-layer,
quasi-geostrophic  model, Frederiksen (1982)
showed that the zonal asymmetry of the basic
statc rcorganizes the synoptic baroclinic waves
to yicld the Adantic and Pacific storm tracks.
Presumably  his  high-frequency  synoptic
disturbances arc associated with Charnegy type
instability in a zonal basic state. He also found
blocking-like unstable modes with a dipole
structure among a number of unstable
solutions. He proposed that the dipole unstable
mode cxplains the onset of the Dblocking
formation. However. the physical explanation
of the dipolc modes scems less clear than the
high-frequency synoptic disturbances. Although
Frederiksen and Bell (1987) have extended his

modecl to a five-layer tropospheric model. the

structure and behavior of their eigenmodes in
planetary waves are too complicated to relate
to the well-known unstable Charney and Green
types in a zonal basic state. It is desirable to
compare both the unstable modes in a zonal
basic state and those in a zonally varying basic
state. Tt is also desirable to use primitive
because  the

equations quasi-geostrophic

cquations  involve  quasi-nondivergent  and

quasi-geostrophic  assumptions,  which  may
affect cigensolutions for planetary waves.

The objective of this study is to investigate
the low-frequency, unstable planctary waves in
realistic global basic states of January 1979
during the FGGE. This study supplments the
work by Tanaka (1989) and Tanaka and Sun
(1990).  'The

structures, and energetics of  low-frequency

cigenfrequencies, modal
unstable solutions are contrasted for zonal and
zonally varying basic states in order to examine
the cffect of zonal asymmetry of the basic state
on the low-frequency, unstable planctary
waves. For that purpose, we have solved
linearized, three-dimensional spectral primitive
equations with a basis of three-dimensional
(3-D NMFs) of

motionless atmosphere. The use of the normal

normal  mode  functions
modc cxpansion is advantageous for stability
analysis in that the matrix sizc for the
cigenvalue problem can be cffectively reduced
by retaining only the rotational mode basis,
and cxcluding the gravity mode basis. Thus, it
is possible to analyze atmospheric cigenmodes
with primitive equations. not only for zonal
basic states but also for zonally varying basic
states. Although our eigenvalue problem may
be solved for any recalistic basic  slate,
complicating the basic statc might cause the
modal identification and physical interpretation
of the eigensolutions to be lost. In this study,
we consider a zonally varying basic statc which
is specified by a steady wavcnumber 2.
supcrimposed on the zonal mean basic state.
First, the governing equations in terms of
the three-dimensional,

spectral  primitive
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equations arc reduced to the eigenvalue
problem. The results for the zonal basic states
are presented to identify the the unstable
modes with Charncy (1947) and Green (1960)
modes in previous research. We then examine
how the zonal asymmetry of the basic state
modulates  the unstable planctary

Finally, we discuss the relation between the

waves.

results of low-frequency unstable modes and
the obscrved large-scale Pacific blocking and
the amplification of wavenumber 1 during the

winter season.

2. Governing Equations
2.1 Primitive Equations with a Static
Stability Parameter
A system of primilive equations with a
spherical coordinate of longitude A, latitude 4,
pressure p, and timc ¢ may be reduced to three
prognostic cquations of horizontal motions and
thermodynamics for three dependent variables
of (u, v,

mcridional

¢). Here, « and v are the zonal and
of the
velocity V. The variable ¢ is a departure of the

components horizontal
local isobaric geopotential from the reference
state geopotential ¢y, which is related through
the hydrostatic cquation to the refercnce state
temperaturc 7. Using a matrix notation, these

primitive equations (refer to Holton. 1975;
‘Tanaka. 1985) may bc written as
U
M%I +LU=N+F, (1
where
U=(u v, ¢)7, (2)
_ 9 3
M= diag (1.1. op Ry ap - 3)
I3
; 0 =20 sing wcost 34 \’
_ . ta
L = 20 sing ] ¢ 20 ~ (4
i o 1a() st 0 |
' wcost 31 acosag |

o tmf
"‘ V- Vu wa7+7uv |
. _ oV tang |
N=| - —y— ——
¥V Wop T g W ‘, (5)
3y 3¢ [P i
AN W TR ) -
apﬂRyVVa Rya “ !
e pQ
F= Fuv I"., A
( 2. (4 NJ) ©)

The left-hand side of (1) represents linear
matrix operator M and 1. and a dependent
vector U. The right-hand side
represents a nonlinear term vector N and a
diabatic term vector F |

variable

which includes the
zonal F, and meridional F, components of
frictional forces and a diabatic heating rate Q.
The superscript T demotes a (ranspose, the
symbol @ represents the earth’s radius, Q the
angular spced of the carth’s rotation, R the
specific gas constant. C, the specific heat at a
constant pressure, and V the horizontal del-
Refer to Table 1

opcrator. for symbols,

Table 1. Symbols, definitions, and variablcs

longitude

8 Latitode
I pressure
! lime
zonal wavenumber
! meridional index
m vertical index
N truncation of s
I truncation of {
M truncalion of m
Ty reference stale temperature
b reference stale isobarie geopotential
1 zonal wind speed

neeridional wind speed

é isnbaric gropotential deviation from g,
! horizontal wind velocity

z height {vertical velocity = dz/dt)

@ verticat p-velocity (= dp/de)

7 slatic stability parimeler

u radius of the earth

Is carth's gravity

Q angular speed of earth’s rotation

R specific gas constant of dry air

i specilic heat al constant pressure

F, zonal compouent of frictional foree
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Table 1-continued
r, weridional component of frictionul foree
Q diabatic heating rate
P surface pressure of reference state
! dimensionless Lime scaled by 20
v horizontal del-operator
& Kronceker delta
i imaginary uait
M lincar matrix operalor given by (3)
1. lincar nelrix operator given by ()
I8 dependent variable veetor . v, ¢]T
N noulinear term vector given by (5)
I3 diabatic term veclor given by (6)
h,,. equivalent height
Con phase specd of gravily wives associated with
h,,
X scaling matrix for ¢
Y, scaling matrix for £
< . > inner product difined by (12)
diag( ) diagonal matrix
()T transpose of a vector
(> complex conjugate
{ e real part
( ) imagimnary parl
(7)) time-independent basic state
{ Yiw a component of indices s, L m
(X% abbreviation of { )., used for perturbations
( ), abbreviation of { ).y vsed for perturbations
() abbreviation of {  ).4,. used for basic stiules
t ) a componcnt of a wavenumber s
{ ).=c barotropic component
{ Jwso barotropic componenl
Ham 3-D NMF in a resting atmosphere
i dimensionless eigenfrequency of Laplace's tidal
equilion
10 g cxpinsion coefficient ol &/
Loim expansion coefficient of &
Vi real inleraction coefficient for indices & j, &
K dimension of i system (14)
N matrix size of a system (16)
1w dependent variable vector (... )’
! external forcing veclor (fy..... fa)'
B complex matrix associated with w
C complex matrix associated with e
1 real diagonal matrix composed ol g
b, (. j) entry of B given by (20)
i {i. §) entry of C given by (21}
v eigenfrequency of systems (24) and (26)
&t eigenvectors of systems (24) and {206)
£, perturbation energy of a component i (i.c., s.dn)
CB.E) encrgy transformation from a basic state to per-
Lurbations
M, deep Charney mode (stationary mode)
M. deep Charney mode {dipole mode)
M- shallow Charney mode
M, internal Green mode

definitions, and variables used in this study.
The vertical p-velocity  is related to mass
divergence, and the static stability parameter y
is given by

_RT, dTy
YTTC, -p dp (7

in which 7y is assumed to be a function of p
alone. In (5), as seen in Holton (1975), a
vertical advection term of perturbation
temperaturc is retained discarding the vertical
change of y in order to satisly an energy
conservation requircment.

2.2 Spectral Primitive Equation
In order to obtain spectral primitive
equations, we assume that the vectors U and F
in (1) can be approximated by a finite series of
three-dimensional, normal mode functions in a
resting atmosphere, [y, (A, 6. p):

U 6.p t)=
p [ M
.\Zs I-Z.'l, mg_zv"n w‘\'lm{r)Xmelm(/L 6. P) (8)
F(lop. )=
S 15 M
2:_‘{‘ l=2~l. W;Z_:Mf\'lm{’) Ymehn(/l‘ 6, P)s (9)
Here the expansion coefficients wg,,(t) and
fum(t) are the functions of time alone. The
subscripts represent zonal wavenumbers s,
meridional indices !, and vertical indices m.
They are truncated at S, L, and M,
respectively. The scaling matrices should be
defined for cach vertical index as:

XIN= diag (CI"V c"l' Cl“:l )‘ (10)

Y, = diag (2Qc¢y,. 2Q¢. 2Q), (1n

where ¢, is a phase speed of gravity waves in
shallow water, associated with the cquivalent
height 4,,. The expansion basis Iy, (A. 8. p)is
given by a tensor product of vertical structure
functions (vertical normal modes) and Hough
harmonics (horizontal normal modes). It is
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known that they form a complete set and
satisfy an orthonormality condition under an
inner product < > as:

< nxhn- ”,\'I'm'> =

1 (o (a2 [on T . )
s s''m' C(’)gd}\([ﬂ(l}
2rp, Ja [ - n[ 0 " /

= &\"b\ﬂ'b\mm'- (12)

where  the  asterisk  denotes  the complex
conjugate, the symbols & is the Kronecker
delta, and the surface pressure p, is treated as
a constant near the earth’s surface.

Applicd to the inner product for (1). the
weak form of primitive equation becomes

ol Y -

<M? HLU-N-F Y, > =0 (13)
Substituting (8) and (9) into (13), rearranging
the time-dependent variables, and evaluating
the remaining terms, we obtain three-
dimensional spectral primitive equations with
external forcing terms,

dw; LIS X
4 Hiow=—i 20 25 rgwwytf, (14)

]

where =201 K=(2S+1){L+1)(M+1), i
the imaginary unit, and 4 the dimensionlcss
cigenfrequencies obtained as a solution of
Laplace’s tidal equation with a basic state at
rest. For simplicity, the three triple subscripts
sim, s''m’, and s”I"m™ have been shortened to
subscripts 7, j. k, respectively. There should be
no confusion in the use of i for a subscript
even though it is used for the imaginary unit.
The rcal interaction cocfficients ry o are
explicitly evaluated by the triple product of the
basis  functions.  Analytical
available for derivatives of [, (A, 8. p). We
should note here that the zonal wavenumbers

expression s

s, 5", and s” run from the negative integer -$ to
the positive integer S, including zero, by
definition of the Fourier serics.

According to the Galerkin procedure above.

the system satisfies the same

3-D NMFs in a resting
atmospherc. Thus for the boundary conditions
it may be rcasonable to assume a vanishing
kinematical wind, (u, v, dzldl) = 0, near the
lower surface and a bounded cnergy al the
upper limit of the atmosphcre (see Staniforth
et al., 1985). The application of such a 3-D
NMI expansion is widely seen in the nonlinear
normal mode initialization technique  which
provides successful initial data for prediction
models.

boundary
conditions  as

2.3 Perturbation Method

Next. if we introduce a perturbation method
using notations w,; and f, for time-indcpendent
basic states and w; and f;° for small
perturbations superimposed on the basic states
(the same symbols with the original variables
are used for convenience). the equation for the
first-order term of perturbations becomes

dw;

K ¢ X 4
g Howi=—iZ L2 gy Jwit f, (15)

L

=12, K

where the modal index 4 is used for the basic
statc and 7 and j for the perturbations. Since
the ncgative zonal wavenumbers  represent
complex conjugates of the positive  zonal
wavenumbers, we can rewrite the equation
above in terms of a matrix form for s > 0:

d

di

WHiDW=—BW—iCW*+F (16)

where

W=(w,.wi..wy). for s>0, a7
F=(fp. fo f )T for s>0, (18)
D=diag (o),...0:... on). (19)

and N=(S+1)(L+1)(M+1). The (i, j) entrics
of the complex matrices B and C , namely by
and ¢, are determined by the expansion
cocfficients of the basic state:
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L

b= 3 Urgetrgh e 4 =1, 2 Nfor $>0, (20)
LY

6= 1 (it rag) i j=1,2.. Nfors'<0, (21)

in this study, an inviscid and adiabatic eddy
will  be disregarding F for
perturbations. Both B and C vanish for a basic
state at rest (W, = 0), thus the cquation (16)

examined,

satisfies Laplace’s classical tidal theory.

2.4 Eigenvalue Problem

For a zonal basic state ( w0 if s”=0), the
matrix B becomes a real block diagonal (b;+0
if s=s"). and C vanishes. Conscquently, (16)
can be solved for cach (s, s7) block:

d

G Wem—DWmiBW, =128 (22)

where the subscripts represent wavenumbers of
(s, s) blocks associated with perturbation
vectors W, Becausc (22) is lincar, we can
assume the solution of W, to be

W, ()= ¢exp (—ivf). (23)

‘The initial value problem (22) is then reduced
to an cigenvalue problem for a rcal matrix with
cigenvactors £ and eigenvalucs p as:

ve= (D +B,) ¢ (24)

For a zonally varying basic state, both
matricies B and C in (16) become complex. full
matrices. Because of the complex conjugate
term, we can not simply

exponential-type solution as in (23). In this

assume  an

casc the complex matrices and variables arc
split into real and imaginary parts (given
subseripts of R and 1), and a solution is sought
in the form:

W e \
( W’:)(l):( g] exp(pf). (25)
The cigenvalue  problem  for  (16)  then
becomes:
P BHC Br—CrtDiif
| E = ! ! R R 8 |
hgl lI'_BR_C"—D B;—(', ,’g‘ (2())

For complex eigenpairs the rcal-valued

eigensolutions are given by
LT coa &Y R
‘: X |lt)=2exp\ ykt)a': ® [cosyi=| b Ismy,l,L (27)
LWy 1y ‘o ’
Equations (24) and (26) are thus to be solved
for zonal and zonally varying basic states in the
subscquent scetions.

2.5 Truncation

In this study, twelve vertical structure
functions (m = 0-11) arc constructed

numerically after Kasahara (1984) with 24
Gaussian levels. The vertical index m = 0 is
called an external (barotropic) modes, and m=
1-11 are called internal (baroclinic) modcs
the vertical. The
modes are the

which have m nodes in

numerical  internal discrete
approximation of the continuous spectrum.
Table 2 lists the reference state temperature 7y
on the 24 Gaussian levels and the obtained
equivalent heights A, for m=0-11. The global

mcan temperature for thc FGGE year (see

Tanaka, 1985) is interpolated onto the
Gaussian levels up to 30 mb, and the

temperature of the standard atmosphere is
substituted above this level. The temperature
profile for the FGGE year is very close to that
for cvery monthly mean. The difference is at

Table 2. The reference state temperature 7, at
the 24 Gaussian levels and the equivalent
heights #,,, for the vertical modes m=0-11.

o lm

Level TolK) Level Tl K) "
| 203.78 13 262.63 4] 9746,
2 226.08 " 267 .89 1 NLNTT
3 215.39 15 272.26 2 TP
1 211.41 16 275.92 3 269.3
o 216.01 17 279.03 1 113.9
6 208.23 18 281.71 O 16.9
T 216.04 19 281.04 6 211
8 223.23 20 286.03 i 14.5
9 231.44 21 287.66 8 7.7
10 240,42 22 288 .94 9 3.7
I 248 .86 23 289.83 10 1.2
12 206,31 24 290,33 B 0]
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most 2K at the lower troposphere. Since the
higher order internal modes have a problem of
aliasing in the stratospherc and above (refer to
Sasaki and Chang, 1985; Staniforth ¢t al.
1985). only the first seven vertical structure
functions (m = 0-6) are applied to the
subsequent computations (i.e., M=6). Figure |
illustrates these vertical structure functions.
They may be suitable for the representation of
planctary waves because they provide adequate
vertical resolutions throughout the troposphcre
and the stratosphere. As is demonstrated by
the resolution test in the Appendix. the
unstable modes in the planctary waves have
almost converged by this vertical resolution.
The Hough vector functions are computed
using semi-normalized  associated Legendre
polynomials with 120 Gaussian latitudes so that
the integral is exact up to the triple product of
the basis functions. The meridional indices /
contain two distinct modes: gravity-inertial
modes and rotational modes of the Rossby-
Haurwitz type. Onc advantage of Hough mode
expansion is an efficient reduction of the
matrix sizc of the instability problem by
retaining the rotational modes alone, excluding
the gravity mode basis. As is shown in the

Appendix. excluding the gravity mode basis

Verilcal  Structure  Funclion

Fig.1 Vertical structure functions for vertical
indices m = 0-6. Values of corresponding
equivalent heights arc seen in Table 2.

affcct  the unstable  solution of

waves.

does  not
Moreover, the unstable

almost

planetary
solutions  have
meridional

converged  with
truncation L = 18 wusing the
rotational modes. We choose £ = 18 in this
study. In addition, we include the Kelvin mode
using a numbering of / = -1 beccause the
observed energy level is cxceptionally large
among the gravity modes. According to the
observed energy spectra by Tanaka (1985),
these  vertical — and
represcnt about 90% of the total energy of the

meridional  truncation

atmosphere.

3. Results for Zonal Basic States

3.1 Basic State

Unstable cigenmodes are examined for two
diffcrent  zonal basic states: a zonal wind
profile of a 30" jet described by Simmons and
Hoskins (1976) and the observed monthly-
mean ficld of January 1979. The 30” jet profilc
has a separable structure in the vertical and the
meridional, and is deliberately chosen to be
barotropically stable (refer to Simmons and
Hoskins, 1976). The January basic state is
compiled with the FGGE IlI-b data assimilated
by the  Geophysical Fluid Dynamics
Laboratory. Figurc 2 illustratcs the latitude-
height section of the observed monthly-mean
zonal wind field reproduced by m”=0-6 and /"
=0-18 of the geostrophic modecs.

3.2 Growth Rates and Phase Speeds

The growth rates and phase speeds of the
first-threc unstable modes are plotted in Fig. 3
as functions of the zonal wavenumbers s=1-10.
This is a result of antisymmetric solutions with
the 30° jet basic state. Since the stratosphere is
not considered in Simmons and Hoskins' 30"
jet, we first compute the fastest growing modes
using a constant y= 30 K (cross mark), and
compare them with Simmons and Hoskins
results  (white circles). The value of the
constant y represents its vertical average (see
Table 1 of Tanaka, 1985). The agreement is
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Fig.2 The latitude-height scction of the observed zonal wind (m/s) for a monthly mean of January 1979,

reproduced by 1"=1-18 and m”=0-6.

the
results are based on the temperaturc profile in
Table 2. A Charney-type
baroclinic instability (labeled M,) appears with
the e-folding time of about 2.0 (day) at s=7-8
with the phase specd of about 9 ( /day).

within a reasonable range. Henceforth

pronounced

Contrasted with the result by Simmons and
Hoskins (1976). we find that the stable layer in
the stratosphere reduces the growth rate for s
> 6, and the maximum growth rates shift
toward smaller wavenumbers. According to
(1986)
solutions, the unstable modes in the figure,
M. M, and M, can be identilied as Charney
modes with different meridional

foannou and Lindzen's analytical

structures.
The phase speed of M, is very slow in the
planetary waves, whereas that of M5 is fast
(about 9" /day). The distinct phase spceds of
these unstable modes werc also detccted by
Gall (1976) and Zhang and Sasamori (1985).
Figure 4 illustarates the same curves but for
the January basic state. For the basic state
having a global extension. the unstable modes
are partitioned in the northern and southern
hemispheric modes according o the analysis of

their structure. The results in Fig. 4 arc of the
northern hemispheric modes, and a similar
result has been obtained by a symmetric
extension of the northern basic state toward
the Southern Hemisphere. Contrasted with
FFig. 3 we find the growth rate of M, decrcases
in the planetary waves, and the maximum
growth rates of M, and M, shift toward the
planetary wave range. As a result. M, and M,
become the dominant unstable modes at s=1-
2. and s = 3-4. Further experiments show that
the up-scale shift of M, and M, are caused
mainly by the small meridional scale of the
basic state in the mid- to lower-troposphere
resulting from the tropical and polar casterlies.
The thosc
documented by Zhang and Sasamori (1985).
The shallow Charney mode M, seems to have

results  arc  consistent  with

changed to the Green mode M in the
planetary waves (Green, 1960).

3.3 Structures

The latitude-height  structures  of  the
geopotential field for M;. M2, M, and M, for
the January basic state are illustrated in Fig. 5.



UNSTABLE PLANETARY WAVES 69

+0

05 |- "_‘

o

&

1
'\

e
(X
T

o
N
J

Growth Rate |day™)

/ -~ ’\
// M‘. N \
00 | ] ] [} I 1 1 1 L [

1 2 3 4 S 8 7 8 9 10
Wavenumber (S}

\“‘(\
S/

12
T M Mc
> e—— b —t—
2 gl Tt
s % o 0——0—9—--
g 6| ./ M,
s e, 7

+*

5 v
. 24 °

0 1 1 | 1 i 1 1 | L

1 2 3 4 s 6 7 8 9 10
Wavenumber [S)

Fig.3  Growth rates and phase speeds of the first-
three unstable modes (labeled M, M., and
M) as functions of wavenumbers s=1-10 for a
zonal basic state of Simmons and Hoskins’ 30°
jet. The cross marks denote the fastest
growing modes for constant static stability
profile. y=30 K, and white circles denote the
results of Simmons and Hoskins (1976).

The structure of M. at s = 6 shows an
amplitude maximum at the upper troposphere
in mid-latitudes, indicating a wcstward phase
tilt with height. These results resemble those
obtained by Hartmann (1979) in which a
typical winter basic statc is used. The structure
of wavenumber 8 shows an  amplitude
maximum near the surface in mid-latitude,
indicating a westward phase tilt with height.
The tilt implies a northward heat transport,
which would reicase zonal available potential
encrgy. The structure, and thus the eddy heat

and momcentum transports, is consistent with

@
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. N
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& Mc(Soulhl
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[ | ] | ] | I | 1 ]
1 2z 34 s 6 7 8 8 1
(¢}
20}
. e e
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]
é M2 Mc
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ZONAL WAVENUMBER

Fig.d  As in Fig. 3 but for a zonal basic state of
Jonuary 1979, M. is the shallow Charney
mode, and M,. M, the deep Charney modes.
Mg 1s regarded as Green mode. M, (south) is
that appearing in Southern Hemisphere.

results. We are
of 3-D NMF
cxpansion is useful for studying baroclinic
instability. At planetary waves, the growth
rates in Fig. 4 are competing, and the solution
is_hardly obtainable with the time integration
mcthod as discussed by Simmons and Hoskins.
That, however, is not the case for the present
eigenvalue problem. The structure of M, shows
a westward phasc tilt with height. but indicates
a characteristic northwest-southcast phase tilt

Simmons and loskins’

convinced that the method

in the horozontal plane. This phase structure
distinguishes M, from M. The monopole
structure of amplitude becomes dipole in the
higher zonal waves as seen in Simmons and
Hoskins® result. For the structure of M- at s=
3. the amplitude maximum shifts northward
near 60° N
indicating a northwest-southeast phase (ilt. The

above the tropopause level,

phase structure indicates a westward phase tilt
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Fig.5 Latitudc-height structures of geopotential amplitudes (solid linc in arbitrary unit) and phases
(dashed line denoting longitudes of ridges) of unstable modes (denoted at upper left) for cach zonal
wavenumber (upper right). Refer to Fig. 4 for the unstable mode namcs.
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with height at mid-latitude, but the structure is
nearly barotropic and out of phase at high
latitudes. The structure of M, at s=1 shows an
amplitude maximum at 100 mb in high
latitudes and another peak in the upper
stratosphcre. indicating @ monotonic westward
phase tilt with height. This structure also
closcly resembles the results obtained by
Hartmann (1979) and Zhang and Sasamori
(1985), even though the former identifics M, as
the deep Charney mode whereas the latter
identifics it as the Green modes. In this study,
M, and M, are identified as deep Charney
modes by the results shown in Fig. 3 and 4. In
addition, M| will be characterized by its large
external component of m =0, which is typical
of external Charney modes, contrasted with
the dominant internal component of m=1 for
Green mode. The location of high latitudes is
modes  as

nccessary  for  decp  Charney

Hartmann suggests.

3.4 Energetics

According to Kasahara and Puri (1981) and
Tanaka (1985). an energy E; for a particular
basis function is defined in dimensional form
by

3

E;= ;— Pt [ wil . (28)
The sumation of E; for all indices i represents a
total of kinetic enenrgy and available potential
energy integrated over the mass of the
atmosphere with an additional boundary term
which is, in general. negligible. After a proper
normalization of W,. the energy levels for the
most unstable modces of M; at s=1 and M, at s
=6 for the January basic state are plotted as
functions of the vertical (Fig. 6) and
meridional (Fig. 7) indices. The vertical energy
spectra reveal bimodal distributions with peaks
at m =0 and m = 2-4. Energy levels drop
significantly at m=35, 6, and contributions from
the truncated

higher-vertical  indices  arc

expected to be small. On the other hand. the

ENERGY

] L 1 1 j| | L J
0 1 2 3 4 5 6
VERTICAL MODE

Fig.6 Normalized conergy spectra for M, at s=1
and M, at s =6 in the vertical index domain,
resulting from the summation of all meridional

indices.
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Fig.7 As in Fig. 6 but for the energy spectra in
the meridional index domain for the barotropic
components.
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largest portion of barotropic energy resides in
the meridional indices { = 3-6, with some
encrgy gaps in the higher indices. The fact that
the encrgy levels are quite smaller for both
Kelvin modal indices and the higher indices
confirms that the meridional truncation was
reasonable. It is interesting to note that these
encrgy spectra of the unstable cigensolutions
coincide with the spectra observed by Kasahara
and Puri (1981) and Tanaka (1985).

Because of the meridional wind shear, not
only the baroclinic instability but also the
barotropic instability is expected to account for
the energy supply of unstable normal modes.
In order to explore the origin of this encrgy
supply. an energy flow box diagram describing
cnergy interactions between  barotropic and
baroclinic components  is  construcied. By
differntiating (28) with respect to time and
substituting (22), we obtain

7{"— =2Qp.h, L)l((‘(ib,»}k w}k W) =0

+2Q p 1, SiRe(iby wiw),, 0
= B0 E)T OB, en. E)  (29)

The first term of the right-hand side of (29)
stands  for cncrgy transformations from the
barotropic component of the zonal ficld B,,-_,,
into E;, and the sccond term represents thosc
from the baroclinic components of the zonal
ficld B,y into E. By adding all indices for m
=0, and for m=*0, (29) becomes:

dE, - ) . R
#7 =01 Bm"*ll- E.u:{!} + Ci Bul"#‘"v [:nyf"‘)' (3())
dEm 0 . | » y

{”{“ =CIBy=0 Eead HCIB oy, Epppid. (31)

The resulting cncrgy flow box-diagrams arc
presented in Fig. 8§ for the most unstable
modes of M, at s=1 and M, at s=6. Upper
boxes (m” #F 0. m ¥ 0) denotc the baroclinic
component and lower boxes (im"=0. m=0) the
barotropic components. Encrgy
transformations are normalized to yield the
contributions  to  the

percentile growth.

M1.S=1 (+100)
$=0 76 s=1
7
2 8
m'2 0 m#0
8
22
m"= 0 14 m=0
Mc,S5=6 (+100)
szo 61 S=6
61
m'# 0 m#£0
1 34
39
m"= 0 6 m=g

Fig.8 Encrgy flow box diagram for M, at s =1
and M. at s=6. Upper boxes (m”#0. m#*0)
denote the baroclinic components and lower
boxes (m” = 0. m = 0) the barotropic
components.  Encrgy  transformations  arc
normalized o yicld  the  percentile
contributions of the growth. Pereentile energy
is rcad in the boxes.

Percentile cnergy is rcad in the boxes. It is
shown that large proportions of encrgy are
transformed from zonal baroclinic cnergy to
eddy baroclinic energy for the growing modes.
These energy flows essentially result from
baroclinic instability, whosc major cnergy
source is the available potential encrgy. The
encrgy supply from m”#0 amounts 10 84% of
the total supply for M at s=1 and 95% of the
supply for M. at s = 6. Similar encrgy
characteristics are obtained for the unstable

mode M; at s=3.

4. Results for a Zonally Varying Basic State
4.1 Basic State
We will consider a zonally varying basic state
which is specified by a steady wavenumber 2
superimposed on the zonal-mean basic state.
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Figure 9 illustrates the latitude-height section
of-geopotential height of the wavenumber 2 for
January 1979, reproduced by the composition
of m”"=0-6 and I"=0-18. We will call this a
wave 2 basic state, and distinguish it from the
zonal basic state in Fig. 2. It has a global
extension, although the figure is illustrated for
only the Northern Hemisphere. The amplitude
of the wave 2 basic state in the Southern
Hemisphere is small. Since a basic state choscn
in this manner involves only even zonal waves
(s"=0 and 2), the cigenspace of (26) becomes
a dircct sum of eigenspace for even zonal
waves (s=0.24,...) and odd zonal waves (v =
1,3.5....).

4.2 Low-Frequency Unstable Modes

In this study, we will concentrate on sclected
low-frequency unstable modes in the planetary
waves. The cigenvalue problem of (26) is
solved with a zonal truncation of $=2 in order
(o identify thc low-frequency unstable modes.
With this truncation, (16) for the odd waves

S=2 AMPLITUDE
10 }-
3
[
o 250
100 |- 200
150
400
50
1000 [l (] / 1
10 30 50 70 20

Latitude (°N)

becoms

d

p W,=—iD\W,—iBW,—iC,W,*.

(32)
Note that (32) is identical to (22) for s =1
except for an additional complex conjugate
term arising from the wave 2 basic state. We
may thus isolate the effect of the wave 2 basic
state on the unstable modes of wavenumber 1.
The first term on the right-hand side of (32)
indicates phase speeds of neutral modes under
a motionless atmosphere. The sccond term
describes zonal-wave interactions. The unstable
modes gain their energy through down-scale
encrgy transformations from the zonal field. In
contrast, the last complex conjugate tcrm can
be recognized as wave-wave interactions, and
the growing modes gain their encrgy through
the up-scale energy transformations from the
steady zonal asymmetry. Table 3 lists the
growth rates and periods of the three fastest-
growing modes in the Northern Hemisphere.
The results for the zonal basic state are also

PHASE

10

a
E
o
100
2
1000 | y4 qo\\ -
10 30 50 70 90
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Fig.9 The latitude-height scction of the observed geopotential height of the wavenumber 2 for January
1979 used as a basic state. Amplitude (m) and phase (longitude of ridge) are reproduced by I"=0-18

and m"=0-6.
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Table 3. Modc names, growth rates, and cigen-
periods of the threc fastest-growing modes of s
=1 in the zonal basic state (left) and in the
nonzonal basic state (right) for the case of
zonul truncation $=2.

ool binir slale Neazwanal Lavir st

prowth vale pericd erowth tate prerionl

mede 1 il ! tday ! mede 1! tday )
18 087 18 1M 0150

2 M 0.7 ) M, 0078 o3

3 M 005 37 3 M DD h

listed (see Fig. 4). We can identify these low-
frequency unstable modes as M,, M., and M
of s=1. 1t is worth noting that the slow-moving
mode M, becomes stationary.

Figurc 10 displays the elliptic oscillations of
the first-three dominant components of M, and
M¢; depicted for the oscillatory factor of wy,,()
in (27). Intcgers in the parentheses denote (s,
1, m). and dots on the trajectories describe the
initial phasc of the time cvolutions. In the
zonal basic state these trajectories depict pure
circles indicating an castward propagation. For
M,.  two  barotropic  components  show
retrogression indicating clear principal axes,
while  thc  baroclinic  component  shows
progression.  This mcans that some of the
Hough show westward
propagation for its barotropic component with
a period of about 35 days. For M. the first
internal component (m=1) grows significantly

during its life-cycle with 53-day period. The

mode  projections

trajectory is regarded almost as a standing
oscillation with periodic amplification in the
stratosphere.

4.3 Structures

In  conjunction with the component-wise
elliptic oscillations of Eq. (27), the total cnergy
of a mode, defined by the summation of £; in
(28). oscillates with a half period of the life-
cycle. We may define a mature statge of the
modal life-cycle by one of the two cnergy

M2

(1,5,0)

(1,6,0)
Im
Ms
Q1,4,2)
1,5,2)
\\ Re
,41)

Fig. 10 Trajectories of elliptic oscillations of w,,
(see Eq. 27) on a complex plane for dominant
components of M, and M,; at s=1. Integers in
the parentheses denote (s, /, m), and dots on
the trajectories indicate the arbitrary initial
phascs of the time evolution. The values arc
multiplied by gh,, to have a unit of
geopotential,

peaks. Such a definition is not required for the
stationary unstable mode except for the
alternative sign of the eigenvector. Figure 11
ilustates  the meridional-height structures of
the geopotential field for M,, M., and M in
thc Northern Hemisphere at their mature
states. These arc the solutions of s=1 in (32)
obtained for a global basic statc. For the
stationary mode M, the influence of the wave 2

basic state is clear in the phase change, being
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Fig.11 Latitude-height structures of geopotential amplitudes and phases for (a) M. (b) M., and (¢) M;
of wavenumber 1 at the mature stages of their life-cycles.
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of  cquivalent  barotropic  structure. A
pronounced amplitude maxmum appears at 75"
N, 100 mb level with the ridge around 120°W.
Similar  stationary modes  appear  also  in
Frederiksen (1982) and Simmons er al. (1983).
Mode M. cxhibits two amplitude maxima at
75"N and 45" N at the tropopause level with
opposite phases. The northern pole produces a
ridge around 180" W with barotropic structure.
Moreover, the northern ridge of the solution
propagates  westward. Contrasted with the
monopolc structure in the zonal basic state
(Fig. 6), we find that the zonal asymmetry of
the basic state changes the Charney mode M,
to be a dipole structure. Mode M,; produces
the amplitude maximum at 65N in the upper
stratosphere with broader meridional cxtent.
The phase tilts westward with altitude. The
dominant contribution from m=1 of Mg is a
typical characteristic of the Green mode even
though its nodal structure is not clear by the
complicated basic state.

5. Concluding Summary

This  study investigates low-frequency.,
unstable planetary waves in realistic global
basic states of January 1979 and Simmons and
Hoskins™ 307 jet,

spectral

three-dimensional
primitive derived by
orthonormal vertical structure functions and

using
cquations

Hough  harmonics. The eigenfrequencics,
modal structures. and encrgetics of the low-
frequency. unstable solutions have been
presented.

At least four distinct unstable modes are

identificd:

1. Shallow Charncy modec M. has its e-
folding time of about 2 days, and the
maximum growth rate is seen at the
synoptic-scale zonal wavenumbers (s = 7-
8). This mode is shallow in its structure
in a sense that it is trapped within the
troposphere and will not penetrate into
the deep atmophsere.

2. Dipole-Charncy mode M, has one node

in the meridional structure  compared
with the shallow Charney mode which
has no node. This mode dominates at the
zonal wavenumbers s=3-4.

3. Monopole-Charney mode M, has largest
meridional and vertical structure. The
vertical structure indicates that the largest

external

cnergy is contained at the

component, which is the common
characteristics of Charney modes.

4. Green mode M,; indicates the largest
amplitude within the middlc atmosphere.
The vertical energy spectrum indicates its

pcak at the first

component.

cnergy internal

Contrasting the results for zonal and zonally
varying basic states, we have shown that the
zonal asymmetry of the basic state changes the
basic featurcs of the low-frequency unstable
modes. Their major changes arc examined with
the properties of wavenumber 1. The Green
mode of wavenumber 1 in the zonally varying
basic state shows notable transient growth
during its life-cycle (53-day) in the first internal
vertical component. One of the deep Charney
modes My turns out to be stationary at a
preferred geographical location with a nearly
barotropic structure. Frederiksen (1982) and
Simmons e al. (1983) have analyzed similar
stationary modes. The other deep Charney
modes M,, which shows a monopole structure
in the zonal basic state, becomes a dipole
structure during its life-cycle (35-day) in the
zonally varying basic state. It is found in this
study that the blocking-like dipole modes in
Frederiksen and Bell (1987) are identified as
dipole Charney modes modulated by the zonal
asymmetry of the basic state.

The results of the present study suggest that
not oanly the fastest growing modes but also the
second and third fastest unstable modes are
important for many atmospheric events. The
shallow Chancy mode is important in cxciting
synoptic disturbances as the major energy

source for atmospheric eddies. The dipole
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Chaney mode may be related to the formation
of blocking anticyclone; the monopole Charney
mode to the steady planetary waves; and the
Green  mode
warming. l‘urther study is expected to compare
the unstable modcs in the planctary waves with

to the stratospheric sudden

observed weather phenomena.
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Appendix

The vertical and meridional resolution tests

Vertical normal modes for the primitive
equations with the basic state at rest are
identical to those for the quai-geostrophic
potential vorticity cquation on mid-latitude g
plane. For this reason, the latter cquation is
used for the vertical
linearized

resolution  test. The
cquation for meridionally
independent perturbations may be written as

‘% (¢9)-ng+ ﬁ ig- %'ﬁ_d"U)"}qFU‘ (33)
where o= plp,, n = sla cos (45" ), and the
primes denote vertical differentiations. Except
for the ust of y( =30 K) dcfined in (7). all
symbols have their conventional meanings.

The effect of vertical resolutions is then
examined for the traditional Charncy-Green
problem with linear profile of U over 0<¢<1
(U=30m/s at the top). The procedure to solve
(33) is similar to that described in Scction 2.
assuming that the
variables belong to the subspace spanned by

Namely, atmospheric
the series of vertical structure functions, and
taking a natural inner product to obtain a
system of oedinary dilferential equations, we
then solve the algebraic matrix eigenvaluc

problem for the stability analysis. The results

of growth rates and phase speeds for
wavenumbers s =2, 6, and 10 are illustrated in
Fig. Al as functions of vertical resolution M.
As is described in Section 2, we prepare 2 M
vertical structure functions which arc computed
numerically after Kasahara (1984) using 120
Gaussian vertical levels. Then the first M+ 1
vertical structure functions (m=0-M) arc used
to solve M+ | by M+ 1 matrix cigenvalue
problems.  According to  the  results,
wavenumber 2 scems to have converged with
M =6 (at least for the growth ratc), although
wavenumber 10 requires even more vertical
resolutions. The results demonstrate that the
vertical normal mode expansion is applicable
to the instability problem, particularly to the
planetary waves.

The effect of meridional truncations and the

exclusion of gravity mode basis are examined
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UNSTABLE PLANETARY WAVES 81

for the basic statc of Simmons and Hoskins'
307 jet using the spectral primitive cautions as
described in Sections 2 and 3. The vertical
advection of perturbation temperature in (5) is
neglected here by a scaling analysis. The
results of growth rates and phase speeds for
the most unstable modes at =2, 6, and 10 are
illustrated in Fig. A2 as functions of meridional
truncation L . The results of £, = 48 represent
the use of Rossby mode basis ! =0-24, added
with 12 eastward gravity modes and 12
westward gravity modes basis. Evidently, the
solutions have converged with the truncation of
L. =18, and thc gravity mode basis shows
insignificant effect on the unstable solutions.
For ageostrophic zonal basic states. such as
the January basic state in this study, we obtain
high-frequency unstable gravity modes which
appear independently of the Charney-Green
type instability. Although such unstable gravity
modes must be important for the geostrophic

0.0 | 1 1 1 i 1 ] 1 1 1 1 1 o,
2 4 ] 8 10 12 14 18 18 20 22 24 48

1 ] 1 1 I S | 1 I:,‘_J

1
2 4 6 8 10 12 14 16 18 20 22 24 48
L

Fig. A2 Growth rates (day ') and phase speeds
(" day ') of the most unstable modes
wavenumbers s — 2. 6, and 10 as functions of
meridional truncations L. The dots at L =48
represent the results including 24 gravity mode
basis added with the Rossby mode basis of 1=
0-24.

adjustment, we have confirmed that the gravity
mode basis is unimportant as long as Charney-
Green type instability is concerned.
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