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1. Introduction

Amplification of low-frequency planetary waves in the tropo-
sphere is often coupled with a blocking formation. The importance
of transient eddy forcing by synoptic disturbances to maintain low-
frequency planetary waves has been a focus of interest in recent vears.
Many blocking episodes appear to be related to the transient eddy
forcing. However, there are exceptions where enhanced transient eddy
forcing failed to create blockings, or blockings occurred without sig-
nificant transient eddy forcing (see Wiin-Nielsen 1986; Shilling 1986).
There is as yet no universally accepted theory of blockings, and the
causal relationship of the amplification and blockings remains un-
clear.

Amplification of planetary waves in the troposphere implies an
increase of the wave energy. If total atmospheric energy is partitioned
in three energy boxes (zonal, planetary waves, and synoptic to short
waves), there are only three paths by which planetary wave energy
<an increase (see Saltzman 1957): (i) down-scale energy cascade from
zonal to planetary wave energy; (ii) up-scale energy cascade from
synoptic and short wave to planetary wave energy; (iii) energy supply
from external forcing. Every theory describes a unique energy flow to
excite the planetary waves, and we can classify a number of theories
using these three paths.

According to Shilling's (1986) comprehensive analysis, block-
ing occurrence shows highest coherence with baroclinic instability
of planetary waves: down-scale energy cascade. However, there are
cases in which barotropic instability plays aa important role, and
cases in which the up-scale energy cascade from synoptic disturbances
dominates the other energy supplies. This suggests that the blocking
system is excited by various energy sources from case to case. but
reveals the same characteristic structures and behaviors.

In the light of Shilling's puzzling results, Tanaka and Kung
(1989) discussed a possibility that blockings can be understood as
atmospheric eigenmodes excited by different energy sources from case
to case. We intuitively understand the common persistent features as
a low-frequency eigenmode. The characteristic structure may be un-
derstood such that the eigenvector has the dipole configuration. The
eigenmode may be excited by various energy or vorticity supplies be-
cause it is a free mode. The positive and negative anomalies should
have similar structures (see Dole 1986). We examined eigenmodes
of Jow-frequency, unstable planetary waves in the zonally varying
basic state, using spectral primitive equations on a sphere. Two dif-
ferent types of slow-moving Charney modes are found in planetary
waves, showing different meridional structures. One of the Charney
modes, M, is stationary at a preferred geographical location, indi-
cating nearly barotropic structure. It resembles so-called 0 blockings
in the atmosphere. The other Charney mode, Af; indicates a dipole
structure in the zonally varying basic state. The structures and be-
haviors of the dipole Charney mode markedly resemble dipole block-
ings in the atmosphere. We proposed that dipole Charney modes of
wavenumber 1, which is modulated by the steady wavenumber 2, is
responsible for large-scale dipole blocking, supported, for example,
by the up-scale energy cascade from synoptic disturbances. Yet, it
is necessary to confirm the hypothesis using a fully nonlinear time-
dependent model, because our previous results are based on a linear
model under a restriction of smail amplitudes.

The purpose of this study is to simulate the amplification of
low-frequency planetary waves and concurrent blocking formations
as realistically as possible, using a fully nonlinear spectral primitive
equation model which is as simple as possible. The hypothesis of
the blocking formation due to the up-scale energy cascade from syn-
optic disturbances under the persistent wavenumber 2 is examined,
The energy flows among different waves during blocking events are
investigated.
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2. A description of the spectral primitive equation model

A system of primitive equations in a spherical cootdinate of lon-
gitude A, latitude 8, normalized pressure ¢ = p/py, and normalized
time r = 202 may be reduced to three prognostic equations of hori-
zontal motions and thermodynamics. The three dependent variables
are horizontal wind speeds, V = (u,v), and geopotential deviation
@ from the global mean reference state. Using a three-dimensional
spectral representation, these equations may be written as:

dw; M M
d—?‘ + oW = -t E E TijeWywy + f,, 1= 1,2,.“.41[, (l)
1=1k=1

where w; and f; are the Fourier expansion coefficients of dependent
variables and diabatic processes, o; are Laplace’s tidal frequencies,
rijk are interaction coefficients, and M is the total number of the se-
ries expansion for the 3-D atmospheric variables. Refer to Tanaka and
Sun (1990) for the details. Any choice of expansion basis functions
will result in the representation of (1) after a proper diagonalization
of the linear terms. The resulting expansion basis functions will con-
sist of vertical normal modes and Hough harmonics. The vertical
normal modes comprise barotropic and baroclinic components.

We demonstrated that observed features of blockings can be rep-
resented sufficiently by their barotropic components. Based on this
observed fact, we collect only the barotropic components of the ex-
pansion coefficienta. The rest of the baroclinic-barotropic interaction

* terms and diabatic terms are combined in a single term designated

as s;, which describes the formal source-sink term of the barotropic
model:

N N

dw; ) . .
2y Towi= - ZZ rokwywg + 8, 1=1,2,.., N (2)
1=1k=1
where
3 = (BI)i + (DF), + (TF); + (2S). {3)

Here, N ia the total number of the series expansion for the barotropic
model, and (BI);, (DF);, (TF):, (ZS): are respectively the formal
source-sink terms derived from baroclinic instability, diffusion, topo-
graphic forcing, and zonal surface stress. Topography is considered
only at the wavenumber 2. Refer to Tanaka (1991) for the details,
Given the formal source-sink term s;, the nonlinear equation (2) be-
comes a closed system of the prognostic equation.

It is important to notice that the barotropic component of the
diabatic heating term becomes zero under a minor assumption, since
the heating may be assumed to be zero under the ground. Every heat-
related energy source in the atmosphere goes to the baroclinic com-
ponents, and the energy is then transformed into the barotropic com-
ponent through the baroclinic-barotropic interaction. This is one of
the major attractions of constructing the barotropic primitive equa-
tion model from the 3-D spectral model. The complicated heating
fields produced by numerous physical processes are concentrated to
the single concept of the baroclinic-barotropic interaction.

3. Results of the simulation

Figure 1 illustrates daily barotropic geopotential fields during
days 54-60. Illustrated is the period when the wavenumber 1 amplifies
persistently. indicating a meridional dipole structure. The barotropic
geopotential field roughly corresponds to the 300 mb height field. A
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Fig. 1. Daily barotropic geopotential fields during days 54-60 when
a blocking occurred in the model atmosphere. The contour interval
ia 100 m.

blocking system developed near 45°W, indicating a progression. A
dipole blocking emerged with its high pressure center at 60°N. The
geopotential height of the high-pressure cell is about 300 m higher
than surrounding area. Clearly, the dipole wavenumber 1 is super-
imposed on the amplified wavenumber 2 with its troughs along 90°E
and 90°W.

The results described above reasonably resemble observed block-
ing evolution. A sharp transition from zonal to meridional flow is
clear at the up-stream of the blocking system. The persistency of
the system is more than two weeks. Our simple nonlinear barotropic
mode! seems to capture the essential mechanism of the blocking sys-
tem. It is concluded, at least, that the blocking can be simulated
using a barotropic model with four physical processes of diffusion,
topographic forcing, baroclinic instability, and zonal surface stress.

The mean energy spectrum and energy transformations for days
30-200 are summarized in the Table. The symbols designate total
energy E., nonlinear interaction ¥ L,, diffusion DF,, topographic
forcing T'F,,, baroclinic instability BI,, and zonal surface stress ZS,.
The units are 10° Jm~? for energy and 10~ Wm=? for energy trane-
formations. The important role of the nonlinear interaction is evident
in energy transfer from the source to the sink in this model.

n E,. NL, DF, TF, BI, YA

0 1136 258 -11 -44 0 -203
1 131 25 -28 0 1 0
2 204 -185 -54 207 32 0
3 76 4 -35 3 31 0
4 72 -9 -39 9 39 0
5 56 -15 -38 -2 58 0
8 50 -83 -48 -2 138 0

The amplification of the meridional dipole structure of n=1 is
important for the development of the large-scale dipole blocking. The
amplification of n=2 is also required. We demonstrated that a model
run without topography fails to simulate the large-scale blocking be-
cause the planetary waves were not amplified. To analyze the cause
of the amplification of n=1 and 2, an energy budget analysis is con-
ducted for low-frequency variations during the blocking period. The
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Fig. 2. A schematic diagram of the up-scale self-interaction of
wavenumber 1 under the environment of steady wavenumber 2. Sup-
pose that a small disturbance of wavenumber l, uy, interacts with
steady wavenumber 2, ;. The nonlinear interaction between n=1
and 2 causes amplification of ¢y and ¢3. Then the $y causes the am-
plification of u; by a geostrophic balance requirement. This closed
loop of positive feedback between n=1 and 2 amplifies the wavenum-
ber 1 drawing energy of the wavenumber 2.

Fig. 3. A schematic diagram of the trajectory of w, in multi-
dimensional phase space. Suppose that triad wave-wave interactions
among n=0, 1, and 2 dominate the rest of wave-wave interactions
in (1) and that n=0 and 2 are in quasi-equilibrium. A condition for
dominant up-scale interaction with n=2 (i.e., vanishing down-scale
interaction) is satisfied when a low-frequency unstable mode of n=1
becomes stationary under a weak dissipation. The growing direction
describes the unstable manifold and the decaying direction, the sta-
ble manifold. The trajectory tend to approach the unstable manifold
and grow exponentially. This implies that the low-frequency Charney
mode of n=1 is captured by n=2.
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Fig. 4. Time evolution of nonlinear interactions for n=1, divided in
contributions from down-scale self-interactions with n=0,ie. (1.0,1)
for chain-dot line; up-scale self-interactions with n=2, ie, (1-1,2)
for dashed line; and the rest of up-scale triad interactions of (1,-2,3),
(1.-3,4), (1,-4.5), and (1,-5,6) for dotted line. The solid line describes
the sum of these three lines. Units are 103Jm~2,

results show that the low-frequency variation of n=1 is almost com-
pletely explained by the nonlinear wave-wave interactions, and other
physical processes show secondary importance. The energy variation
for n=2 is caused by two competing processes of topographic forcing,
and the nonlinear scattering. During the amplification of n=1], the
wavenumber 2 draws energy from topographic forcing and feeds the
energy for other waves through the nonlinear interactions. The time
variations of wavenumbers 1 and 2 are negatively correlated.

A possible mechanism of the up-scale seif-interaction of
wavenumber 1 under persistent wavenumber 2 is illustrated in Figs.
2 and 3 with a simple model. Refer to the descriptions of the figure
legends. Robinson {1985) discussed a growth of n=1 as an expense of
energy of n=2 as well as n=0. [t is enticing to support a topographic
origin for the amplification of wavenumber 1. However, we find by a
detailed analysis that this is not the case.

The important problem is to show from where the energy of n=1
is transformed. Every triad wave-wave interaction must satisfy a
wavenumber rule n=n’+n". For n=1 the triad interactions (n,n’n")
can be classified in three types: down-scale self-interactions with n=(0,
ie., (1,0,1); up-scale self-interactions with n=2, i.e., {1,-1,2); and the
rest of up-scale triad interactions of (1,-2,3), (1,-3.4), (1,-4,5), and
(1.-5,6). Any up-scale interaction toward smaller wavenumber in-
volves a triad combination with a negative wavenumber. The nega-
tive wavenumber appears as a complex conjugate term in Eq. (2),
and its mathematical role in the system is quite different from that
of a positive wavenumber (see Fig. 3).

With this classification, the nonlinear wave-wave interactions of
n=1 are divided in contributions from these three types of interac-
tions. Figure 4 illustrates the result of transient energy interactions
integrated with respect to time. The chain-dot line (1,0.1) describes
zonal-wave interactions of ordinary barotropic conversion. The nega-
tive indicates an enhanced acceleration of the zonal jet. The dashed
line (1,-1,2) describes the interaction with n=2 where the topographic
forcing exista. The result shows an increased energy supply at the
end of the blocking episode. The dotted line describes the energy
supply from synoptic disturbances of n=3-6. There is an increased
energy supply at the beginning and mature stages of the blocking
episode. The solid line describes the sum of these three lines, which
coincides with the energy variation of n=1. The results show that the
important energy supply into n=1 comes from synoptic disturbances
through the wave-wave interactions.

It is shown by Shepherd (1987) and Tanaka and Sun (1990) that
the synoptic disturbances can be regarded as inhomogeneous turbu-
lence with specific power laws in the meridional energy spectrum.
Hence, present result implies that the blocking is created out of tur-
bulence.
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4. Concluding remarks

[n this study, we carried out nonlinear numerical stmulations of
amplification of low-frequency planetary waves and concurrent block-
ing formations. Analyszing energetics of blocking formations in the
model, we confirmed an amplification of the meridional dipole mode
by means of the up-scale energy cascade from synoptic disturbances.
We find that the persistent wavenumber 2 plavs a catalytic role in
drawing synoptic wave energy and feeding wavenumber 1 and that
without it a realistic blocking was not simulated.

The results of our numerical simulation are summarized as fol-
lows:

(i) the wavenumber 2 is amplified by the prescribed topographic
forcing;

(ii) synoptic disturbances are excited by parameterized baroclinic
instability;

(it} under the quasi-stationary wavenumber 2, a meridional dipole
mode of wavenumber 1 is amplified by the up-scale energy cas-
cade from synoptic disturbances;

(iv) basic futures of the blocking are created by the superposition
of the amplified wavenumbers 1 and 2, and the synoptic distur-
bances contribute to the sharp diffluent structure of the zonal
jet.

Recent studies of a critical layer solution for breaking Rossby
waves show a blocking-like solution (e.g., McIntyre and Palmer 1985).
The solution provides us a clear insight of convection and turbulence.
We note however that the critical layer solution is associated with a
down-scale energy cascade, whereas the blocking is mostly related
with the up-scale cascade as demonstrated by this study. Based on
this fact, it is inferred that turbulence creates disorder (e.g., chaos)
when the energy cascades down scale, whereas it creates order (e.g.,
zonal jets and blockings) when the energy cascades up scale.
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