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1. INTRODUCTION 
 

    Data assimilation is one of the most important 

techniques in numerical weather predictions. In some 

operational centers, 4D-Var (e.g., H. Liu and X. Zou 

2001, and Pierre and Jean-Noël 2001) has been used 

recently, but many operational centers use 3D-Var 

(Parrish and Derber 1992), which is an economical 

and accurate statistical interpolation scheme. The 

4D-Var’s accuracy is much higher than the 3D-Var. In 

addition to 4D-Var’s high accuracy, it allows the 

assimilation of many observations, for example 

asynchronous observations such as satellite radiances, 

at their correct observation time. However, the 

computational cost of the 4D-Var implementation is 

very expensive because the 4D-Var requires a linear 

tangent model and its adjoint model. 

    Evensen (1994) suggested an ensemble Kalman 

filter (hereafter EnKF), which approximates the 

covariance matrix of the Kalman filter (Kalman 1960) 

using ensemble predictions. The EnKF does not 

require calculation of a linear tangent model and its 

adjoint model of GCMs. They have very large degrees 

of freedom, so the KF requires very large covariance 

matrices, but the EnKF does not require computing 

the covariance matrices, directly. Moreover, The 

EnKF is able to generate the optimum ensemble 

perturbations which reflect analysis error.  

    Local ensemble transform Kalman filter (Hunt et 

al. 2007, hereafter LETKF) is a kind of EnKFs. In the 

LETKF each grid point has a local patch. The LETKF 

has an important advantage in which the observations 

are assimilated in each local patch. Because of this 

advantage, the LETKF has a higher performance to 

implement in parallel computers. Miyoshi et al. 

(2007a) applied the LETKF to AFES with a T159L48 

resolution to perform an experimental reanalysis and 

investigated the stability of the LETKF. Miyoshi et al. 

(2007b) constructed LETKF without the local patch, 

and the non-local patch LETKF improves analysis 

errors in polar region. 

    There have been a few researches applying EnKF 

to nonhydrostatic models. Snyder and Zhang (2003) 

applied an ensemble square root filter (EnSRF, 

Whitaker and Hamill 2002) which is a kind of EnKFs. 

Miyoshi and Aranami (2006) applied the LETKF to 

JMA’s operational version of NHM. 

    On the other hand, NICAM (Nonhydrostatic 

ICosahedral Atmospheric Model, Sato et al. 2008) is a 

nonhydrostatic global atmospheric model. It adopted 

the nonhydrostatic equations and icosahedral grid 

structure. So, the NICAM can calculate convection 

directly. The NICAM is developed to resolve clouds, 

and has high performance in the case of high parallel 

computing. It is expected to understand the rainfall 

system more. However, assimilation system of the 

NICAM has not been constructed. So in this study, we 

apply non-local patch version of the LETKF to the 

NICAM (NICAM-LETKF), and investigate the 

influence of the NICAM-LETKF in high latitudes 

under perfect model assumption. 

 

2. EXPERIMENTAL SETTINGS  
 

    Two kinds of experiments (hereafter Ex1 

and Ex2) are performed under the perfect 

model assumption in this study. In the Ex1, 

observing elements are pressure, temperature 

and wind components. In the Ex2 observing 

elements are the elements of Ex1 and mixing 

ratio of water vapor. 

    The forecast model is the abovementioned 



NICAM. Its horizontal resolution is 224 km 

(Glevel-5) and the number of vertical layers is 

40. The prognostic variables are pressure, 

temperature, horizontal wind component, 

vertical wind and mixing ratio of water vapor, 

cloud water and rain water. The true control 

run is generated with an initial data by the 

JMA-GSM analysis on 12Z December 29 2006, 

and integrated until 12Z January 15 2007. 

Observations are generated by adding 

simulated observational error. The error 

standard deviations are 1.0 hPa (pressure), 1.0 

K (temperature), 1.0 m/s (horizontal wind) and 

0.5 g/kg (mixing ratio of water vapor). The 

observational density is about 4% of 

3-dimensional space out of the enter grid. 

    In this study, the localization of the LETKF 

adopts Gaussian-like fifth function. The 

localization scale is defined as 1 standard 

deviation. The horizontal localization scale is 

300 km, and vertical localization scale is 

1.5-grid. The Gaussian-like function drops to 0 

at about 1095 km and 6.7 vertical grids. The 

NICAM-LETKF assimilation cycle is every 6 

hours, and the assimilation term is 10 days. 

The period of the experimental assimilation is 

from 12Z 1 January 2007 to 12Z 15 January 

2007. The ensemble size is chosen to be 20, and 

the 4% (Ex1) and 3% (Ex2) multiplicative 

spread inflation are employed. 

 
3. RESULTS 
 
    Figure 1 and Figure 2 respectively show the time 

series of analysis root mean square errors (RMSEs) 

Fig. 1.  The time series of the analysis 

RMSEs and ensemble spreads for 500 hPa 

geopotential height (m). Initial time is 12Z 6 

Jan 2007.   

Fig. 2.  As in Fig. 1, but for the time series 

of the analysis RMSEs and ensemble spreads 

for 500 hPa zonal wind (m/s). 

Fig. 3.  As in Fig. 1, but for the time series 

of the analysis RMSEs and ensemble spreads 

for 850 hPa temperature (K). 

Fig. 4.  As in Fig. 1, but for the time series 

of the analysis RMSEs and ensemble spreads 

for 850 hPa mixing ratio of water vapor 

(g/kg). 



and ensemble spreads in the Northern Hemisphere 

(20°N - 90°N) for 500 hPa geopotential height and 

zonal wind. In early period the RMSEs decrease with 

time, and the RMSEs are smaller than the 

observational errors. The NICAM-LETKF is slightly 

larger than the RMSEs due to the 3 or 4% spread 

inflation. However, it is said that the ensemble spreads 

roughly correspond to the RMSEs, so the 

NICAM-LETKF captures analysis error in the 

Northern Hemisphere. Comparing Ex1 and Ex2, it is 

seen that the RMSEs of the Ex1 and Ex2 are almost 

the same during the experimental period in Fig. 1 and 

Fig. 2. It suggests that the impact of assimilating water 

vapor is not so large. 

Figure 3 and Figure 4 show the time series of 

analysis RMSEs and ensemble spreads in the Northern 

Hemisphere for 850 hPa temperature and mixing ratio 

of water vapor, respectively. As in Fig. 1 and Fig. 2, in 

early period the RMSEs degrease with time, and the 

RMSEs are smaller than the observational errors. In 

early period the RMSE of Ex1 is larger than that of 

Ex2. However, in the latter half of the period, the 

RMSE of Ex1 becomes comparable to that of Ex2. 

This suggests that in early period assimilating water 

vapor influences the RMSE of the EX1. The EnKF is 

able to treat the cross-covariance structure among 

different variables. So in the latter half of the period, 

the field of water vapor is improved by assimilating 

other observational elements which are related to the 

water vapor. 

Figure 5 shows the spatial distribution of the 

analysis RMSE (top panel) and ensemble spread 

(bottom panel) for 500 hPa geopotential height (left 

panel) and zonal wind (right panel) about Ex2 on 18Z 

8 January 2007. Shaded area shows the analysis 

RMSE and ensemble spread, and the contours show 

500 hPa geopotential height. In the field of 

geopotential height (left panel), there is a developed 

low in Kamchatka. In the east of the low, the RMSE is 

large, but the ensemble spread is as large as the RMSE. 

So the NICAM-LETKF is able to capture regional 

analysis errors in middle troposphere. In the field of 

zonal wind (right panel), in the dense region of the 

contour, the RMSE and ensemble spread are large, so 

it represents that the RMSE and ensemble spread 

become large in high chaotic area. 

Figure 6 shows the spatial distribution of the 

analysis RMSE (top panel) and ensemble spread 

(bottom panel) for 850 hPa temperature (left panel) 

and mixing ratio of water vapor (right panel) about 

Fig. 5.  The spatial distributions of the analysis 

RMSEs (top panel) and ensemble spreads 

(bottom panel) for 500 hPa geopotential height 

(left panel) and zonal wind (right panel). 

Fig. 6.  The spatial distributions of the analysis 

RMSEs (top panel) and ensemble spreads 

(bottom panel) for 850 hPa temperature (left 

panel) and mixing ratio of water vapor (right 

panel). 



Ex2 on 18Z 8 January 2007. In the fields of 

temperature and water vapor, the RMSEs and 

ensemble spreads show good correspondence. The 

areas of large RMSE correspond to the ocean. Because 

the water vapor is supplied from the ocean, the areas 

over the ocean become highly chaotic. So in the 

temperature and water vapor fields, the RMSEs 

become large. However, the ensemble spreads are 

large in such areas. This suggests that the 

NICAM-LETKF is able to capture the regional 

analysis errors in lower troposphere. In Fig. 5 and Fig. 

6, the area which the RMSE and ensemble spread are 

large is not seen in the high latitudes. In the case of 

Ex1, the similar results are provided (not shown). 

 

4. CONCLUSION and DISCUSSION 
 

In this study, the LETKF has been applied and 

tested with the NICAM. For the first part, it is 

confirmed that the LETKF works appropriately with a 

nonhydrostatic global model. It is seen that the 

NICAM-LETKF works stably even if the ensemble 

size is 20 without assimilating water vapor. In early 

assimilation period, the positive impact of assimilating 

water vapor appears in the fields of temperature and 

water vapor. In the latter half of the period, the 

analysis RMSEs of Ex1 corresponds to that of Ex2. 

EnKF computes error covariance explicitly. So, the 

EnKF is able to treat the cross-covariance structure. 

The structure explains the dynamical balance among 

different variables. Therefore, it is consider that the 

EnKF does not require an initialization process. 

Actually, Miyoshi and Yamane (2007) confirmed that 

the localization does not destroy the cross-covariance 

structure completely, and the LETKF works very 

stably even if the forecast model comparatively has 

high resolution. On the other hand, in the fields of 

geopotential height and zonal wind, the positive 

impact appears slightly. 

For the second part, it is confirmed that the 

NICAM-LETKF can capture the high chaotic area, for 

example the east of the developed low and over the 

ocean, by investigating the correspondence of the 

spatial distribution of RMSEs and ensemble spread. 

However, it is necessary to investigate the case of high 

chaotic phenomena such as blocking in detail, because 

in this assimilation period the RMSEs and ensemble 

spreads are small in high latitudes. 
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