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1. Introduction

Large-scale atmospheric energy cascades from source
ranges to dissipation ranges through wave-wave interac-
tions or turbulence. Kraichnan (1967) and Leith (1968)
showed that inential energy transfers in two-dimensional
(2-D) isotropic turbulence allow two equilibrium states:
the -5/3 and -3 power law inertial subranges. Recently,
Lilly (1989) discussed the possibility of four inertial sub-
ranges for the case of two separate variance sources. These
include a large planetary-scale -5/3 range, a small synoptic-
scale -3 range with a down-scale enstrophy cascade, a
mesoscale -5/3 range with an up-scale 2-D kinetic en-
ergy cascade, and a micro-scale isotropic -5/3 range with
a down-scale 3-D kinetic energy cascade. This suggests
that both the -3 and -5/3 power laws of the 2-D inertial
subrange exist in planetary-scale motions. The planetary-
scale -5/3 power law is, however, not confirmed yet from
observations.

According to the normal mode energetics analysis
(e.g., Tanaka 1985: Tanaka and Kung 1988) the energy
spectrum of the real atmosphere projected onto three-
dimensional normal mode functions (3-D NMFs) exhibits
a clear, single spectral peak in the eigenfrequency domain.
Here eigenfrequencies of Laplace s tidal equations for var-
ious equivalent heights are considered to represent the 3-D
scale of the NMFs due to the intrinsic dispersion relation
of Rossby waves. The energy peak separates the region
of a 3 power law in the low-frequency range of Rossby
modes and the -5/3 power law in the high-frequency range
of gravity modes. Interestingly, the spectral slope of the
largest-scale Rossby modes obeys the -5/3 law and merges
with the gravity modes' -5/3 law. The peak is therefore
not merely associated with the largest-scale motions. but
it occurs 1n the intermediate scale. The largest-scale -5/3
range in the eigenfrequency domain appears to agree with
Lilly’s prediction by 2-D turbulence.

The interpretation of the distinct energy peak in the in-
termediate range of the eigenfrequency domain is an open
question. For synoptic disturbances the energy peak may
result from atmospheric baroclinic instability, because the
growth rates of the unstable modes are large (e.g.. Young
and Villere, 1985; Tanaka and Kung, 1989). For plane-
tary waves, however, there is no clear interpretation of the
spectral peak and the evident 3 and -5/3 power law in the
eigenfrequency domain. The energy source and wave satu-
ration processes for large-scale motions need to be studied
and explained.

The purpose of this study is to evaluate energy and
energy-source spectra in the 3-D spectral domain resulting
from atmospheric baroclinic instability. Baroclinic insta-
bility on a sphere is examined for a monthly-mean ba-
sic state of January 1979, using the 3-D spectral prim-
itive equations with the basis of vertical structure func-
tions and Hough harmonics, as derived by Tanaka and
Kung (1989). For comparison, the observed energy spec-
tra based on the analysis of normal mode energetics during
the First GARP Global Experiments (FGGE) were repro-
duced (Tanaka, 1985; Tanaka and Kung, 1988). It will be
shown that the energy source due to baroclinic instability
coincides with the observed energy peaks in the eigenfre-
quency domain both for synoptic and planetary waves.

2. Governing equations

Using a three-dimensional spectral representation, a
system of primitive equations in a spherical coordinate may
be written as:

dw; M M
d—r‘ + ioyw = -igg‘: rpwywn + fi, 1= 1,2, .M, (1)

where w; and f; are the Fourier expansion coefficients
of dependent variables and diabatic processes, o, are
Laplace's tidal frequencies, r,;, are interaction coefficients,
and M is the total number of the series expansion for the 3-
D ammospheric variables. Refer to Tanaka and Sun (1990)
for the details. The expansion basis functions consist of
vertical normal modes and Hough harmonics. The Hough
harmonics comprise rotational (Rossby) modes and west-
ward and eastward propagating gravity modes. They are
distinguished by different meridional indices iz, fw, and
{g, respectively.

The nonlinear equation (1) is linearized for the pre-
scribed basic state, using notations w; and 7, for the time-
independent zonal basic state and w! and f! for small per-
turbations superimposed on the basic state. The resulting
system of linear equations for the first-order terms of the
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Fig. 1. Growth rates and phase speeds of the shallow
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Chamey modes M,
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Fig. 2. Meridional-height cross sections of the geopo-
tential amplitude and phase for (a) M of n=6 and (b) M,
of n=2.

perturbation quantities can be expressed in a matrix form.
For inviscid and adiabatic perturbations, it becomes
diTW+iDW= —-iBW, (2)
where W is a variable vector consisting of w!, D is a diag-
onal matrix of o;, and the (i, j) entry of the real matrix 8
is determined by the expansion coefficients of w;. The real
and imaginary parts of the eigenvalue for the eigenvalue
problem of a real matrix (D + B) give the frequency and
growth rate. By solving (2) for the prescribed zonal basic
state, we can examine the unstable modes which provide
the energy source for synoptic and planetary waves.
Figure 1 illustrates the growth rates and phase speeds
analyzed from a realistic zonal basic state of the monthly
mean for January 1979 (after Tanaka and Kung, 1989).
There is a dominant unstable mode in synoptic waves with
a maximum growth rate of 0.4 (1/day) (e-folding time is ap-
proximately 2.5 day) and a phase speed of 10 (°/day). This
unstable mode is identified as a shallow Chamey mode,
Mc, on a sphere. Different types of unstable modes, 3,
and M,, dominate at planetary waves. The most unsta-
bie modes at zonal wavenumber n=3-4, M,, are identified
as a dipole Chamey mode (a Chamey mode, but with a
meridional dipole structure as in Fig. 2). The most unsta-
ble mode at n=1-2, ¥,, is referred to as a slow Charney
mode due to the characteristics of the slow phase speed.
To understand the vertical and meridional energy spectrum
in the following, a meridional-height cross-section of the
geopotential field is given in Fig. 2 for M of n=6 and for
M, of n=2.

3. Results of the energy spectrum

Atmospheric energy spectra in the vertical wavenum-
ber domain (inverse of an equivalent height A5!) are il-
lustrated in Fig. 3a for zonal wavenumbers n= 6. The
subscript m denotes a vertical index. The Rossby modes
indicate energy peaks at A=' = [ x 10-* and 7 x 10~® with
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a weak peak at A7l = 5x 10-2. The energy levels decrease
rapidly in the higher vertical modes beyond hal=7x10"2
On the other hand, gravity mode energy distributions in-
dicate peaks at A;' = 7 x 10-3. The energy levels are two
orders of magnitude lower than that of Rossby modes for
the barotropic component, whereas these become compa-
rable near A;! =1 x 10—

The ecigenfrequency o, given in (1) describes the
meridional scale of the mode within the same type of
Rossby and gravity modes for the fixed n and m. The
larger the meridional index, the smaller the modal merid-
ional scale. As the meridional index increases, the magni-
tude of the eigenfrequency |o,..| decreases monotonically
within Rossby modes; whereas it increases monotonically
within gravity modes. Consequently, the discrete spec-
trum of |onm| Spans the entire positive frequency domain.
Mixed Rossby-gravity modes ({z=0) and Kelvin modes
(tg=0) are positioned at the boundary of the Rossby and
gravity modes. The spectral characteristics, such as the
power law in the wavenumber domain, are transformed to
the frequency domain.

The results of atmospheric energy spectra as functions
Of |onuni are illustrated in Fig. 3b for n= 6. The three
panels in each figure describe the energy spectra of the
vertical indices of m=0, 2, and 4. corresponding to A-! =
1x 1074, 2x 10-% and 7 x 10-2, respectively. A clear energy
peak is seen at |onym| =8 x 10-2 for m=0, at 6 x 10-2 for
m=2, and at 2 x 102 for m=4. A red shift appears in the
energy peaks for the higher vertical modes. The spectral
slopes in the low-frequency range are less steep than the
3 power law in m=0 and 2, but the slope is steeper than 3
in m=4. The slopes in the high-frequency range are about
-5/3 for m=0, and these are less steep for m=2 and 4. The
spectral characteristics of n=4 and 2 (not shown) are very
similar to those for n=6.

Evidently, the energy peaks are not merely associated
with the largest-scale Rossby and gravity modes, but the
peaks occur at the intermediate meridional scale of the
Rossby modes. We have demonstrated that the character-
istic bimodal energy peaks found in Fig 3a and the distinct
energy peaks in Fig. 3b become clearer in the transient
components of atmospheric motions. Therefore, the spec-
tral peaks are more associated with the transient motions
of the atmosphere.
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Fig. 3. Spectral distributions of atmospheric total en-
ergy (a) in the vertical wavenumber domain and (b) in the
eigenfrequency domain for n= 6 during the FGGE winter.

Fig. 4. As in Fig. 3 but for the shailow Chammey mode
Mc for n= 6. The three panels in each figure represent the
vertical indices m=0, 2, and 4.
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The energy spectrum in the vertical wavenumber do-
main for the most unstable mode at n=6 is illustrated in
Fig. da, using the same format as presented in Fig. 3a.
The spectrum indicates bimodal peaks at 47! = i x 10-* and
9 x 1072, There is an evident energy gap at h7! = 1 x 10-2.
The energy levels drop rapidly for the larger vertical
wavenumbers. Spectral characteristics coincide with the
observations shown in Fig. 3a. Energy peaks in gravity
modes are seen at 47! = 4 x 10-?, also coinciding with
observations. Hence, it is reasonable to interpret that the
observed bimodality in the vertical energy spectrum for
n=6 is the result of atmospheric baroclinic instability of
the shallow Charney mode.

Figure 4b illustrates the energy spectrum in the eigen-
frequency domain for the most unstable mode at n=6. The
unstable mode exhibits evident spectrai peaks at lo, | =
6 % 10-2 for m=0, at 4 x 10~2 for m=2, and at 1 x 10~? for
m=4. These spectral peaks coincide fairly well with the
observations shown in Fig. 3b. Secondary energy peaks
appear in the high-frequency range. The characteristic red
shift of the major peaks for the larger vertical wavenum-
bers is detected as it was in the observed energy spectrum.
Considering the fact that the energy source has a spectral
shape identical to the energy spectrum, we confirm that
the observed energy peaks in the frequency domain are
produced by the energy source resulting fromn atmospheric
baroclinic instability. The present linear model, however,
cannot explain the observed power law due to the lack of
nonlinear interactions. In the real atmosphere, the sup-
plied energy in the source range would cascade away to
the rest of the frequency domain by nonlinear scattering.
This finding may suggest an interpretation of atmospheric
large-scale disturbances from the standpoint of inhomoge-
neous turbulence by Shepherd (1987) that results in energy
transfer between different meridional scales along a con-
stant zonal wavenumber.

Finally, we compared the energy spectra of the slow
Chamey mode and the dipole Charney mode at n=4 and 2
(not shown). These two unstable modes show similar en-
ergy spectra, indicating the bimodal vertical energy peaks
as previously seen. The bimodality appears to be a com-
mon feature in all Charney-type baroclinic instability. The

energy levels of the gravity modes are negligible, which
justifies the use of the quasi-geostrophic theory for these
two modes. For the energy spectra in the eigenfrequency
domain, energy spectra of these two Chamey modes ex-
hibit essentially the same energy peaks and both are similar
to observations.

4. Concluding remarks

One of the main objectives in this study is to show the
similarity between the theoretical and observational energy
spectral peaks for planetary waves. The equivalent height,
A, represents the vertical scale of motions, and the eigen-
frequency of Laplace’s tidal equations, o,.;,, measures the
3-D scale of motions due to the intrinsic dispersion relation
of Rossby waves.

We found characteristic bimodal energy peaks in the
vertical wavenumber domain at A7! = 1 x 10-* and 7 x 10-?
(m~*). We also found a distinct energy peak in the eigen-
frequency domain at |o.,.| = 8 x 10-2, which separates the
3 power law in the low-frequency range and -5/3 power
law in the high-frequency range.  The results were com-
pared with the theoretically expected energy peaks due to
atmospheric baroclinic instability on a sphere. It was con-
firned that the baroclinic instability of shallow Chamey
modes has the expected structure; i.e., characteristic bi-
modal energy peaks in the vertical wavenumber domain
and a distinct energy peak in the eigenfrequency domain.
It is understandable for wavenumber 6 that the observed
energy peaks in these spectral domain are resulted from
the atmospheric baroclinic instability on a sphere. In the
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real amosphere, the supplied energy would cascades away
from the source range toward the rest of the spectral do-
main through the nonlinear scattering.

Contrasted with the reasonable interpretation of energy
peaks for wavenumber 6, the interpretation of the energy
peaks in planetary waves has been less clear in previous
research. We found that the slow Chamey modes and the
dipole Chamey modes in planetary waves exhibit the antic-
ipated bimodal energy peaks in the vertical wavenumber
domain and a sharp energy peak in the eigenfrequency

domain. The resulting energy source due to atmospheric
baroclinic instability coincides with the observed energy
peaks of planetary waves in the eigenfrequency domain in
a manner similar to synoptic waves. The results suggest
that low-frequency unstable planetary waves contribute a
substantial fraction of the energy peaks in the eigenfre-
quency domain.

The time-mean structure of planetary waves is not the
steady solution, but a statistical average of episodic ampli-
fications of transient planetary waves. The structures of the
low-frequency unstable planetary waves are very similar to
the linear steady solutions. The present study provides an
alternative interpretation of the time-mean vertical struc-
tures of planetary waves as the occasional amplification of
the low-frequency unstable planctary waves

Because low-frequency unstable planetary waves are
free modes, they are more likely to be excited resonantly
by many additional external forcing than would neutral
free Rossby waves. Additional quasi-stationary forcing or
transient forcing tends to excite the low-frequency unstable
modes selectively from other numerous normal mode.
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