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ABSTRACT

Observed atmospheric energy peaks in a three-dimensional (3-D) spectral domain are compared with energy
peaks predicted by the theory of atmospheric baroclinic instability. The 3-D scale index for global-scale atmospheric
motions is represented by the eigenfrequencies of 3-D normal mode functions on a sphere, based on the fact
that the eigenfrequencies of Rossby modes are related to the 3-D scale of the waves through the intrinsic wave
dispersion relation.

When the observed atmospheric energy level is expressed as a function of the eigenfrequencies, a distinct
spectral peak appears in the intermediate value of the eigenfrequencies of Rossby modes. The energy spectrum
of atmospheric barotropic components clearly separates a —5/3 power law in the high-frequency range, relative
to the energy peak, and a 3 power law in the low-frequency range. The peak may describe a certain energy
source for large-scale atmospheric motions. For zonal wavenumber 6, we find that the observed spectral peak
coincides with the peak predicted from atmospheric baroclinic instability; the energy peak can be produced by
baroclinic instability. For zonal wavenumber 2, we also find that the observed spectral peak coincides with that
predicted from low-frequency baroclinic instability on a sphere. The results suggest that the low-frequency
unstable modes of zonal wavenumber 2 contribute a substantial fraction of the observed spectral peak in a

manner similar to zonal wavenumber 6.

1. Introduction

Large-scale atmospheric energy cascades from source
ranges to dissipation ranges through wave-wave inter-
actions or turbulence. Kraichnan (1967) and Leith
(1968) showed that inertial energy transfers in two-
dimensional (2-D) isotropic turbulence allow two
equilibrium states: the —5/3 and —3 power law inertial
subranges. The —5/3 range of the two-dimensional
flow is known to transfer kinetic energy toward the
smaller wavenumbers (larger-scale motions), whereas
the —3 range is expected to transfer enstrophy toward
the larger wavenumbers (smaller-scale motions).
Wiin-Nielsen (1967), using the spectral energetics
scheme developed by Saltzman (1957), confirmed the
enstrophy-cascading inertial subrange having a —3
slope in the observed atmospheric wind field. There is
a maximum baroclinic conversion in synoptic waves,
and the kinetic energy is transferred from the source
to large- and small-scale motions (Saltzman 1970;
Chen and Wiin-Nielsen 1978). The statistical behavior
of the 2-D inertial subrange was examined by Lilly
(1971), using a numerical experiment of decaying tur-
bulence at a large Reynolds number. His results dem-

* Current affiliation: State University of New York at Buffalo.

1

Corresponding author address: Dr. H. L. Tanaka, Geophysical In-
stitute, University of Alaska—Fairbanks, Fairbanks, AK 99775-0800.

© 1990 American Meteorological Society

RO rean

AW IS TSy e 308 SR e e e

onstrated that the initial excitation in the midspectral
range tended to exhibit an extensive region having a
—3 spectral slope, consistent with Kraichnan’s and
Leith’s results.

Charney (1971) proposed a mathematical isomor-
phism between the equations governing the 2-D relative
vorticity and the 3-D pseudo-potential vorticity. Here,
geostrophic turbulence of the three-dimensional quasi-
geostrophic flow with a stretched coordinate frame
produced a —3 power law. The basic physics of geo-
strophic turbulence is related to increases in the vor-
ticity of smaller scales due to the elongation of vortex
tubes by eddy diffusive separation, which are nonex-
istent in 2-D turbulence. It is known, however, that
Charney’s prediction of 3-D isotropization does not
hold near the energy source range for synoptic scales.
Herring (1980) investigated Charney’s geostrophic
turbulence in detail, and found that large wavenumbers
tended toward three-dimensional isotropy with a log-
modified —3 power law spectrum (Kraichnan and
Montgomery 1980), while small wavenumbers tended
toward a two-dimensional turbulence independent of
height (barotropization). Hua and Hiadvogel (1986)
also noted discrepancies in Charney’s results. Among
them a marked difference in the spectral characteristics
appeared between barotropic and baroclinic compo-
nents of the atmospheric turbulence in a variable
Brunt-Viisila stratification. All barotropic modes ex-
hibited a tendency of upscale energy cascade, while all
baroclinic modes showed the reverse cascade from large
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to small scales. Tanaka (1985) and Tanaka and Kung
(1988) obtained different spectral slopes for barotropic
and baroclinic components of kinetic energy and
available potential energy.

Planetary-scale motions have not been considered
as fully developed turbulent systems. Theories of tur-
bulence should not be applied to planetary waves
(zonal wavenumbers about 1-4), where assumptions
of isotropy and homogeneity break down, and triad
wave-wave interactions play an important role. For
these reasons, theories of 2-D or geostrophic turbulence
have been restricted to the smaller scales beyond the
source range, zonal wavenumbers 7-20, according to
Charney (1971), and have not been extended to plan-
etary waves. Previous research suggests that the spectral
characteristics of planetary waves are complicated by
many factors, including topographic forcing, land-sea
thermal contrast, barotropic and baroclinic instabilities,
and nonlinear wave-wave interactions (e.g. Wiin-
Nielson 1967, Chen and Wiin-Nielson 1978). Re-
cently, Lilly (1989) discussed the possibility of four
inertial subranges for the case of two separate variance
sources. These include a large planetary-scale —5/3
range, a small synoptic scale —3 range with a downscale
enstrophy cascade, a mesoscale —5/3 range with an
upscale 2-D kinetic energy cascade, and a microscale
isotropic —5/3 range with a downscale 3-D kinetic en-
ergy cascade. This suggests that both the —3 and —5/
3 power laws of the 2-D inertial subrange exist in plan-
etary-scale motions. The planetary-scale —5/3 power
law 1s, however, not confirmed yet from observations.

Using a space-time spectral method, the energetics
analysis scheme in the zonal wavenumber domain by
Saltzman was extended by Hayashi (1980) to the
wavenumber frequency domain. Energy decomposi-
tion was further pursued in the meridional direction,
using a spherical surface harmonic expansion (e.g. Eli-
asen and Machenhauer 1965; Baer 1972). Vertically,
an expansion in empirical orthogonal functions was
employed by several researchers (e.g., Holmstrém,
1963; Baer, 1981). The three one-dimensional spectral
energetics in the domain of zonal wavenumber, me-
ridional index, and vertical index have been combined
in the normal mode energetics scheme (e.g. Tanaka
1985; Tanaka and Kung 1988). They applied three-
dimensional normal mode functions (3-D NMFs) in-
troduced by Kasahara and Puri (1981) as suitable basis
functions for a global energetics analysis. In normal
mode energetics, eigenfrequencies of Laplace’s tidal
equations for various equivalent heights are considered
to represent the 3-D scale of the NMFs due to the in-
trinsic dispersion relation of Rossby waves. According
to their results, the energy spectrum of the real atmo-
sphere projected onto these basis functions exhibits a
clear, single spectral peak in the eigenfrequency do-
main. The energy peak separates the region of a 3 power
law in the low-frequency range of Rossby modes and
the ~5/3 power law in the high-frequency range of
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gravity modes. Interestingly, the spectral slope of the
largest scale Rossby modes obeys the —5/3 law and
merges with the gravity modes’ —5/3 law. The peak
is, therefore, not merely associated with the largest scale
motions, but it occurs in the intermediate scale. The
largest scale —5/3 range in the eigenfrequency domain,
found by the normal mode energetics, appears to agree
with Lilly’s prediction by 2-D turbulence.

The interpretation of the distinct energy peak in the
intermediate range of the eigenfrequency domain is an
open question. It is expected that some energy sources
result in the spectral peak. For synoptic disturbances
the energy peak may result from atmospheric baroclinic
instability, because the growth rates of the unstable
modes are large (e.g. Young and Villere 1985; Tanaka
and Kung 1989). Although baroclinic instability plays
an essential role in synoptic to short waves (zonal
wavenumbers about 5-~15), the instability has been
thought to play a secondary effect in planetary waves
(zonal wavenumbers about 1-4) because their growth
rate is so small. Hence, for planetary waves there is no
clear interpretation of the spectral peak and the 3 and
—5/3 power law in the eigenfrequency domain. The
energy source and wave saturation processes for large-
scale motions need to be studied and explained.

The purpose of this study is to evaluate energy and
energy-source spectra in the 3-D spectral domain re-
sulting from atmospheric baroclinic instability. The
energy spectra of the most unstable modes for realistic
zonal basic states are compared with observations for
zonal wavenumbers 2, 4, and 6. Baroclinic instability
on a sphere is examined, using the 3-D spectral prim-
itive equations with the basis of vertical structure func-
tions and Hough harmonics, as derived by Tanaka and
Kung (1989). The stability of the monthly mean, zonal
wind field for January 1979 was extensively examined,
and compared with the stability of a 30°-jet profile as
analyzed by Simmons and Hoskins (1976). The spec-
tral truncation in this study has been extended to in-
clude not only the Rossby mode basis as in Tanaka
and Kung (1989), but also a comparable number of
the gravity mode basis. For comparison, the observed
energy spectra based on the analysis of normal mode
energetics during the First GARP Global Experiments
(FGGE) were reproduced (Tanaka 1985; Tanaka and
Kung 1988). It will be shown that the energy source
due to baroclinic instability coincides with the observed
energy peaks in the eigenfrequency domain both for
synoptic and planetary waves.

Section 2 explains the governing equations and a
derivation of an algebraic eigenvalue problem to be
solved numerically. Section 3 describes the observed
energy spectrum in the vertical wavenumber and ei-
genfrequency domain. The observed energy spectrum
with a distinct spectral peak is compared in section 4
with the theoretically expected energy peak due to at-
mospheric baroclinic instability on a sphere, for both
synoptic and planetary waves. Section 5 discusses the
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interpretation of the observed spectral peaks that co-
incide with the theoretically expected energy peaks in
planetary waves. Concluding remarks in section 6
summarize the results of this study.

2. Governing equations

A system of primitive equations in spherical coor-
dinates of longitude A, latitude 8, normalized pressure
¢ = p/ps, and normalized time 7 = 2Q¢ can be reduced
to three prognostic equations of horizontal motions
and thermodynamics. The three dependent variables
are the horizontal wind speeds, V = (1, v), and a geo-
potential perturbation, ¢, from a global reference state.
Using a matrix notation, these equations (see Tanaka
and Kung 1989) may be written as

MiU+LU=N+F, (n
ar
where
U=(u,v,¢), (2)
9 ¢* 9
M=2Qdi L1, -1, 3
lag( ’ do Ry 60) (3)
: I d
0 {2 sinf a cosf oA
) 18
=l 2Qsi -
L sind 0 220 ,
I 9 1 d( )cosh 0
acosf ON a cosf a6
(4)
do a
a tand
N= —V-Vu—wa—:—a%uu , (5)
d{a? 0]
—_— .V_
30(R7V 66)
and
T
F= (F Fv,if‘g) . (6)
o ¢,y

The symbols in these equations are the earth’s radius
a, the angular speed of the earth’s rotation £, the spe-
cific gas constant R, and the specific heat at a constant
pressure ¢,. Also defined are the static stability param-
eter vy, the normalized vertical p-velocity w = do/dt,
the zonal and meridional components of the frictional
force F,, F,, and the diabatic heating rate Q. Based
on scale considerations involving w, the vertical ad-
vection of the temperature perturbation has been ne-
glected in (5) as in Kasahara and Tanaka (1989).

The 3-D NMFs are obtained as eigensolutions of the
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generalized eigenvalue problem given by (1) with N
+ F = 0, subject to prescribed boundary conditions.
Periodicity along longitudinal circles and a regularity
of the solution at the north and south poles are the
usual boundary conditions in the horizontal. For geo-
metrical simplicity, the atmosphere is treated as a unit
sphere with the radius 1 defined over a domain of 0
< ¢ < 1. The upper boundary condition is given at the
neighborhood of the origin of the unit sphere, and the
lower boundary condition at the surface of ¢ = 1. Using
the isobaric coordinate formulated by Boer (1989),
the domain of the equation is extended to 0 < p < py,
where p, is a fixed value greater than the surface pres-
sure p; at all times.

The lower boundary condition for the atmosphere is
derived from the condition of a vanishing wind vector
that consists of horizontal u, v, and vertical w = dz/
dt wind speeds:

(u,v,w)=0, at o=1. (7

This condition always holds within the “subterranean”
regions for which p; < p < p,. Since three dependent
variables in (2) constitute a vector, three boundary
conditions for the general nonlinear system must be
considered as in (7). We assume that the diabatic heat-
ing also vanishes within the subterranean region so that
temperature is extrapolated adiabatically, as is com-
monly practiced. The subterranean values have little
effect on energy calculations, because the key variables
are multiplied by the Heaviside or unit function such
as

1, if p<pg
B(p — ps) = . (8)
0, if p>p,.

The usual operations of calculus, extended to the be-
havior for this unit function and its derivative (Dirac
delta function, 83/dp = — &) permits further derivations
of the model atmosphere (see Boer 1989). In this for-
mulation, w at p = p, is identical to the value at p = p;
and has a nonzero value. These conditions, combined
with the first law of thermodynamics, lead to the lower
boundary condition for the vertical structure function
G(s):

dG v

da+TbG 0 at o=1, %)
where the subscript & denotes the value of the reference
state at ¢ = 1.

The upper boundary condition is given by statements

that bound total kinetic and available potential ener-
gies:

{ 1
f K+Aa’a=f l(u"+vz)
0 0o 2

2

g %2
2R7(60) do < oo. (10)
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These conditions lead to the upper boundary condition
for the vertical structure function G(s):

1

L G?de < . (11)
We have assumed that +y is positive. For the case of a

_constant static stability, the vertical structure equation
reduces to an Euler equation, as seen in the radial
equation of spherical harmonics. An isothermal at-
mosphere is a special case of a positive constant static
stability. The solutions are power functions with a real
negative power for a barotropic (external) solution and
complex powers for baroclinic (internal ) solutions. For
an open atmosphere with a singularity at ¢ = 0, rigorous
mathematical treatment of the singular Sturm-Liou-
ville boundary value problem yields a continuous
spectrum for internal solutions and a discrete spectrum
for the external solution (see Staniforth et al. 1985).
However, the continuous spectrum causes difficulties
in further development. In this study, the solutions are
constructed numerically, according to Galerkin’s pro-
cedure as used by Kasahara (1984 ) to obtain bounded
vertical structure functions with a discrete spectrum.
In his scheme, the vertical structure functions are ap-
proximated by a finite series of Legendre functions.
The vertical structure equation is then solved as an
algebraic matrix eigenvalue problem. The bounded-
ness, together with the lower boundary condition given
by (9), is sufficient for the so-called mass matrix op-
erator in (3) to be selfadjoint. The accuracy of the nu-
merical solution thus depends on the matrix size. The
finite number of eigenvalues are regarded as a discrete
approximation of the continuous spectrum.

An equivalent height, &,,, which appears as a sepa-
ration constant for the vertical and horizontal structure
equations, is proportional to the inverse of the eigen-
value of the vertical structure equation. It describes the
scale of vertical normal modes as the spectrum forms
a monotonically increasing sequence of eigenvalues. A
horizontal structure equation (that is, Laplace’s tidal
equation) is then solved for the given separation con-
stant of the equivalent height to obtain Hough har-
monics Hy,,(A, 8). The 3-D NMFs, I1,,;,,(), 0, o), are
defined as a tensor product of the vertical structure
functions G,( o) (vertical normal modes) and Hough
harmonics H,,,,(A, 8) (horizontal normal modes)

Ium(A, 0, @) = Gp(0)Hum(A, 0)
= G 0)Oum(0)e™. (12)

Here, 0,,,,(8) denotes Hough vector functions, and the
subscripts represent zonal wavenumbers #, meridional
indices /, and vertical indices m (refer to Kasahara and
Puri 1981; Tanaka 1985, for greater detail). These can
be partitioned in rotational (Rossby modes /g) and
gravitational modes (eastward [/ and westward /[y
gravity modes) based on the eigenfrequency, o, of
the generalized eigenvalue problem. One must be care-
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ful to avoid confusion when ¢, is used for eigenfre-
quency and ¢ for the vertical coordinate.

The generalized eigenvalue problem derived from
the matrix operators M and L in (1) can be written in
a dimensionless form as

M Xm)nnlm
=(Yn™!

io'nlm(Ym_l
L xm)nnlm~ ( 13)

The scaling matrices, X,, and Y,, are defined using c,,
= Vgh,n, where g is the earth’s gravity, for each vertical
index:

X = Cm dlag(l, 1’ cm);
Y. = 2Q diag(cm, Cm, 1).

(14)
(15)

The geometry and stratification of the real atmosphere
confront us with the problem of defining a 3-D scale.
One approach to solving this problem is to derive a
differential equation that describes the atmosphere to
some extent. The 3-D scaling can be established based
on the ordered eigenvalues of the differential equation
(see Baer 1981). Equation (13) has a standard form
of the generalized eigenvalue problem of a differential
equation. Hence, the ordered eigenfrequency can be
regarded as a three-dimensional scale index of the 3-
D NMF. The eigenfrequency of a Rossby mode is re-
lated to its 3-D scale through the wave dispersion re-
lation. The magnitude of the eigenfrequency decreases,
in general, as n, [, and m increase; that is, as the 3-D
scale decreases. Although there is an exception where
the relation reverses at very small 7, the eigenfrequency
may be understood as a 3-D scale index. On the other
hand, the eigenfrequency of a gravity mode decreases
in magnitude as m increases, but it increases as n and
! increase. Therefore, when different vertical modes are
compared, the 3-D scaling for a gravity mode is not as
simple as a Rossby mode. ‘
It should be noted that the zonal wavenumber 7 is

a square root of an eigenvalue of a longitudinal differ-
ential equation, which describes the longitudinal scale.
It is also an integer that counts the sequence of the
eigenvalues. In contrast, the eigenvalue of the vertical
differential equation is (4,,) " (apart from a constant
g), and the vertical index m is an arbitrary integer that
counts the sequence of the eigenvalues. It may start
from m = 1 instead of m = 0 for the barotropic com-
ponent. That is, the eigenvalue no longer coincides with -
the index. Taking account of the distinction between
the invariant (4,,) ™' and the free index m, we propose
to use (h,,) "' for the quantitative measure of the ver-
tical scale, and designate this a vertical wavenumber.
Similar arguments can be applied to the eigenfrequency
oum and the meridional index /. When both n and m
are fixed, the eigenfrequency represents a one-dimen-
sional meridional scale. The meridional index / of
Hough harmonics is an arbitrary index that may start
from other than / = Q. In this study, we will use the
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eigenfrequency o, as a quantitative measure of the
meridional scale.

It can be shown by the Sturm-Liouville theorem
that the 3-D NMFs are mutually orthonormal with a
natural inner product:

<Hm'm: IL, (4 m'> = 6rm’6ll’6mm’, ( 16)

and that these form a complete set of expansion basis
functions for arbitrary variables. Based on this property,
we approximate the variables U and F in (1) by a finite
series of the 3-D NMFs:

U(A’ 6, o, T) = z Wartn (T )Xol pim (X, 8, ), (17)
nlm
F(Ay 0, g, T) = z ﬁllm(T)YmHnlm()‘s 0» U)- (18)
ntm

Here, the expansion coefficients w,,, and f,;,, are func-
tions of only time. Using the orthonormality condition
of (16), the expansion coefficients can be obtained from

Waim = <U, xm_lnnlm>, (19)
f;rl»: = <F, Ym—lnnhn>- (20)

It is important to note that the expanded variabiles,
including the zonal field, are in the subspace spanned
by the 3-D NMFs. Therefore, they satisfy the same
boundary conditions of the 3-D NMFs of (9)and (11),
which were derived from (7) and (10). It is found from
(9), that if V = 0, then dV/ds = 0 at ¢ = |. Hence,
this condition permits the internal baroclinic instability
as 1s discussed by Lindzen et al. (1980) in the concept
of the over reflection (see Tanaka and Kung 1989; Ka-
sahara and Tanaka 1989). Since the boundary con-

dition given by (9) forbids the boundary effect in the -

Charney-Eady problem, the instability in this study

appears to occur by a negative meridional gradient of,

the potential vorticity of the basic staté near the ground
(see the Charney-Stern theorem; Holton 1975).

Applying the inner product for (1) and using the
scale matrices in (14) and (15), we can construct a
weak form of the primitive equation:

9 ‘
<Ma U+LU—-N-F,Y "II,,,,,,> 0. (21)
T

From this, the 3-D spectral representation of the prim-
itive equation becomes a system of ordinary differential
equations for the expansion coefficients given in (17):

dw; .
—+ low; =

K K
d'f —1 Z z rijk"’jwk+ﬁ)

Jj=1 k=1

i=12---,K, (22)
where K is the total number of the series expansion.
For simplicity, the three triple‘subscripts nim, n'l'm’,
n"l’m” have been shortened to subscripts i, j, and k,
respectively. The real interaction coefficients Fij are

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 47, No. 12

explicitly evaluated by the triple product of the basis

functions, according to (21).

In order to analyze the stability of a zonal basic state,
the nonlinear equation (22) is linearized for the pre-
scribed basic state, using notations w; and f; for the
time-independent zonal basic state and w; and f; for
small perturbations superimposed on the basic state
(the same symbols as the original variables are used -
for convenience). The real physical implication of the
linearization will be reconsidered in section 5. The re-
sulting system of linear equations for the first-order
terms of the perturbation quantities can be expressed
in a matrix form. For inviscid and adiabatic pertur-
bations, it becomes

d
— W+ DW= —lBW

dr (23)

where
W=(w,wy, -, w, - ,wn)T,  (24)
D = diag(oy, 62, * * *, 04, * * *, on).  (25)

The dimension of the system N is the product of the
total vertical indices and total meridional indices. The
(i, j) entry of the real matrix B is determined by the
expansion coefficients of the zonal basic state:

N

bj= 2 (rje+ rup)we, 6j=1,2, -+, N.(26)
k=1
If we assume that the solution of W is
W(7) = £ exp(—ivr), (27)

the initial value problem (23) becomes an eigenvalue
problem for a real matrix (D + B) with the elgcnvector
£ and eigenvalue v as

vE = (D + B)¢L. (28)

The real and imaginary parts of the eigenvalue » give
the frequency and growth rate. By solving (28) for the
prescribed zonal basic state, we can examine the un-
stable modes that provide the energy source for syn-
optic and planetary waves.

Finally, according to Kasahara and Puri (1981) and
Tanaka (1985), an energy element E; for a particular
basis function is defined in a dimensional form by

3 Dol wil?. (29)

The energy spectra of the observed atmosphere and
the analyzed unstable modes can be examined using
(29). It can be shown that the energy-source spectrum
of the unstable modes, dE;/d, is proportional to the
energy spectrum itself. Using »; as the positive imagi-
nary part of the eigenvalue, it becomes

dE; _
dt

(30)
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Since the expansion basis is composed of Rossby modes
and gravity modes, we can describe the spectral distri-
butions of the energy and energy source for the rota-
tional and gravitational components as functions of
the eigenfrequency, |o;|. The energy and energy source
can also be expressed as functions of the vertical wave-
number, A,,”".

3. Large-scale atmospheric energy spectrum
a. Energy spectrum in the zonal wavenumber domain

Atmospheric energy levels are generally higher for
planetary waves (n = 1-4) than for synoptic to short
waves (n = 5-15) (e.g., Saltzman 1970; Kung 1988).
Figure | compares the spectral distributions of total
energy for the transient component of motions, Er,
and the sum of the stationary component and annual
cycle, Eg + E, (after Tanaka and Kung 1988). Here,
the total energy is the sum of the kinetic energy and
available potential energy. The results of the normal
mode energetics (solid lines) are compared with the
standard spectral energies (dashed lines), based on the
one-year period of the FGGE III-b data assimilated at
the Geophysical Fluid Dynamics Laboratory (GFDL).
The energy level of E+is one order higher than that of
Es + E, for n > 4, indicating the dominance of tran-
sient waves of synoptic disturbances. The energy level

105 -

104 L

10:! -

Wavenumber (n)

FIG. |. Spectral distributions of atmospheric total energy in the
zonal wavenumber domain for contributions from the steady com-
ponent plus annual cycle of motions, Eg + E,, and transient motions,
Er(aﬂcl: Tanaka and Kung 1988). The results are based on FGGE
observations, The normal mode energetics are solid lines and the
standard spectral energetics are dashed lines,
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of Eg + E, becomes comparable to Eyat n = 1. The
major part of quasi-stationary flow is contained within
the range of n < 4. The results of the transient energy
spectrum Eyshow a flat energy spectrum for | <n< 6
and a clear transition to the —3 power-law range for n
> 6. The edge of the —3 power law range near n = 6
corresponds to the range of the energy source of syn-
optic disturbances. Atmospheric baroclinic instability
has been considered as the major energy source of the
synoptic disturbances. The maximum baroclinic con-
version occurs in synoptic transient waves, while the
kinetic energy is transformed from the source to large-
and small-scale motions (see Saltzman 1970). Recent
studies using the FGGE data show an additional max-
imum of baroclinic conversion in planetary waves as-
sociated with low-frequency variability in the Northern
Hemisphere (Kung and Tanaka 1984; Kung 1988).

b. Energy spectrum in the vertical wavenumber domain

The vertical wavenumber is proportional to Lamb’s
parameter (=a*Q%/gh,,). However, it is not directly
proportional to the vertical geometrical wavenumber.
Silva Dias and Bonatti (1986) demonstrated that the
vertical energy spectra, evaluated with various sets of
vertical structure functions with different upper
boundary conditions, are approximately unique over
(hn)~'. Atmospheric energy spectra in the vertical
wavenumber domain are illustrated in Fig. 2 for zonal
wavenumbers n = 0, 2, 4 and 6. The evaluation of total
energy is based on the FGGE winter data (December,
January, and February), using (2), (19), and (29).
For all meridional indices, the energy elements E; are
summed separately for Rossby modes, eastward gravity
modes, and westward gravity modes. The resulting en-
ergy levels are plotted as functions of the vertical wave-
number, /,,”", in a unit of m~"'. Table 1 lists the cor-
respondence between the vertical indices and the ver-
tical wavenumbers.

The rotational part of the zonal component n = 0,
is called the geostrophic mode (Kasahara 1978). The
highest energy (23.4 X 10° J m~2) is seen at h,, ' = 7
X 1073. Since the total energy for n = 0 is about 60
X 10° J m~? (Kung and Tanaka 1983), close to half
the energy is stored near the peak at A,,”' =7 X 1073,
The barotropic mode at /,,”' = 1 X 10™* contains 8.4
%X 10° J m~2. Another energy peak is seen at A,
= 5 X 1072, These are energy gaps between A, !
=1X10""and 7 X 1072 and between 7 X 107> and
5 X 1072, The gravity mode energy is two orders of
magnitude less than the energy of the geostrophic
mode. Two energy peaks appear in the vertical wave-
numbers as seen in the geostrophic modes. Since both
of v and w are identically zero in the geostrophic modes,
important information concerning the Hadley circu-
lation is contained in the gravity modes although the
energy levels are low.,

~ Forwavenumbers n = 2, 4, and 6, the Rossby modes
indicate energy peaks at 4, ™' = 1 X 10~ and 7 X 103
with a weak peak at 4,,™' = 5 X 1072, The energy
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FIG. 2. Spectral distributions of atmospheric total energy in the vertical wavenumber domain for zonal wavenumbers n = 0, 2, 4 and 6
during the FGGE winter. The vertical wavenumber A,,,”' (unit: m™) is the inverse of the equivalent height, with m denoting the vertical
indices 0 through 10. The symbols designate Rossby modes (squares), westward gravity modes (circles), and eastward gravity modes
(crosses). For n = 0, the sum of positive and negative frequency modes is designated as gravity modes.

levels decrease rapidly in the higher vertical modes be-
yond h,,~' = 7 X 1073, It is interesting to note that
overall, the energy distributions for 4,,”' > 7 X 1073
are very similar for all zonal waves. The energy gaps
between 4,,”" = 1 X 107 and 7 X 1072 are related

with the first internal mode, »2 = 1, which has its largest
amplitude at the model’s top. These gaps tend to be
filled in by planetary waves. This tendency may be
related to the occasional vertical propagation of plan-
etary waves into the deep atmosphere of the strato-



15 NOVEMBER 1990

H. L. TANAKA AND SHAOIJIAN SUN

TABLE 1. The vertical index m, the corresponding equivalent height
h,, (m), and the vertical wavenumber 4,,~" used for the normal mode
energetics (left) and atmospheric stability analysis (right) in this study.
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¢. Energy spectrum in the eigenfrequency domain

Before introducing the energy spectrum in the ei-
genfrequency domain, we consider Fig. 3, which shows
the energy spectra of the wavenumber n = 2 as func-
tions of the meridional indices /g, /w, and /g (see Tan-
aka 1985, for the detail). As expected, the Rossby
modes dominate the gravity modes in the three panels
of m = 0, 2, and 4. The energy peaks appear at the
intermediate meridional indices of Iz = 3 for m = 0,
Ig =5 form =2, and Iz = 6 for m = 4. The energy
levels of the largest-scale Rossby mode, I = 0 are very
low and are comparable to the energy levels of the

m . ™! m P b

0 9623.9 1.0X 107 0 9746.5 1LOX 107
| 2297.1 44X 107 1 3457.7 29 %107
2 475.9 2.1 X107 2 7715 1.3% 1073
3 272.0 3.7 x 1072 3 269.3 3.7x107°
4 150.0 6.7 X 1073 4 113.9 8.8 x 1073
5 79.5 1.3 X 1072 5 46.9 2.1 X 1072
6 424 2.4 X 1072 6 T 2401 4.1 X 1072
7 26.3 3.8 X 1072

8 21.6 4.6 X 1072

9 13.4 7.5 % lO“T gravity modes.
10 9.4 11X 10”

sphere and mesosphere. On the other hand, gravity
mode energy distributions indicate peaks at f,,”' = 7
X 1073, The energy levels are two orders of magnitude
lower than that of Rossby modes for the barotropic
component, whereas these become comparable near
hn™' = 1 X 10", There is a significant difference in
the energy levels of westward and eastward gravity
modes for n = 2 and 4. The eastward modes contain
more energy than the westward modes in the range of
1072 < h,,~' < 1072, The difference comes from active
tropical Kelvin waves (see Tanaka and Kung 1988).

The eigenfrequency o, given in (13) describes the
meridional scale of the mode within the same type of
Rossby and gravity modes for the fixed #» and m. The
larger the meridional index, the smaller the model me-
ndional scale (see Kasahara 1976, for the structures).
As the meridional index increases, the magnitude of
the eigenfrequency |o..| decreases monotonically
within Rossby modes; whereas it increases monoton-
ically within gravity modes. Consequently, the discrete
spectrum of | o, | spans the entire positive frequency
domain. Mixed Rossby—-gravity modes (/x = 0) and
Kelvin modes (/g = 0) are positioned at the boundary
of the Rossby and gravity modes. The spectral char-
acteristics, such as the power law in the wavenumber
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FIG. 3. Spectral distributions of atmospheric total energy in the meridional index domain for zonal wavenumber 7 = 2 during the FGGE
winter. The three panels represent for the vertical indices m = 0, 2, and 4. Rossby and gravity modes are plotted with different symbols
shown in the legend.
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the FGGE winter. The dimensionless eigenfrequencies | o, | in ( 13) are chosen in the abscissa to represent the meridional scale of atmospheric

domain, are transformed to the frequency domain us-

ing the wave dispersion relations.

The results of atmospheric energy spectra as func-
tions of | o | are illustrated in Fig. 4 for n = 2, 4, and

6. It should be noted that the eigenfrequency in the

abscissa differs from the wave frequency in space~time

spectra as in Hayashi (1980). The three panels in each
figure describe the energy spectra of the vertical indices
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of m =0, 2, and 4, corresponding to A,,” = 1 X 107,
2X 1073, and 7 X 1073, respectively.

For n = 6, a clear encrgy peak is seen at | o,,| = 8
X 102 form =0, at 6 X 1072 for m = 2, and at 2
X 1072 for m = 4. A red shift appears in the energy
peaks for the higher vertical modes. The spectral slopes
in the low-frequency range are less steep than the 3
power law in m = 0 and 2, but the slope is steeper than
3 in m = 4. The slopes in the high-frequency range are
about —5/3 for m = 0, and these are less steep for m
= 2 and 4. The spectral characteristics of n = 4 and 2
are very similar to those for n = 6. The energy peaks
inn=4areat6 X 102 form =0, at6 X 1072 for m
=2,and at | X 1072 for m = 4. Those in n = 2 are at
6 X102 form=0,at2 X 1072 for m = 2, and at 5
X 1073 for m = 4.

Evidently, the energy peaks are not merely associated
with the largest-scale Rossby and gravity modes, but
the peaks occur at the intermediate meridional scale
of the Rossby modes. Since the energy flux analysis in
the spectral domain provides no appropriate expla-
nation of the peaks, it is reasonable to expect certain
encrgy sources that correspond to those distinct energy
peaks. We note that the characteristic bimodal energy
peaks found in Fig. 2 and the distinct energy peaks in
Fig. 4 become clearer in the transient components of
atmospheric motions, Er (not illustrated). Conversely,
the spectral distributions of the quasi-stationary com-

ponents, Es + E4, are rather complicated by several
distinct energy peaks in the 3-D spectral domain.
Therefore, the spectral peaks are more associated with
the transient motions of the atmosphere.

4. Baroclinic instability on a sphere

a. Growth rate and phase speed

The spectral peaks shown in the vertical wavenum-
ber domain and in the eigenfrequency domain in sec-
tion 3 can be closely related to atmospheric baroclinic
instability on a sphere. At least for synoptic waves, the
role of baroclinic instability in providing the energy
for disturbances, thereby creating the spectral peaks
(at lease in v-component ), seems to have been estab-
lished (see Tanaka 1985). Figure 5 illustrates the
growth rates and phase speeds analyzed from a realistic
zonal basic state of the monthly mean for January 1979
(after Tanaka and Kung 1989), according to the ei-
genvalue problem discussed in section 2. There is a
dominant unstable mode in synoptic waves with a
maximum growth rate of 0.4 (day ') (e-folding time
is approximately 2.5 day) and a phase speed of 10 (deg
day ~'). This unstable mode is identified as a shallow
Charney mode, M, on a sphere. It is reasonable to
consider that this unstable mode is responsible for the
energy peaks in the spectral domain of synoptic waves
as shown in section 3. ‘
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FIG. 5. Growth rates and phase speeds of the unstable modes with
a monthly mean zonal basic state for January 1979 (after Tanaka
and Kung 1989). The unstable modes are labeled M for shallow
Charney modes, M, for dipole Charney modes, and M, for slow
Charney modes.

Compared with the growth rates by Gall (1976) and
Simmons and Hoskins ( 1976), present results indicate
smaller growth rates beyond n = 9 (see Kasahara and
Tanaka 1989, for n> 10). One of the possible reasons
for this disagreement may come from the different
lower boundary conditions. Most of the previous stud-
ies adopt a free-slip lower boundary condition in which
an unstable mode, having its amplitude maximum at
the ground, can grow quickly. In contrast, our primitive
equation model adopts a nonslip lower boundary con-
dition (7) in which the external unstable mode typical
at the synoptic to short waves must damp. Since our
major concern is planetary waves, whose scale is larger
than the major kinetic energy source at synoptic waves,
separate study should be conducted on this subject,
using higher vertical resolutions and a realistic static
stability.

VoL. 47, No. 22

Hartmann (1979) found different types of unstable
modes M, and M, dominating planetary waves, where
the shallow Charney mode approaches the neutral
point and the Green mode (Green 1960) indicates
small growth rates. Hartmann'’s results were based on
an initial value problem of a quasi-geostrophic model.
Tanaka and Kung (1989) confirmed his results based
on an eigenvalue problem of a primitive equation
model. They identified the most unstable modes at n
= 3-4, M,, as a dipole Charney mode (a Charney
mode, but with a meridional dipole structure as in Fig.
12). In this study, the most unstable mode at n = 1-
2, M, may be referred to as a slow Charney mode due
to the characteristics of the slow phase speed.

The results by Tanaka and Kung ( 1989 ) were based
on a spherical domain extending from the ground to
about | mb so that the planetary waves are better re-
solved. Instead, they used a truncation with the Rossby
mode basis alone, without the gravity mode basis, ex-
cept for the Kelvin mode. This study relaxes the trun-
cation so that the linear system includes Rossby modes
of [z = 0-25, westward gravity modes of /i = 0-11,
and eastward gravity modes of /[ = 0-11. This trun-
cation is identical to the meridional resolution used
for the normal mode energetics of the general circu-
lation during the FGGE (Tanaka and Kung 1988).
Accordingly, a direct comparison is possible between
the theoretically expected energy peaks and the actual
energy peaks presented in section 3 of this study.

In this study we examined the stability of two dif-
ferent symmetric zonal basic states: a zonal wind profile
with a 30°-jet described by Simmons and Hoskins
(1976) and an observed zonal wind profile for the
monthly mean of January 1979. The 30°-jet profile
has a separable structure in both the vertical and in
the meridional, and is deliberately chosen to be baro-
tropically stable. The January mean wind profile is ob-
tained from the FGGE III-b data assimilated by the
GFDL. The northern wind profile of the basic state is
extended to the Southern Hemisphere so that the basic
state becomes symmetric about the equator. The mean
geopotential field is diagnostically evaluated so as to
satisfy the geostrophic wind balance. For such sym-
metric zonal basic states, the eigenspace becomes de-
coupled into symmetric and antisymmetric solutions.
The antisymmetric solution includes the antisymmetric
zonal wind, antisymmetric geopotential, and symmet-
ric meridional wind; the symmetric solution contains
the opposite. We examined the antisymmetric solutions
because the atmospheric eddy energy contain more
antisymmetric components than symmetric compo-
nents (Tanaka et al. 1986). The antisymmetric com-
ponents are the even meridional indices for Rossby
modes and are odd meridional indices for gravity
modes. In the vertical we used the vertical indices of
m = 0-6, according to the scheme by Tanaka and Kung
(1989). The convergence of the solutions in planetary
waves has been demonstrated, using this vertical res-
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olution, although more vertical resolutions may be re-
quired for higher zonal wavenumbers. Table | lists the
correspondence between the vertical indices and ver-
tical wavenumbers, which are slightly different from
those given in section 3.

The results of several growth rates and phase speeds
for the 30°-jet and the January-mean basic states are
listed in Table 2 for n = 6, 4, and 2. The results for »n
= 6 show a dominant unstable mode of the shallow
Charney mode as expected from Fig. 5 and previous
studies (e.g. Simmons and Hoskins 1976; Young and
Houben 1989). The growth rates are 0.41 and 0.33
(day™") for the 30°<jet and the January mean basic
states, respectively. The phase speed is about 8 (deg
day ™) for both cases. The table also lists the second
unstable mode, which can be identified as a dipole
Charney mode.

The results for n = 4 are more complicated than
those of n = 6. The first three unstable modes with the
30°-jet basic state are identified as a shallow Charney
mode, dipole Charney mode, and slow Charney mode.
The results from the January-mean basic state exhibit
a new type of the most unstable mode. It propagates
eastward with a speed of 45° day ™! (i.e., 2-day period).
This mode is not seen in the results from the 30°-jet
basic state where barotropic instability has been ruled
out. Therefore, the mode is induced by a certain feature
of the realistic January basic state with a subtropical
jet and a polar night jet. Hartmann ( 1983) investigated
the barotropic instability of the polar night jet in the
winter stratosphere. He found barotropically unstable
modes in planetary waves with significant growth rates
and a period of a few days. His barotropically unstable
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modes have nearly a constant phase with height and a
rapidly increasing amplitude between 50 and 4 mb.
The structure explains the energy maximum at the first
internal vertical index, m = 1, as shown in Figs. 8 and
10. The structure in this study is shown in Fig. 12b for
comparison. It is similar to the results by Hartmann.
Therefore, this fast-moving mode can be identified as
a barotropically unstable mode on a sphere. The second
and third fastest-growing modes are identified as a slow
Charney mode and a shallow Charney mode, respec-
tively. There are two other fast-moving modes in the
forth and fifth modes, and the sixth mode is identified
as a dipole Charney mode.

The results with the January basic state for n = 2
similarly indicate the barotropically unstable mode as
the fastest-growing mode. The second fastest growing
mode shows a phase speed of 261° day ' (i.e., a period
of less than one day). This very fast-moving mode is
identified as an unstable gravity mode, as will be clear
from the prevailing gravity mode energy. The third
and forth modes are identified as a slow Charney mode
and a dipole Charney mode, respectively.

From the results of the growth rates and phase
speeds, we found that including the gravity mode basis
enhances the growth rate of the barotropically unstable
mode in planetary waves. Ageostrophic components
may be important, to some extent, for this mode. The
results suggest that the growth rate can be underesti-
mated in the quasi-geostrophic theory. The growth rate
becomes comparable to that of low-frequency planetary
waves. It is noted that even for a geostrophically bal-
anced zonal basic state, high-frequency unstable gravity
modes appear for the realistic January-mean basic state.

TABLE 2. Growth rates (day™") and phase speeds (deg day™) of the most unstable modes for the 30°-jet basic state and for the J anuary-
mean basic state. The unstable modes are labeled M for shallow Charney modes, M, for dipole Charney modes, M, for slow Charney
modes, B for barotropically unstable modes and G for unstable gravity modes.

30° jet basic state

January-mean basic state

Mode Growth rate Phase speed Mode Growth rate Phase speed
wavenumber 6
1 M 0.41 7.6 1 Me 0.33 7.7
2 M, 0.24 Tt 2 M, 0.17 8.3
wavenumber 4
| Me 0.21 7.8 1 B 0.20 45.1
2 M, 0.16 6.7 2 M, 0.18 T
3 M, 0.12 7.5 3 M¢ 0.17 8.2
4 B 0.16 22.6
5B 0.13 335
6 M, 0.11 7.3
wavenumber 2
1 M 0.11 7.9 1 B 0.23 43.8
2 M, 0.08 7.7 26 0.15 ' 261.0
3 M, 0.06 35 3 M, 0.09 1.4

4 M, 0.08 8.2
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for n = 6 as in Fig. 2, but for shallow Charney mode.
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High-frequency unstable modes are abundant in the
unbalanced basic state: for example, the climatological
mean wind and climatological mean geopotential.
Since the scientific significance of unstable gravity
modes is still an open question, attention is concen-
trated on slow, unstable modes in this study. The stud-
ies of slow, unstable modes of the primitive equations
have long been hampered by the existence of high-
frequency unstable gravity modes. The present 3-D
spectral primitive equation model is superior for deal-
ing with or excluding the high-frequency subspace of
atmospheric motions.

b. Energy and energy-source spectra for wavenumber
6

The energy spectrum in the vertical wavenumber
domain for the most unstable mode at n = 6 is illus-
trated in Fig. 6, using the same format as presented in
Fig. 2. The spectrum indicates bimodal peaks at B!
=1 X 10™*and 9 X 1073, There is an evident energy
gapat h,,~' = 1 X 1073, The energy levels drop rapidly
for the larger vertical wavenumbers. Spectral charac-
teristics coincide with the observations shown in Fig.
2 for n = 6. Energy peaks in gravity modes are seen at
hn~' = 4 X 1073, also coinciding with observations.
Hence, it is reasonable to interpret the observed bi-
modality in the vertical energy spectrum for n = 6 as
the result of atmospheric baroclinic instability of the
shallow Charney mode.

Mc n=6 m=0 Mg n=6 m=2 Mc n=6 m=4
* ®; ®
] LEGEND ]
0O = Rosby Mode
1 o ] O= W Gravity Node
® o] + = £ Gravily Mode -3
2 o -3 T &
E E o
i oo ]
4 DD o
b% QD '\3: 121 [a]
o ] ] o
] L 1 o
> DD 1 ° | °
[Ca=N O | -
& N =3
& o 3 &+ o 3 o %
] . h +
- o 1 o o o 9'0 1 &£ a .6
'6'\:_ k-3 o 91 ooo
[ A + 3 o +
] E %
., o ¢ ]
- + g
o % 0
vl ] a v}
¥ 2 o 3
3 3] + + 3
o ° R ]
) ]
'.’2_ Tg_: 78_
3 E a
N 3
@
10 10 1 10 10 10 10 10 1 10 10 10 1”0 10
FREQUENCY FREQUENCY FREQUENCY

FiG. 7. Energy spectrum in the eigenfrequency domain for

n = 6 as in Fig. 3, but for shallow Charney mode.
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Figure 7 illustrates the energy spectrum in the ei-
genfrequency domain for the most unstable mode at
n = 6 (compare with observations in Fig. 4). The un-
stable mode exhibits evident spectral peaks at | o,y
=6X10"2form=0,at4 X 1072 for m = 2, and at
I X 1072 for m = 4. These spectral peaks coincide
fairly well with the observations shown in Fig. 4. Sec-
ondary energy peaks appear in the high-frequency
range. The characteristic red shift of the major peaks
for the larger vertical wavenumbers is detected as it
was in the observed energy spectrum. Considering the
fact that the energy source has a spectral shape identical
to the energy spectrum, we confirm that the observed
energy peaks in the frequency domain are produced
by the energy source resulting from atmospheric baro-
clinic instability. The present linear model, however,
cannot explain the observed power law in Fig. 4 due
to the lack of nonlinear interactions. In the real at-
mosphere, the supplied energy in the source range
would cascade down to the rest of the frequency do-
main by nonlinear wave-wave interactions.

¢. Energy and energy-source spectra for wavenumber
4

In conjunction with the characteristic energy peaks
of n = 6 resulting from atmospheric baroclinic insta-
bility, the energy peaks of n = 4 and n = 2 in the
vertical wavenumber and eigenfrequency domain are
intriguing because the spectral features are very similar
to those for n = 6. We have examined the energy spectra
of the unstable modes for # = 4 listed in Table 2.

Figure 8 compares the energy spectra in the vertical
wavenumber domain for the first three unstable modes;
i.e., the barotropically unstable mode, slow Charney
mode, and shallow Charney mode. The barotropically
unstable mode exhibits an energy peak at m = 1. This
indicates that the model structure has an energy con-
centration near the top of the atmosphere. The growth
rate and phase speed are very similar to the results by
Hartmann (1983). The first mode can be identified as
a barotropically unstable mode as previously discussed.
However, the energy spectrum with a peak at 4,,~' = 3
X 107 is different from the observed results in Fig. 2.
The high-frequency nature may result in this disagree-
ment. The second, M, and third, M., modes show
bimodal energy peaksat 4,,”' = 1 X 10™*and 9 X 1073,
This bimodality is very similar to the results of n = 6
and is also consistent with observed features.

The energy spectra in the eigenfrequency domain
are illustrated in Fig. 9 for the barotropically unstable
mode and for the slow Charney mode at n = 4. The
results for the barotropically unstable mode indicate
distinct energy peaks at [o,,| =4 X 1072 for m = 0,
at2 X 1072 form =2,and at 5 X 1072 for m = 4. The
energy spectrum for m = 1 (not shown) is similar to
that for m = 0. These eigenfrequencies are substantially
different from the frequency of the unstable modes in
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Table 2. The high energy levels of gravity modes are
notable characteristics, especially for m = 2. The growth
rate of this mode was found to decrease with the ex-
clusion of the gravity mode basis and the removal of
the symmetric assumption for the zonal basic state.

For the slow Charney mode at n = 4, the distribu-
tions indicate sharp energy peaks at | o,,,| = 6 X 1072
for m =20, at 2 X 10?> for m = 2, and at 5 X 1072 for
m = 4. These energy peaks coincide with the observed
values in Fig. 4. The spectral features of the slow Char-
ney mode are very similar to the shallow Charney mode
in Fig. 7.

d. Energy and energy-source spectra for wavenumber
2

Finally, we compared the energy spectra of the un-
stable modes for n = 2 listed in Table 2. Figure 10
illustrates the energy spectra in the vertical wavenum-
ber domain for the first four unstable modes: the bar-
otropically unstable mode, unstable gravity mode, slow
Charney mode, and the dipole Charney mode. As in
the case of n = 4, the barotropically unstable mode
exhibits an energy peak at m = 1. This mode can be
important in characterizing the temporal variations of
planetary waves in the middle atmosphere, although
the spectral distribution disagrees with observed long-
term mean. This mode is not present in the 30°-jet
basic state that is barotropically stable.

The second unstable mode contains the largest
amount of energy in eastward propagating gravity
modes. The energy levels are two orders of magnitude
greater than Rossby mode energy levels. Evidently, this
is an unstable gravity mode. Because the energy peak
is found at m = 1, this unstable gravity mode is excited
near the model’s top (see Fig. 12¢). The spectral char-
acteristics are distinctly different from observations.

The third and forth modes are identified as a slow
Charney mode and dipole Charney mode, respectively.
These two unstable modes show similar energy spectra,
indicating the bimodal peaks as previously seen. The
bimodality appears to be a common feature in all
Charney-type baroclinic instability. The energy levels
of the gravity modes are negligible, which justifies the
use of the quasi-geostrophic theory for these two modes.
The energy levels of eastward propagating gravity
modes are consistently higher than those of westward
propagating gravity modes, as are observed.

The energy spectra in the eigenfrequency domain
are illustrated in Fig. 11 for the slow Charney mode
and the dipole Charney mode. These two energy spectra
exhibit essentially the same energy peaks in the eigen-
frequency domain, and both are similar to observa-
tions. The main difference between the dipole Charney
mode and the slow Charney mode is the appearance
of many energy gaps in the barotropic component of
the dipole Charney mode. High and low energy levels
appear alternately for M,.
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e. Meridional-height structures The shallow Charney mode M. has an amplitude
maximum in the troposphere, reflecting the bimodal

In order to understand the vertical and meridional energy peaks in the vertical spectrum. Compared with
energy spectra of the unstable modes, meridional- our previous studies, it is found that the inclusion of
height cross-sections of the geopotential field are given  the gravity mode basis does not alter the basic structure.
in Fig. 12 for Mcof n = 6, and B, G, M, of n = 2. The barotropically unstable mode B exhibits its am-
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plitude maximum at the model’s top. The structure

tilt results in a barotropic conversion from zonal to

agrees with the energy peak at m = | in Fig. 10a. Itis
also similar to the results by Hartmann (1983). Since
a stratospheric jet core of the basic state is located near
55°N, the phase structure with a northeast—southwest

eddy motions.

The unstable gravity. mode G shows its amplitude

maximum at the model’s top in the low latitudes. There

1S

no evident phase variation. Since this mode is not
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FIG. 11. Energy spectrum in the eigenfrequency domain for 7 = 2 as in Fig. 3, but for (a) slow Charney mode
and (b) dipole Charney mode.

seen for the 30°-jet basic state, the mode is excited by uary basic state may have caused an artificial excitation
the properties of the symmetric January basic state. of nonphysical gravity modes. Further examination 1s
The constraint of the symmetric extension of the Jan-  desirable for the unstable gravity modes.
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Finally, the dipole Charney mode M, exhibits a di-  to the density stratification effect. The structure is sim-
pole amplitude configuration near the tropopause level. ilar to that analyzed by Tanaka and Kung (1989) for
The actual maximum is seen at the model’s top due  the study of dipole blockings in the atmosphere.
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5. Discussion

One of the main objectives in this study is to show
the similarity between the theoretical and observational
energy spectral peaks for planetary waves. This simi-
larity implies that an orthogonal projection of the real
atmosphere onto the unstable modes accounts for a
large fraction of the total energy. Because the energy
levels are sufficiently high in planetary waves, we can
expect considerable amounts of energy supply due to
the process of baroclinic instability, even through the
growth rates are small. The energy conversion from
quasi-stationary forcing, such as the topography and
land-sea thermal contract, would be the most efficient
if the unstable modes were quasi-stationary. For ex-
ample, within the linear framework, the unstable mode
M, would obtain 0.54 W m™2 of the energy supply
from the zonal field if the observed wavenumber 2 (en-
ergy level 2.7 X 10° J m™2) has the same structure as
the unstable mode. This estimate is comparable to the
observed baroclinic conversion (0.40 W m™2)of n = 2
(see Kung and Tanaka 1983). The largest part of the
energy supply goes to baroclinic components according
to the results of the vertical energy spectrum that is
proportional to the energy source spectrum.

In this regard, the physical meaning of the linear-
ization of (22) must be reconsidered. In the real at-
mosphere, the single wave energy for n = 1-6 is about
2% to 4% of the zonal energy. The wave-mean inter-
actions appears to dominate the wave-wave interac-
tions in the long-term average. There are two cases
when the linearization from (22) to (23) is justified:
(i) when we are interested in the early stage of the full
nonlinear interactions, or (ii) when the basic state is
in equilibrium, and the equilibrium is maintained by
well-developed wave-mean interactions. The latter case
is what we require in the present study. The idea is
based on the weak nonlinear resonant wave-wave in-
teraction approximation (see Miiller et al. 1986). In
this approximation, it is assumed that a specific triad
interaction dominates the rest of the wave-wave in-
teractions. When the weak nonlinear resonant wave—
wave interaction approximation is used, the unstable
modes must also be approximately in equilibrium if
small dissipative mechanisms are considered. There-
fore, the growth rates of the unstable modes through
this interaction should not be very large. In fact, the
growth rate is not very large for planetary waves.

The origin of planetary wave energy can be topo-
graphic forcing or nonlinear upscale energy cascades
from synoptic disturbances. The important energy
supply from synoptic disturbances to planetary waves
was confirmed by many researchers (e.g., Hansen and
Chen 1982; Kung and Baker 1986; Holopainen and
Fortelius 1987; Tanaka and Kung 1988). The energy
conversion in baroclinic components is characterized
by the downscale cascade from the zonal field to syn-
optic to short disturbances. In contrast, the conversion
in barotropic components is characterized by the up-
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scale cascade from synoptic disturbances to planetary
waves and to zonal motions. The former is associated
with the available potential energy conversion, whereas
the latter with the kinetic energy conversion. The ac-
cumulated barotropic energy of planetary waves will
be converted to baroclinic energy. This process is pre-
dicted by the upward group velocity of the largest-scale
planetary waves (see Tanaka 1985). When the energy
of planetary waves propagates upward, indicating large
heat transport and a westward phase tilt, zonal available
potential energy is transformed to planetary waves.
During this process, which is predominately linear, the
waves seem to acquire the same structure as the low-
frequency unstable planetary waves because of the
maximum efficiency in drawing the zonal available
potential energy. It is suggested that the second inter-
pretation of linearization as mentioned above is pos-
sible, to some extent, in planetary waves.

6. Concluding remarks

The atmospheric energy spectrum has been analyzed
using the 3-D spectral primitive equations in terms of
the 3-D NMF expansion. The equivalent height A,,,
represents the vertical scale of motions, and the eigen-
frequency of Laplace’s tidal equations, o,;,, measures
the 3-D scale of motions due to the intrinsic dispersion
relation of Rossby waves. The method of the 3-D NMF
expansion is useful for the diagnosis of the real at-
mosphere and the linear and nonlinear model atmo-
spheres. The method is not restricted to a linear model
for a resting atmosphere.

First, we examined the atmospheric energy spectrum
for wavenumber 6 in the vertical wavenumber and ei-
genfrequency domain. We found characteristic bi-
modal energy peaks in the vertical wavenumber do-
main at 4,,"' = 1 X 107 and 7 X 1073 (m™'). We
also found a distinct energy peak in the eigenfrequency
domain at |o,,,| = 8 X 10~2, which separates the 3
power law in the low-frequency range and —5/3 power
law in the high-frequency range. The results were com-
pared with the theoretically expected energy peaks due
to atmospheric baroclinic instability on a sphere. It
was confirmed that the baroclinic instability of shallow
Charney modes has the expected structure; i.e., char-
acteristic bimodal energy peaks in the vertical wave-
number domain and a distinct energy peak in the ei-
genfrequency domain. The proofis straightforward that
the spectral energy peak simultaneously describes the
energy source peak for the unstable eigensolutions. Ac-
cordingly, it is understandable for wavenumber 6 that
the observed energy peaks in these spectral domains
result from the atmospheric baroclinic instability on a
sphere. The present linear model, however, cannot ex-
plain the observed spectral slopes of 3 and —5/3 power
law due to the lack of nonlinear interactions. The un-
stable mode will grow indefinitely in a linear model
atmosphere, indicating an exponential increase of the
energy supply at the energy peak range. In the real
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atmosphere, however, the supplied energy would cas-
cade down from the source range toward the rest of
the spectral domain through the nonlinear scattering.
Observed kinetic energy transformations from the syn-
optic waves to both the planetary and short waves
(Saltzman 1970; Chen and Wiin-Nielsen 1978) support
this interpretation.

Contrasted with the reasonabie interpretation of en-
ergy peaks for wavenumber 6, the interpretation of the
energy peaks in planetary waves has been less clear in
previous research. Topographic forcing, land-sea ther-
mal contrast, vertical propagation, barotropic and
baroclinic instabilities and nonlinear wave-wave in-
teractions are all thought to affect and complicate the
spectral shape of planetary waves. However, the present
analysis of the atmospheric energy spectra of planetary
waves in the 3-D spectral domain indicates a rather
simple spectral shape; i.e., bimodal energy peaks in the
vertical wavenumber domain and a distinct energy
peak in the eigenfrequency domain as seen in synoptic
waves.

In order to explain the evident energy peaks in the
eigenfrequency domain, we extended our analysis of
atmospheric baroclinic instability for planetary waves,
and compared to expected energy source spectrum with
observed results. We found that the slow Charney
modes and the dipole Charney modes in planetary
waves exhibit the anticipated bimodal energy peaks in
the vertical wavenumber domain and a sharp energy
peak in the eigenfrequency domain. The resulting en-
ergy source due to atmospheric baroclinic instability
coincides with the observed energy peaks of planetary
waves in the eigenfrequency domain in a manner sim-
ilar to synoptic waves. The results suggest that low-
frequency unstable planetary waves contribute a sub-
stantial fraction of the energy peaks in the eigenfre-
quency domain.

The present results should not exclude the other
types of energy supply for planetary waves, such as
topographic forcing, land-sea thermal contrast, and
nonlinear wave-wave interaction with synoptic waves.
In fact, a number of observational analyses (e.g., Han-
sen and Chen 1982; Kung and Baker 1986; Holopainen
and Fortelius 1987; Tanaka and Kung 1988) and theo-
retical studies (e.g., Gall et al. 1979; MacVean 1985;
Young and Villere 1985; Young and Houben 1989)
suggest the importance of the energy supply from syn-
optic to planetary waves. However, such nonlinear
wave—wave interactions are inadequate to explain the
statistical spectral shapes and the characteristic vertical
structures discussed in this study. Linear steady solu-
tions, on the other hand, successfully explain many
features of the quasi-stationary planetary waves (see
Matsuno 1970). This implies that the linear process
dominates the nonlinear process for such quasi-sta-
tionary planetary waves. However, the fundamental
existence of a stable steady solution is questionable un-
der a realistic dissipation in the atmosphere. The time-
mean vertical structure of planetary waves is not the
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steady solution, but a statistical average of episodic
amplifications of transient planetary waves and chaos.
The structures of the low-frequency unstable planetary
waves are very similar to the linear steady solutions.
The present study provides an alternative interpretation
of the time-mean vertical structures of planetary waves
as the occasional amplification and the phase lock of
the low-frequency unstable planetary waves (see Ta-
naka and Kung 1989, for more detail).

Because low-frequency unstable planetary waves are
free modes, they are more likely to be excited reso-
nantly by additional external forcing than are neutral
free Rossby waves. Additional quasi-stationary forcing
for planetary waves tends to excite and capture the
low-frequency unstable modes selectively from other
numerous normal mode. The low-frequency nature of
the slow Charney mode and the dipole Charney mode
is more suitable to be excited and captured than the
high-frequency unstable gravity modes and barotrop-
ically unstable modes that have comparable growth
rates in planetary waves. Further study should be con-
ducted making use of the fully nonlinear time-depen-
dent models to quantify the relative importance of the
energy supply from baroclinic instability and to ex-
amine the actual excitation of the low-frequency un-
stable modes by realistic forcing.
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