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ABSTRACT

As an alternative to the finite difference method, we explore the use of the spectral method with normal
modes as the basis functions for discretizing dependent variables in the vertical direction in order to obtain
numerical solutions to time dependent atmospheric equations. The normal modes are free solutions to the time -
dependent perturbation equations linearized around the atmosphere at rest. To demonstrate the feasibility of
normal mode representation in the spectral vertical discretization, the vertical normal mode expansion is applied .
to the quasi-geostrophic potential vorticity equation to investigate the traditional baroclinic instability of Charney
and Green types on a zonal flow with a constant vertical shear. The convergence of the numerical solutions is
examined in detail in relation to the spectral resolution of expansion functions. : i

We then extend the method of vertical normal mode expansion to solve the problem of baroclinic instability
on the sphere. Two aspects are different from the earlier example. One is use of the primitive equations instead
of the quasi-geostrophic system and the other is application of normal mode expansions in the horizontal, as
well as vertical direction. First, we derive the evolution equations for the spectral coefficients of truncated series
in three-dimensional normal mode functions by application of the Galerkin procedure to the global primitive
equations linearized around a basic zonal flow with vertical and meridional shear. Then, an eipenvalue-eigen-
function problem is solved to investigate the stability of perturbation motions superimposed on the 30° jet
examined earlier by Simmons, Hoskins and Frederiksen. From these two examples, it is concluded that the
normal mode spectral method is a viable numerical technique for discretizing model variables in the vertical;

1. Introduction

There are two major approaches—finite difference
and spectral—to numerically solve atmospheric pre-
diction equations. Historically, the finite difference ap-
proach has been most prevalent in discretizing model
variables. In recent years, however, the spectral method
has been gaining popularity in discretizing model vari-
ables in the horizontal direction. In fact, most opera-
tional global forecast models now adopt spherical har-
monic expansions to represent the model variables in
the horizontal. For horizontal discretization of model
variables, we now have the freedom of choice in se-
lecting either the finite difference method or the spectral
method.

For discretization of model variables in the vertical,
our choice is very much limited to the finite difference
method. Although some attempts have been made in
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the past, very few successful demonstrations are re-
ported in the literature which suggest that the spectral
method is a viable alternative to the finite difference
method in discretizing model variables in the vertical.

There is one exception to this observation. A variant
of the spectral method, called the finite element method
(FEM), has been successfully applied. Staniforth
(1985) reviews some of the recent developments in the
application of the FEM to vertical discretization as well
as to horizontal discretization of prediction models (see
also Steppeler 1987). In the FEM, grid-point values
are represented by basis functions which are piecewise
polynomials spanning only local grid points centered
around the grid point in question. Even though the
Galerkin method (Finlayson 1972) is used to derive
discretized prediction equations, their appearance Is
very much like that of finite difference equations.
Moreover, the FEM lacks one of the unique features
of the spectral method, namely the means to represent
the variables in different scales.

The attempts to discretize model variables in the
vertical using more traditional spectral techniques are
rather limited. Francis (1972) proposed application of
Laguerre polynomials in In (p/ps), where p is the pres-
sure and p, the surface pressure, He presented one ex-
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ample in which this application requires a very small
time step to ensure a linear computational stability if
the explicit time differencing scheme is used. The
source of this difficulty was analyzed by Hoskins
(1973). Machenhauer and Daley (1972) proposed use
of Legendre polynomials for spectral representation in
a p/ps coordinate. However, we are not aware of any
further attempt to follow through with their approach.

In the application of spectral techniques, the choice
of basis functions is wide open. Bodin (1974) used the
empirical orthogonal function (EOF) representation
in the vertical to formulate a quasi-geostrophic predic-
tion model. The EOFs are derived by minimizing the
root-mean-square difference between the data and the
functional representation (Obukhov 1960; Holmstrom
1963). The physics of the atmosphere is reflected sta-
tistically in the characteristics of the EOFs. Also,
Grotjahn (1987) solved a baroclinic instability problem
over a sphere using empirically defined orthogonal
functions (which, however, are different from EOFs)
to represent the vertical structure of the perturbation
solutions. Another choice of basis functions is the
eigensolutions of the vertical structure equation, re-
ferred to as normal modes, which are extensively used
for the formulation of nonlinear normal mode initial-
ization (Kasahara 1982). Gavrilin (1965) formulated
a quasi-geostrophic prediction model, in which the
vertical discretization uses orthogonal normal mode
functions derived from the vertical structure equation
for an atmosphere at rest. Simons (1968 ) describes the
formulation of a quasi-geostrophic model along a sim-
ilar approach, but the horizontal discretization uses
spherical harmonic expansions so that the model is
spectral in three-dimensions. To our knowledge, how-
ever, his model has never been fully tested.

Kasahara and Puri (1981) represented atmospheric
data spectrally in three parameters (zonal wavenumber,
meridional and vertical modal indices) using three-di-
mensional normal mode functions (3-D NMFs). The
3-D NMFs are constructed from the eigensolutions of
a global primitive equation model and they are or-
thogonal functions. Kasahara (1984) formulated a lin-
earized global spectral model with 3-D NMFs as the
basis functions to investigate the time dependent re-
sponse of model normal modes to tropical thermal
forcing in the atmosphere at rest. This 3-D model for-
mulation was extended by Kasahara and Silva Dias
(1986, hereafter referred to as KS86), by considering
the effects of a mean zonal flow with meridional and
vertical shear. In this model configuration, it is possible
to encounter the situation in which barotropic and/or
baroclinic instability occurs. In order to avoid the oc-
currence of this situation, KS86 investigated only the
steady response of planetary waves to stationary trop-
ical heating.

Before treating the problem of barotropic/baroclinic
instability over a sphere with the 3-D NMF expansion,
we shall discuss the feasibility of solving the traditional
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Charney (1947)-Green (1960) baroclinic 1nstab111ty
problem with vertical normal mode expansion. It is
well known that the vertical structure equation which
appears in the quasi-geostrophic model is identical to
that in the primitive equation formulation. Therefore,
we discuss in section 2 the apphcabxllty of vertical nor-
mal mode expansion to the quasi-geostrophic model.
We are not aware of any earlier publication dealmg
with the problem of baroclinic instability by using ver-
tical normal mode expansion, though spectral tech-
niques have been used by other authors. For example,
Simons (1969 ) adopted harmonic functions in the ver-
tical and Boyd (1987) used rational Chebyshev func-
tions defined on a semi-infinite interval for solving
baroclinic instability problems. In section 3, we extend
the use of vertical normal mode expansion to the prob-
lem of baroclinic instability over a sphere based on a
linearized system of primitive equations. We use nor-
mal mode expansions in the horizontal as well, in order
to solve the time dependent problem posed by KS86.
In section 4, we present further discussions concerning
the application of vertical normal mode expansion to
atmospheric modeling. Conclusions are stated in sec-
tion 5.

2. Quasi-geostrophic baroclinic instability

a. Basic equations

We choose a vertical coordinate ¢ (=p/ p;, where p
denotes the pressure and p; the surface pressure, which
is treated as a constant of 1000 hPa) and a horizontal

coordinate X, directed eastward. Time is denoted by

t. We consider perturbation motions superimposed on
a mean basic zonal flow #(¢) which is a function of
only a.

The well-known equations of quasi-geostrophic flow
on a beta-plane are combined i into a potential vorticity
equation for dependent variable \,!/ (Kuo 1979). In di-
mensionless form, this equation is

8 Y, d[c
(&Hj )[ax e Saa}
3 [o U oy
+{B 2 [Saa]]a —0 (1)

which is to be solved subject to the upper and lower
boundary conditions in dimensionless form

o _
aa—O, at o =or
El o, W _dUd 2.2)
(8t+U6)60 " T dsox’
at =1

In deriving the system of dimensionless equations
(2.1) and (2.2), we use the notation shown in Table
1. The boundary conditions (2.2 ) are derived from the
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TABLE [. List of symbols.

AKIRA KASAHARA AND H. L. TANAKA

L, Representative horizontal scale

H, Representative vertical scale in geometrical height

Jo (=20 singy)

Bo (=20 cosgo/a)

¢o  Latitude of the beta-plane origin, which is chosen here at
45°N

Earth’s gravity

Earth’s angular speed

Earth’s radius

(=2Q¢) (scaled time)

(=X/L,) (scaled x-coordinate)

(=¥/H,) (scaled dependent variable)

[=a/(2QL,))

[=L,8o/(20)]

[=(6L.)/(gH,)] (Lamb’s parameter)

(=gH,/R)

Specific gas constant of air

(=(«To/c — dTo/do)/T,] (dimensionless static stability)

Basic state temperature as a function of ¢

[=R/C, (=2/7)]

Specific heat at constant pressure

(=8T/T,) evaluated at ¢ = |

"TOrTNARNT Qe X A 0%

statements that the perturbation temperature vanishes
at the top, o7, and the vertical motion dy/d! vanishes
at the bottom, ¢ = 1.

b. Vertical normal modes

Solutions to (2.1) under boundary conditions (2.2)
when the zonal mean flow is absent (i.e., U = 0) rep-
resent the normal modes of the system. In this case,
(2.1) is separable in terms of two equations: one is
referred to as the horizontal structure equation and the
other as the vertical structure equation which is written
in the form

d[odG

— [— —] +AG =0, (2.3)

do | S do
where X is the separation constant and G(¢) denotes
the vertical structure function. The boundary condi-
tions (2.2) are now reduced to

aGc

E=0 at o =or s
G (2.4)
—+rG=0 at o=1

do

The differential equation (2.3) together with the
boundary conditions (2.4) forms a Sturm-Liouville
problem which possesses a nontrivial solution only if
the parameter A is assigned one of a set of permissible
values (Hildebrand 1958). For such a value of A, say
A = \,, the system is satisfied by a solution of the form
G = CG,(o) where C is a constant. The permissible
values of A are known as its eigenvalues and the cor-
responding functions G,(¢) as the eigenfunctions or
structure functions. Also, we find that any two eigen-
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functions, G; and G}, are orthogonal. In terms of a new
independent variable

Z = —Ino, (2.5)

the orthogonality condition, in-conjunction with a
proper normalization, is expressed by
Zr

J; G,G,-e'de = 5,‘}, (2.6)
where Zr = —Inor.

For the basic state temperature profile To(o), we
choose

To(o) =(T;— Ty)exp(c Ine) + T, (2.7)

where T = Ty(1). This temperature distribution is used
by Pekeris (1937) and Gavrilin (1965). Figure 1 shows
the temperature profile Tp as a function of Z (= —Ino)
for T, = 302.53 K and T, = 83.265 K after Fulton
and Schubert (1980). We see that Ty is representative
of the mean tropospheric temperature distribution. For
this temperature profile, the dimensionless static sta-
bility S'in (2.3) is given by

S =1/, (2.8)
where

=T/ T. (2.9

The solutions of the system (2.3) with (2.4) for the
static stability (2.8) are discussed by Gavrilin (1965)
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F1G. 1. Profile of T as a function of Z (= —Ine). The scale for ¢
multiplied by 1000 is shown on the right. Obs. | denotes a mean
tropical temperature distribution (Jordan 1958) and Obs. 2 a global
mean temperature distribution during the FGGE (Tanaka 1985).



492 JOURNAL OF THE ATMOSPHERIC SCIENCES

and Fulton and Schubert (1980). The eigenvalue A, in
(2.3) can be expressed as

Av = Hy /Dy, (2.10)

where D, is referred to as the equivalent height (Taylor
1936). : S ‘

1) EXTERNAL MODE

The mode corresponding to the largest value of D,
is called the external mode, indicated by the index n
= 1. The value of D, is obtained by solving the tran-
scendental equation ‘

RT, 1
— =) tanh(pZy) = 4, 2.11
‘(ng_ 2) anh(uZp) =, @1D)
where . o
N 1 H '
2= —pXs0. 2.12
#=7 "D, (2.12)

The eigenfunction G, is given by

G, =A,[sinh(uZ)—ﬁ

cosh(,uZ)]eZ’z,
(2.13)

where

A=i1+( £ )stinhOZ)
' 4 05—r “her

- 0.527[1 - (0-5“_ r)z]

+ +2r [1- COSh(ZuZT)]}u”z. (2.14)

1

2) INTERNAL MODES

The modes corresponding to the rest of the eigen-
values are called internal modes, indicated by index n
= 2. The values of D, are obtained by solving

RT, | B
(gD” 2) w6z = £, (2.15)
where
H 1
.
& 7 D, 4 > 0. (2.16)

The eigenfunctions G, are given by

£

= i - z/2
G, A,,[sm(E,,Z) 05 -1 cos(£,Z) [e='7,

2.17)
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where

= .___1. — ‘ gn 2 . |
Ay = [4& [1 (05 = r) ] ?ln(ZE,,ZT) ‘

+ O.SZT[I + (6'5&?)2]

I "y ‘
—l—_—z-;[l—cos(ZE,.Zr)]] . (2.18)

3) SPECIAL CASE

In solving the syétem (2.3) with (2.4) for the static
stability (2.8), we assumed that

2:

— g\ £0. (2.19)

S

M

There ekists‘a nOntﬁviél'soIﬁfiori ‘for‘u‘z =, if the top
Zr takes the value Zrc defined by ‘
4r 0
1-2r
For the temperature distribution (2.7), the value of
rbecomes T ' S
r=«Tq/T; (=0.0786368---) - (2.21)

which gives Zp- = 0.37325- - - (equivalently o1
= 0.6885). Fulton and Schubert'(1980) show that if
Zr > Zrc there exists a countable number of internal
modes in addition to 'on¢ external mode. We choose
that ZT> Zrc.‘ ‘:‘:_!' . ot o ‘ ‘

Zrc = (2.20)

By
o

4) PROFILES OF THE VERTICAL STRUCTURE FUNC-
TIONS . 0

Figure 2 shows only the first twelve vertical profiles
of eigenfunctions G, as functions of Z (= —Ine), cal-
culated for the temperature ‘distribution (2.7) and Z,
= 2.5. The values of equivalent height D, in m are
listed at the top.. - .- S

¢. Normal mode expansions -

We transform the basic equation (2.1) using the in-
dependent variable Z (= —Ing). We then assume that

v=¥2Z) exp[iK(x — Ct)], (2.22)

where K is the dimensionless wavenumber scaled by
the inverse of length-scale L;' and C is the dimen-
sionless phase velocity scaled by 2QL, . Also, ¥ denotes
the amplitude function which depends on Z only.
Thus the basic equation (2.1) may be written as
5 e (A d¥y
(w-olke -+ (2 7))

pre= —)]\If =0 (2.23)

e —
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FIG. 2. Profiles of eigenfunctions G, for the first twelve vertical modes as functions of Z. Numerals beside the
profiles indicate modal index n. The values of equivalent height D, are listed at the top.

and the corresponding boundary conditions (2.2) be-
come

av
=0 at Z=2, (2.24a)
dU
(U - C)—+ rC¥ =¥ at Z=0. (224b)

We now assume that ¥ and U can be approximated
by the following expansions

N

UZ) = 3 5 hGA2), (2.25)
n=1 0
N

UZ) = S a,Gu(Z), (2.26)

n=\

where N is a natural number and G,(Z), N = n
2 |, are the eigenfunctions of (2.3) which satisfy the
orthogonality condition (2.6). The coefficient «, in
(2.26) can be determined for a given distribution of
U(Z) by

Zy

= f U(Z)G,e %dZ. (2.27)
()]

It is important to observe that the expansions (2.25)

and (2.26) permit ¥ to satisfy the boundary conditions

(2.24), since each G,(Z) satisfies the boundary con-

ditions (2.4).

Substituting (2.25) and (2.26 ) into (2.23), applying
the vertical structure equatlon (2.3), multiplying the
resulting equation by G,e~Z, integrating the result with
respect to Z from 0 to Zyr, and utilizing the orthogo-
nality condition (2.6), we obtain

B
€An

C(l+£)h +L

e>\n h

B[Bone{s+ £ Hfuno

k=1 Ls=

for n=12---,N, (228)
where
Zr
Ly, = A GGG e %dZ. (2.29)

Equation (2.28) is a system of N X N linear ho-
mogeneous equations. The phase velocity C is deter-
mined as an eigenvalue of this system for given values
of parameters ¢, 8 and K under a given form of U(Z).
The values of the interaction coefficient Ly, are cal-
culated from the vertical structure functions and the
values of A, are calculated from the equivalent height.
The vector h, for n = 1 to N is the eigenfunction cor-
responding to the phase velocity C. Some of C may
appear as complex conjugate pairs. In that case,
unstable motions are expected from the imaginary
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part C;. The phase velocity is calculated from the real
part C,.

d. Results

We present results of the stability calculation for a
linear basic zonal flow U(Z) = AZ, where A = Uy/
Z7 with Uy being the basic zonal velocity at Z = Z;.
It is important to note that the zonal flow U(Z) in this
problem is an approximation to the linear profile, since
U(Z) is expressed by a finite number of G,(Z) as
shown by (2.26). ‘

Figure 3a shows the growth rate K| C;| of the most
unstable mode for resolution N = 9 as a function of
the shear parameter Uz and the wavelength L (=27/
K). The same dimensionless symbols are used in the
figure to indicate the units of corresponding dimen-
sional quantities for simplicity. Figure 3b shows the
phase velocity C, — Uy, where Uy, = Uyr/2. We see
the presence of a narrow stable region separating Char-
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FIG. 3. (a) Growth rate K| C;| of the most unstable mode in units
of day ™! for spectral resolution ¥ = 9 as a function of vertical shear
parameter Uz in m s~ and wavelength L (=2x/K) in units of 1000
km. (b) As in (a), but for the phase speed C, — Uy, in m s™', where
Uy= Ur/2.
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FIG. 4. As in Fig. 3a, b except the results are for
resolution N = 36.

ney (1947) and Green (1960) instability types. Note
another instability maximum in the Charney type
around L = 2000 km. For L < 1000 km, it is stable.

Figures 4a and 4b illustrate the same as Figs. 3a and
3b, except the results are for N = 36. Although the
overall patterns are similar, we see differences in detail
indicating the dependence of the solutions on resolu-
tion N. Actually, Fig. 4a resembles Fig. 6 of Garcia
and Norscini (1970) and Kuo (1979) much closer than
Fig. 3a. For example, now the region for L < 1000 km
appears to be unstable, and the narrow stable region
separating the Charney and Green types disappears.
Also, the growth rate pattern of the Green modes seems
to be credible. Next, we consider the question on the
convergence of solution as modal resolution N in-
creases.

Figure 5a shows the growth rate of the most unstable
mode for wavelength L corresponding to 4000 km with
the values of Uy corresponding to 100 m s~ in solid
line and Ur corresponding to 60 m s~ in dashed line.
Figure 5b illustrates the phase speeds for the same cal-
culations. It is clear that the numerical solutions un-
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dergo a large variation with respect to N, but they
quickly converge to common values once N becomes
larger than about 25.

Figure 6 is the same as Fig. 5, except it concerns the
case of L corresponding to 16 000 km. Notice a dif-
ferent manner of convergence of the solutions for
Green modes. The convergence of solutions for Uy
= 100 m s~ is particularly slow, though we can say
that the solutions practically converge beyond, say N
= 50. The sensitivity of Green modes on modal reso-
lution may explain the apparent differences in the
growth rates of Green modes, particularly in the region
of high vertical shear, between Figs. 3a and 4a.

In contrast, the vertical structures of the unstable
motions do not appear to depend very strongly on
spectral resolution. Figure 7 shows the vertical distri-

butions of a normalized amplitude and the phase of y
for L = 4000 km (upper panel) and L = 16 000 km
(lower panel) with Ur = 100 m s~'. We show the case
of N =9 by solid lines and that of N = 36 by dashed
lines. Notice that the vertical structures of unstable
motions for N = 9 and 36 are very close.

The growth rate and phase velocity of unstable mo-
tions and their vertical structure as calculated by the
normal mode expansion are in agreement with those
investigated by Green (1960), Hirota (1968), Garcia
and Norscini (1970), Kuo (1979) and others by using
different methods of solution. Although the growth rate
and phase velocity of most unstable motions indicate
the convergence of solutions as spectral resolution N
increases, the manner of convergence exhibits irregular,
damped oscillations. Staley (1986 ) reported the pres-



496 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 46, No. 4
l'o:lllI]lIII|llll[IIlI|IIl||llllllll||llll|Illl|IIlI||IlI]IIll|l|ll]llI|-
o (O)E
0S5 -
‘:" - B
>
o - B
z
w o
% oif ! Uy=60ms™! E
P E H ey 0-0-0:9:0-0"3-3:9.0-0. g0 00 3
Eoos_ ! /A"\/"*.Q\NN
z O F i
o
@ I o
©
Oo'llll|llll|llll Atd el el et tes tebaa s ol aconleraaloyaelregrlrrgs
’ S 10 15 20 25 30 35 40 45 50 55 60 65 70
Tlll[llll[llIl|IIII|I|II|Illl|llll|llll]l‘||||I|lI|>Il]!]ll|||llll|llll
i w1 2
- ~4-15 =
- - m
-25+ . %
B =60 ms! —e T m
- .o, .»"‘""-o--‘.l.J.L. o-moso-. - o
*.n.gr —~
I -1-20 3
U"
S ] 1 3
€ | - Uy =100 ms A 2
- [ =t
i [ \ : }
g \‘N‘NMM .
w B 433
% 1 i Q
3
w 35| 41 4
2 | ] 1
I
a L B
-40 o beaa s boe s Lo g n o lasanboaotbeova Vv booaadaar ol tasa st ealsany
o) 5 0 15 20 25 30 35 40 45 50 55 60 65 70

SPECTRAL RESOLUTION N

FIG. 6. As Fig. 5a, b, except the results are for L = 16 000 km.

ence of such a damped oscillation in convergence of
solutions with the finite difference method. Also, Ar-
akawa and Moorthi (1988) presented the results of
baroclinic instability on a beta-plane which demon-
strate that the growth rates converge in a damped os-
cillation manner as a function of the number of vertical
levels used in their finite difference calculations in both
short- and long-wave regimes. Therefore, it is not sur-
prising that the numerical solutions converge in a
damped oscillation manner as a function of the number
of vertical modes used in the normal mode expansion.
One possible explanation may lie in the findings of
Lindzen and Tung (1978) and Lindzen et al. (1980)
in which they suggest that baroclinic instability occurs
as the result of the interaction of Rossby waves with
critical levels involving wave propagation and trapping.
The locations of critical levels in the basic zonal flow
are different depending on the specific choice of spectral
resolution N used in the vertical normal mode expan-
sion of the basic zonal flow. In any event, as pointed
out by Geisler and Garcia (1977), it is necessary to use
a finer vertical resolution for accurately calculating the
structure of baroclinically unstable motions when the
vertical distribution of static stability has a large vari-
ation.

3. Baroclinic instability on the sphere

We now extend the method of vertical normal mode
expansion to solve the problem of baroclinic instability
on the sphere. Two aspects are different from the dis-
cussions presented in section 2. One is the use of the
primitive equations instead of the quasi-geostrophic
system and the other is application of the normal mode
expansion method to the horizontal directions. The
choice of spherical coordinates instead of Cartesian co-
ordinates becomes only relevant in the selection of basis
functions in the spectral expansion. Therefore, the basic
formulation presented below is applicable to other co-
ordinate systems, such as midlatitude and equatorial
beta planes and even the f plane, by selecting suitable
normal modes as the basis functions in the horizontal
directions. In the following presentations, we use the
same notation for variables and parameters as in sec-
tion 2. One deviation is the use of the vertical coor-
dinate defined by

(3.1)

which is rescaled to give ¢ = —1 at the top (p = 0),
while the lower boundary, p = p, which is treated as a
constant of 1000 hPa, is located at o = .

o=2p/ps— 1
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In the horizontal directions, we adopt spherical co-
ordinates of longitude A and latitude ¢, increasing
eastward and northward, respectively. The distinction
between longitude X and eigenvalue A, should be clear.

a. Basic equations

In deriving the linearized system for perturbation
variables, we express

¢ Zonal velocity component = (¢, o) + u'(\, $,
o, 1);

e Meridional velocity component = v'(A, ¢, g, i);

* Vertical ¢ velocity do/dt = w'(), ¢, 0, 1);

® Temperature = To(o) = T(¢, o) + T'(7, ¢,
0, 1); _
¢ Isobaric height = Zy(a) + Z(¢, a) + Z'(\, &,
a,t);

where Ty(o) and Zy(o) represent the global mean
temperature distribution and the corresponding iso-
baric height distribution which are connected hydro-
statically. Also, it(¢, o) is the basic zonal wind, while
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T($, ¢) and Z(¢, o) constitute the deviations of the
basic temperature and isobaric height from their global
mean values Ty(o) and Zy(o). These three fields are
connected by the hydrostatic equation and a gradient
wind relation. The perturbation quantities are denoted
by primes.

We use the system of linearized equations, derived
in KS86, based on the equations of horizontal motion,
continuity and thermodynamics. These equations are
given by (2.10) in KS86 in which the frictional, thermal
dissipative and forcing terms are neglected in this study.
We seek the solutions of the equations by using the
method of normal mode expansion discussed in KS86.
This idea originates from the expansion theorem of
Eckart (1960, Chapter 6). Let the dependent variables
be defined in the vector form

W\ ¢, 0, t)=[uvz]" (3.2)

where u, v and z are dimensionless dependent variables
as defined by (2.9a) in KS86 without tildes. We express
W in the form

}\”—112
w=3 33N
nos r A

X Wi (n; )H, (¢, n)Ga(a)e™. (3.3)

Here, the function G,( o) denotes the vertical structure
of the normal modes and A, is the associated eigenvalue
(normalized equivalent height) of the vertical structure
equation as described by Kasahara (1984, hereafter re-
ferred to as K84). The subscript # denotes the index
of the vertical modes. The function H,® denotes the
meridional structure of the normal modes, which de-
pends on the vertical modal index n as well as the zonal
wavenumber s. The subscript r refers to a serial index
for the westward and eastward-propagating gravity
waves and the westward propagating rotational
(Rossby ) waves as the first and second kinds of shallow-
water waves (e.g., Longuet-Higgins 1968). The Hough
vector function H,® is calculated using a software de-
veloped by Swarztrauber and Kasahara (1985). The
coefficient W,*(#n; t) is a scalar which is a function of
t. The series (3.3) consists of the summations with
respect to three indices, » for vertical mode, s for zonal
wavenumber, and r for all meridional modes of the
westward and eastward-propagating inertia-gravity
waves and rotational (Rossby) modes.

The evolution of the spectral coefficients W,’(n; ¢)
is determined by the system of ordinary differential
equations in time which are obtained from (2.10) of
KS86 by application of the Galerkin technique (Fin-
layson 1972). To this end, we substitute the expression
(3.3) into (2.10) of KS86, multiply the result by the
weight of H* (¢; n')G, /(o) exp(—is’'\), and integrate
the resulting equations with respect to A from 0 to 2,
o from —1 to 1, ¢ from —}x to . Note that the
superscript asterisk denotes complex conjugation. The
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result can be greatly simplified because of the orthog-
onality conditions for the zonal harmonic functions,
Hough vector functions, and vertical structure func-
tions.

Thus, we obtain the following spectral equations to
describe the temporal evolution of the spectral coeffi-
cients W,* for various combinations of n, s and r:

dW, (n; t)/dt + iv,*(n)W,*(n; t) = NS(n), (3.4)

where
wf2 .
NS(n) = f_m Ny(n; ¢)- H2*(¢; 1) cospd ¢,
(3.5)

N ) = 207 [N ee B, (3

|
N 8) = [ NO, 8, 0)Gu(0)do, 37

N(X ¢, 0) = [A,'?4, \,'/?B, 3C/30]". (3.8)

Here, A, Band Care defined by (2.11) in KS86 without
the thermal forcing term. In (3.4), »,*(n) denotes the
frequency of the normal modes obtained from the
eigenvalue-eigenfunction problem shown by (3.15) in
KS86. The presence of the second term on the left-
hand side of (3.4) reflects the fact that the strictly linear
part of (2.10) in KS86 (by setting the right-hand sides
to zero) give the normal mode solutions.

Integral (3.7) is the vertical transform of the non-
homogeneous terms. Integral (3.6) is the Fourier
transform and integral (3.5) denotes the Hough trans-
form, Kasahara (1977, 1978) describes how to calculate
(3.6) and (3.5). The form of spectral equation (3.4)
is discussed in general terms by Eckart (1960, Chapter
6) and a special case of the nondivergent vorticity
equation is treated by Platzman (1960).

b. Stability problem

We use the 3-D normal mode expansion method to
investigate the problem of baroclinic instability on a
sphere. As a specific example, we examine the case of
the 30° jet of Simmons and Hoskins (1976), described
in the Appendix, for the basic flow. We seek the so-
lution of (3.4) in the form

Wi (n; 1) = C(n)e™, (3.9)

where v is the frequency and C,°(n) denotes the com-
plex amplitude of oscillation. We consider the pertur-
bation variables that can be represented by only one
zonal wavenumber component s, which is given by a
natural number. When we solve for v, some of the fre-
quency may appear as complex conjugate pairs; un-
stable motions are expected from a positive imaginary
part of ».



15 FEBRUARY 1989

For the basic temperature distribution Ty( o) given
in the Appendix, the vertical structure function G,(o)
and the normalized equivalent height A, are solved by
using the numerical method described in the Appendix
of K84. Table 2 shows the values of equivalent height
D, (=H,/\,) in m and gravity wave speed VgD, in
m s~'. These values are very similar to those given in
Table A2 of K84. The vertical distributions of G, (not
shown ) are also very similar to those shown in Fig. A1
of K84.

For the meridional resolution, we selected (as in
KS86) a total of 17 modes, consisting of 16 rotational
modes plus the Kelvin mode, for each vertical mode.
The number of rotational modes is decided considering
the spectral distribution of atmospheric energy in terms
of rotational modes as obtained by Tanaka (1985).
Gravity modes do not play any significant role in the
present instability calculations (see Tanaka 1988). The
Kelvin mode is symmetric with respect to the equator.
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Among 16 rotational modes, one-half are symmetric
and the rest are antisymmetric with respect to the
equator.

After substituting (3.9) into (3.4), we carry out the
calculation of the three integrals (3.5), (3.6) and (3.7),
remembering that the terms 4, B and C are defined in
(2.11) of KS86. The factor exp(—irt) can be removed
from the resulting equations, leaving the following sys-
tem of equations:

N R
[vidn) = v]Co(n) + 2 Z bluln, k)CF (k) = 0

k=1 re
(3.10)

forr'=1,2---,R;n=1,2, ---, N. Here, the
natural numbers N and R are chosen to be 6 and 17,
respectively, corresponding to our specific modal res-
olution. A single natural number, s, specifies the zonal
wavenumber. In (3.10), bj,(n, k) is the following ma-

trix:

N A 172 wf2
im0 = 3 Lua(32) 6 [ [ saate)| U201 kU5 m + V2005 bV 305 m)
=1 k —#/2

A
As

_dag(¢)
dé

where
[
L[,,k = fl G/G,,dea (312)

denotes the triple-interaction coefficients for various
combinations of vertical modal indices /, #n and k. A
similar integral has already appeared in section 2 as
(2.29). The significance of this integral is discussed in
KS86 regarding the role of the vertical shear of the
zonal mean wind for providing energy transfer among
different vertical modes. In (3.11), quantities ag(¢)
and {3, are related to the basic zonal flow and are defined
by (A4) and (A5) in the Appendix.

TABLE 2. Values of equivalent height D, in m
and gravity wave speed VgD, in ms™".

Vertical mode n D, (m) VgD, (ms™)
1 9641.785 309.39
2 3029.302 172.30
.3 702.583 82.98
4 186.226 42.72
) 62.537 24.76
6 23.677 15.23
7 9.274 9.534
8 2.697 5.141
9 0.248 1.559

. 1/2
4 (—) Z5(6: K)Z (s n)] + 230(9) sing{V,5(8; KYUS(&: 1) + U (95 k)V i s m)}

cos¢V, (; k) U5 n) + $ Go($) sing cosdV,%(b; K)Z A5 n) v%] cosédg, (3.11)

The system of equations (3.10) constitutes an
eigenfunction-eigenvalue problem (M — vI)X = 0
where

X= [Cls(l)a C2J(l)3 T CR"(L)’ Clx(z)’
C2s(2)7 et CRS(Z)’ t 0y Cls(N):
G(N), - - -, CRA(N)]T (3.13)

denotes the eigenvector with 102 elements for N = 6
and R = 17. The corresponding eigenvalue is ». Here,
M is a 102 X 102 square matrix (not shown). Once
the elements C,* of X and v are determined, the so-
lution (3.3) is obtained with the aid of (3.9).

¢. Growth rates and phase speeds

Growth rates and phase speeds as functions of wave-
number s for the 30° jet of Simmons and Hoskins
(1976, hereafter referred to as SH76) are presented in
Fig. 8. The results from the two vertical resolutions N
=5 and N = 6 are included in the same figure. These
are for the fastest growing unstable symmetric modes
designated as S1, which is the lowest symmetric me-
ridional mode. We show also the results of SH76
for the corresponding case obtained with the linear
primitive equation (PE) and quasi-geostrophic (QG)
spherical harmonic spectral models using the horizon-
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FIG. 8. Growth rates (a) and phase speeds (b) as functions of
wavenumber s for the 30° jet for the most unstable symmetric mode
designated as S! for two vertical resolutions N = 5 and 6.

tal resolution of rhomboidal 31 and the vertical reso-
lution of eight layers. The unstable modes were deter-
mined by using the initial-value approach. The growth
rates of unstable modes up to wavenumber seven or
eight are in general agreement with those of SH76.
The phase speeds, however, are sensitive to the vertical
resolution even in planetary scales. We notice discrep-
ancies between our results with those of SH76 in
both growth rates and phase speeds for wavenumbers
greater than 7 or 8.

Before we comment on the cause of these discrep-
ancies, let us present Fig. 9 which depicts results of the
second most unstable symmetric modes (S2) for two
vertical resolutions N = 5 and 6. The corresponding
PE results obtained by SH76 and the corresponding
QG results by Frederiksen (1978, hereafter referred to
as F78) are also shown. Frederiksen adopted the ei-
genvalue approach to the same 30° jet using a quasi-
geostrophic spherical harmonic spectral model with the
horizontal resolution of rhomboidal 29 and the vertical
resolution of eight levels. The growth rates of our cal-
culations agree in general with those of SH76 and F78
for wavenumbers less than eight, but the discrepancies
in phase speeds are noticeable. In general, results of
F78 are in very good agreement with those of SH76.
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This is also the case of the first unstable S1 mode,
though we did not plot the F78 results on Fig, 8.

On Figs. 8 and 9, we notice discrepancies between
our results and those of SH76 and F78 in both growth
rates and phase speeds for wavenumbers greater than
8. From the results of two calculations with vertical
resolution N = 5 and 6, we find that short-wave be-
haviors are very sensitive to vertical resolution. As dis-
cussed by Simmons and Hoskins (1977), Gall and
Blakeslee (1977), and Valdes and Hoskins (1988), the
differences in short-wave behavior depend on many
factors. Slight differences in basic states, model for-
mulations (quasi-geostrophic vs. primitive equation)
and horizontal resolution are all likely to be of impor-
tance in addition to vertical resolution in explaining
the differences. Tanaka (1988) performed a vertical
resolution experiment for baroclinic instability on a
beta-plane with the vertical normal mode expansion
and found that the solutions nearly converge with N
= 6 for wavenumber 2, N = 8 for wavenumber 6, but
wavenumber 10 appears to require N > 20 for con-
vergence.

Because the meridional expansions of variables in-
volve both symmetric and antisymmetric functions,
though the basic flow is symmetric with respect to the
equator, we obtain unstable solutions which are anti-
symmetric, as well as symmetric with respect to the
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FiG. 9. As in Fig. 8, but for the second most unstable
symmetric mode designated as S2.
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equator. Figure 10 is like Figs. 8 and 9, except it con-
siders the first and second unstable antisymmetric
modes Al and A2. The growth rates and phase speeds
of Al and A2 are very similar to those of S1 and S2.
Simmons and Hoskins (1976 ) also noted the similarity
of growth rates and phase speeds of SI and Al for
wavenumbers 4 and 8. One aspect which appears to
be different is that the growth rates of A2 for wave-
numbers 1 and 2 are slightly larger than those of Al.
Therefore, A1 modes are not necessarily the most un-
stable modes, while S1 modes are found to be the most
unstable modes.

As seen from Frederiksen (1978), Hoskins and Re-
vell (1981), and Ioannou and Lindzen (1986), it is
possible to find still higher unstable modes with slower
growth rates and increased meridional complexity in
their structure. Figure 11 shows the growth rates and
phase speeds of the third and fourth symmetric and
antisymmetric modes, S3, A3, S4 and A4 in the case
of N = 6. While the growth rates of S3 and S4 are
comparable to those obtained by F78, our results show
that the maximum values are present at intermediate
wavenumbers, whereas those of F78 monotonically in-

ZONAL WAVELENGTH IN KM AT LATITUDE 30°

10,000 5,000 3,000 2,200
07 T 7 T T

o o o o
P P o )

GROWTH RATE (Day™"

o
)

obl——L ot o 1 1 1 ¢ b 4|
BT 77T T T T T

PHASE SPEED (Deg. Day™

| T N T N N TN S M I |
4 6 B8 (0 12 14 16

ZONAL WAVENUMBER

FIG. 10. Asin Fig. 8, but for the first unstable antisymmetric mode
Al and the second unstable antisymmetric mode A2 for two vertical
resolutions N = 5 and 6.
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FIG. 1 1. Growth rates and phase speeds as functions of wavenumber
s for the third most unstable symmetric $3 mode and antisymmetric
A3 mode and the fourth most unstable symmetric S4 mode and
antisymmetric A4 mode for vertical resolution N = 6.

crease with respect to zonal wavenumber. Since the
higher unstable modes are associated with higher me-
ridional complexity, their accuracies are very much
subject to the meridional resolution of the basis func-
tions. We should note, however, that the growth rate
characteristics of our study are in general agreement
with those of Ioannou and Lindzen (1986), who state
that the maximum growth rate of unstable modes in
a jet type shear flow occurs around zonal wavenumber
8 and that the maximum growth rates for higher modes
tend to shift toward smaller zonal wavenumber.

The disappearance of the separation between the
growth rates of the Charney and Green types, discussed
in section 2, in the growth rates for the 30° jet is ex-
plained by Hoskins and Revell (1981). They showed
that the small growth rates in the Charney and Green
types for long waves are due to the lack of meridional
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variation. When this restriction is removed and the
meridional variation of motion is included, the growth
rates of baroclinic instability between Cartesian and
spherical coordinate systems show good agreement.
The meridional scale of instability is determined by
the breadth of zonal flow jets.

d. Structures of unstable modes

Figure 12 shows the distributions of amplitude (solid
lines) and phase (dash lines) of the S1 and A1 modes
in the case of N = 6 for zonal wavenumber s = 4 as
functions of latitude ¢ and vertical coordinate p/p;.
The figure shows only the Northern Hemisphere. The
distributions in the Southern Hemisphere follow the
property of symmetry. The maximum intensities of
the S1 mode (upper panel) and A1 mode (lower panel)
are both found around p/p; = 0.4 and 42°N. In both
cases, the phase decreases upward and also northward
and southward of 44°N. The northward decrease of
phase in the lower troposphere is sharper than the
southward decrease. In the upper troposphere, the
northward and southward decrease from the latitude
of, say, 43°N are more or less even.

The horizontal structures of the S1 and Al modes
at a lower level (p/ps; = 0.870) and an upper level (p/
ps = 0.227) are shown in Fig. 13. These levels are in-
dicated by L.L. and U.L. on the left side of Fig. 12.
Between L.L. and U.L. there are phase differences of

P/Ps

——

—
[=]
~
|

P/Ps

N. LATITUDE

FIG. 12. (a) Distributions of amplitude (solid lines) and phase
(dash lines) of SI mode for zonal wavenumber 4 as functions of
north latitude ¢ and vertical coordinate p/p,. (b) As in (a), but for
the Al mode.
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almost 180° for both the S1 and Al modes. This is
clearly seen from Fig. 13 as almost out of phase patterns
between the right and left side panels. With the help
of the horizontal patterns of Fig. 13, the previous dis-
cussion on the amplitude and phase diagrams of Fig.
12 becomes apparent in visualizing the three-dimen-
sional structures of the S1 and A1 modes. The velocity
fields are shown on Fig. 13 by arrows with the scale
indicated on the lower right-hand corner. Actually, the
magnitudes of unstable motions are so chosen that the
contour interval is 5 m and the maximum velocity is
5ms~'. Itis clear that the three-dimensional structures
of the S1 and A1 modes are very similar.

Figures 14 and 15 are the same as Figs. 12 and 13
respectively, except they depict the S2 and A2 modes.
In general, the three-dimensional structures of the §2
and A2 modes are very similar, so we will concentrate
on discussing the structure of S2 mode below. The
maximum amplitude is found around the level p/p;
= (.35 at 50°N, while in the lower troposphere there
are two maxima, the major one around 46°N and the
minor one around 33°N. In fact, the upper left panel
in Fig. 15 is very much representative of the S2 struc-
ture in the lower troposphere. The phase decreases up-
ward and northward of 30°N. (The phase also decreases
southward from 30°N, but the amplitude becomes very
small towards the equator.) One different aspect of the
S2 structure compared with the S1 structure is that the
system is stretched in the northwest-southeast direction
throughout the troposphere, while the S1 structure in
the lower troposphere stretches more or less in the op-
posite direction, i.e., the northeast-southwest direction.
This suggests that the S| and S2 modes have very dif-
ferent roles in the horizontal eddy momentum trans-
port mechanism. As far as the vertical tilt of the trough
(or ridge) is concerned, the S2 mode has about the
same degree of westward tilt as the SI mode. Our dis-
cussion on the comparison between the S1 and S2
modes is also applicable to the comparison of the Al
and A2 modes.

So far, we have considered the structure of unstable
motions for zonal wavenumber s = 4. As seen from
section 2, we anticipate that the structure of unstable
motions depends on their longitudinal scale. Figures
16 and 17 are the same as Fig. 12, except they deal
with zonal wavenumber s = 8, corresponding to almost
the case of maximum instability. Comparing Figs. 12
and 16, we notice that the maximum amplitude of S1
for the case of 5 = 8 is located lower than the corre-
sponding case of 5 = 4. In fact, the amplitude of S1 is
pretty much constant throughout the lower troposphere
with a slight reduction around the level p/p; = 0.65.
On the other hand, the vertical westward phase tilt of
the SI in the case of s = 8 is approximately one-haif
that of s = 4. Also, we notice that the northward and
southward decrease of phase from about 40°N in the
case of s = 8 is much more gradual than in the case of
s = 4. The upper left panel of Fig. 18 shows the hori-
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panels) for zonal wavenumber 4 at the lower level p/p, = 0.870 (left panels) and the
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zontal structure of the S| mode for zonal wavenumber
s = 8 at the level p/p, = 0.87. Coniparison between
the upper left panels of Figs. 18 and 13 shows clearly
the dependence of the structure of unstable motions
on their zonal wavenumber. Although the horizontal
structure of the S1 mode for s = 8 at the upper level
p/ps = 0.227 is not shown here, it is not difficult to
visualize that the upper level pattern is very similar to
the lower level pattern except for the westward tilt of
the system. Again, we see that the Al mode is similar
in its structure to the S1 mode.

The structure of the S2 mode for s = 8 looks quite
different from the corresponding mode for s = 4, but
a closer look shows some similarity. Figure 17 is the
same as Fig. 14, except for s = 8. Actually, it is easier
to comprehend Fig. 17a by first looking at the hori-
zontal structure of the S2 mode for s = 8 at the lower
level shown in the upper right panel of Fig. 18. We see
a dipole structure with phase switch at 38°N and the
amplitude maxima around 32° and 48°N. Now, let us
look at Fig. 17a to visualize the vertical structure. The

cell north of 38°N has a more intense and deeper
structure with a smaller westward phase tilt than the
cell south of 38°N. Therefore, in the upper troposphere,
the horizontal structure of S2 is essentially dominated
by the northern cell with a horizontal tilt in the north—
northwest to south-southeast direction. When we look
at Fig. 15 again for the structure of the S2 mode with
s = 4, its lower tropospheric structure can be looked
upon as a kind of dipole. Lastly, we can again see from
Figs. 17 and 18 that the structures of the S2 and A2
modes are very similar.

e. Spectral energy distribution

One merit of the spectral method is its capability of
representing the flow characteristics in terms of scales.
While representation in terms of horizontal scales is
fairly common, the scale representation in the vertical
has not received much attention due primarily to lack
of application of the analysis technique. With the use
of three-dimensional normal mode expansions, we can
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FIG. 14. As in Fig. 12, but (a) for the S2 mode,
and (b) for the A2 mode.

examine the spectral distribution of energy not only in
the horizontal scales, but also in the vertical scales
(Kasahara and Puri 1981).

Figure 19 shows the spectral distribution of total en-
ergy (TE,*) defined by

(TE), = 3 8D,CA(MCi*(n)  (3.14)

for the St and Al modes in the case of N = 6 and s
= 8. The ordinate shows the total energy and the ab-
scissa denotes the meridional index. The index r = —1
represents the Kelvin mode, and r = 0 to 15 represent
the rotational modes. The distributions of energy for
six vertical modes are represented by different symbols
shown in the inset. For example, the distribution for
the external mode (# = 1) is shown by a solid line
connecting the dots and the distribution for the third
internal mode (7 = 4) by a dashed line connecting the
triangles. The case of s = 8 corresponds approximately
to that of the maximum instability for the S1 and Al
modes. We see from Fig. 19 that the largest amount
of energy resides in the large meridional scales (r = 1
~ 4) of the external mode (n = 1) rotational com-
ponents. The locations of energy peaks for the higher
vertical modes tend to shift to higher meridional modes.
This suggests that our meridional resolution is not
enough for the vertical mode » = 6. Present findings
demonstrate that the baroclinic instability in the west-
erlies can generate the external mode (n = 1) effectively.
Note also that the Kelvin mode does not play a very
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significant role in the baroclinic instability examined
here. General features of the energy spectral distribu-
tions shown in Fig. 19 resemble those of real data an-
alyzed by Kasahara and Puri (1981) and Tanaka
(1985).

Figure 20 shows the same quantities as Fig. 19, ex-
cept (a) for the S2 mode and (b) for the A2 mode. The
locations of energy peaks are generally shifted towards
the medium meridional scales (r = 5 ~ 10) as reflected
from the observations that the structure of the second
most unstable modes contains more meridional com-
plexity. From the fact that energy is not concentrated
in the largest meridional and vertical scales, it is clear
that more meridional and vertical modes are necessary
to resolve accurately the structure of the higher (slower
growing) unstable modes.

4. Discussion

We discuss here some remaining issues related to
the use of vertical normal modes as the basis functions
in the spectral discretization of prediction equations.

a. Lower boundary condition

One important topic which we have not discussed
fully is the question of the lower boundary condition:
whether the lower boundary condition, which is used
to construct the vertical normal modes of the basic
atmosphere at rest, can satisfy a more general lower
boundary condition which incorporates the basic flow
as done in this study. We will show below that it is
indeed the case.

It is appropriate to choose the lower boundary con-
dition dZ'/dt = 0 at ¢ = 1 in the original dimensional
notation. This condition can be written explicitly as

YA u_ 9z' 97 ,dZy
at + acos¢ 9\ to adp to de 0, @D

where we introduced a minor approximation that dZ/
da is negligible compared with d Z,/d o because of the
observation that T(a) <€ To(o) (cf. Holton 1975).

The thermodynamic energy equation, before com-
bining it with the continuity equation to derive the
third equation in (2.10) of KS86, is given in the di-
mensional notation as

9 (=T 1 ( @ oT v oT
—_ | — + = — _‘+__ 4.2
az( 1‘0) ¢ I‘o(a cosé AN | a a¢)’ 42

where

_To _dTy
l+e¢ do’

Lo 4.3)

In deriving (4.2), we assumed that dZ/dc < dZy/do
as in the case of (4.1).
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FIG. 15. As in Fig. 13, but the upper panels are for the S2 mode,
and the lower panels are for the A2 mode.

The hydrostatic equilibrium is assumed between Z'
and T in the form

dZ' RT’
ot ey

do 1+o°

The same form of hydrostatic relation is assumed be-
tween Z and T and also Z; and Tg.

By substituting ' from (4.1) into (4.2) and utilizing
the hydrostatic relationships between (2, T"), (Z, T)
and (Zy, T), we find that the lower boundary condition

is expressed by
9 i FVA v F e .
_=t — — + 7’ S | Z|=
(c’ﬁ acosqﬁ)(é‘a }Z)+aa¢( i ) i’
(4.5)

where r = I'¢/ Tp evaluated at ¢ = 1, which is identical
to the symbol appearing in the lower boundary con-
dition

(4.4)

A

=it M= at o=
do

used to obtain the solutions of the vertical structure

equation. Therefore, as long as the vertical structures

(4.6)

of Z' and Z are expressed by the vertical structure
functions G, which satisfy the lower boundary condi-
tion (4.6), the lower boundary condition (4.5) is au-
tomatically satisfied.

b. Accuracy of the solutions

The accuracy of the numerical solutions with the
normal mode expansions depends on two factors. One
is the accuracy of the expansion functions as free so-
lutions to the linearized system with respect to an at-
mosphere at rest. Since the construction of the normal
mode functions is required to be performed only once
as a precomputation, they should be calculated as ac-
curately as possible. The other factor is the number of
expansion functions for representation of the depen-
dent variables. In the present case of a specified single
zonal wavenumber, we only need to choose the number
of expansion functions used in the meridional and ver-
tical directions. In this regard, there is considerable
freedom to choose from the ensemble of meridional
modes involving the three different wave species. For
example, we need to adopt only the rotational wave
components of the meridional expansion functions if
we wish to just represent quasi-geostrophic type mo-
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FIG. 16. As in Fig. 12, but for zonal wavenumber 8.

tions. The spectral distribution of total energy, such as
discussed in section 3e, should be used to guide the
selection of the appropriate resolution for both the me-
ridional and vertical directions. There is no need to
choose the same resolution of meridional expansion
functions for all the vertical modes. A judicious choice
of the meridional resolution as a function of the vertical
mode should be able to economize numerical com-
putations.

¢. Incorporation of orography

This topic is not directly relevant to the problems
of baroclinic instability discussed here, but it is im-
portant to comment on how the effects of mountains
can be incorporated within the framework of vertical
normal mode expansion. As shown by Kasahara and
Puri (1981) and Staniforth et al. (1985), the vertical
structure equation for the sigma coordinate system in-
corporating the effect of orography can be derived in
the same way as discussed here with the aid of appro-
priate transformations of dependent variables. There-
fore, essentially the same expansion procedure as de-
scribed in this paper is applicable to the case of variable
ps with an addition of the prediction equation of p;
which can also be solved spectrally.

An interesting possibility along the same lines is that
the use of the 3-D normal mode expansions may reduce
a particular type of truncation error in sigma-system
models. Because the horizontal coordinate surfaces are
usually not parallel with either constant height or pres-
sure surfaces in sigma-system models, a hydrostatic
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correction must be introduced to calculate the pressure
gradient on the sigma surfaces. In a hybrid system of
using the finite-difference method in the vertical with
the spectral method in the horizontal, the type of trun-
cation errors discussed by Sundqvist (1975) still remain
in the evaluation of temperature which appears as a
coefficient in the hydrostatic correction even though
horizontal derivatives are calculated accurately by the
spectral method. If this type of truncation error were
reduced by adopting the spectral method in the vertical
as well as in the horizontal, the 3-D spectral modeling
will give a real advantage over the traditional hybrid
formulation.

d. Time integration

One consideration which might have discouraged
the subsequent exploration of the use of the spectral
method in the vertical discretization of model variables
was Francis’ (1972) finding that a very small time step
is needed when Laguerre polynomials are used as a
basis. Again, this consideration is not relevant to the
eigenvalue problems discussed in this paper, but a
comment should be added in this regard in the event
of using the explicit time differencing scheme for so-
lution of the spectral equation (3.4). The form of the
spectral equation (3.4) for each vertical mode is iden-
tical to the corresponding equation (5.2) in Kasahara
(1977) for the global shallow water model and the
computational stability of the centered time differenc-
ing scheme has been discussed in the same paper. Lin-
ear computational stability is related to the frequency
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FIG. 17. As in Fig. 14, but for zonal wavenumber 8.
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FIG. 20. As in Fig. 19, but (a) for the S2 mode and (b) for the A2 mode.

v,*(n) corresponding to the expansion functions
adopted. Because the linear part of the spectral equation
(3.4) can be solved exactly using a transformation of
the variables as discussed by Baer and Platzman (1961),
the time step of integration is determined essentially
by the frequency of slow meteorologically significant
motions. Therefore, unlike the traditional global spec-
tral models (e.g., Williamson 1983), there is no need
to employ the semi-implicit time integration technique.

5. Conclusions

We investigated the use of normal mode expansion
in discretizing model variables in the vertical for nu-
merical solution of time dependent atmospheric equa-
tions. First, we reviewed briefly the past efforts of using
the spectral method in the vertical discretization. No
obvious reason was found as to why the use of spectral
techniques has been rather unpopular compared with
the finite-difference techniques in the vertical discre-
tization, other than a shortage of references which
demonstrate a potential usefulness. In this article, we
are specifically concerned with the spectral method
which uses the normal modes as the basis functions.
The normal modes are obtained as the free solutions
to dynamical systems.

As a simple example of vertical normal mode ex-
pansion, we examined the traditional baroclinic insta-
bility of Charney and Green types on a zonal flow with
a constant vertical shear using a quasi-geostrophic
potential vorticity equation. The normal modes were
obtained analytically for an exponential temperature

distribution in the vertical for the system without in-
corporating the basic flow. It was shown that the normal
mode functions satisfy the upper and lower boundary
conditions of the system incorporating the basic flow.
The stability problem was then solved by applying the
Galerkin method. The convergence of the numerical
solutions was examined in detail by varying the spectral
resolution. The results of the stability analysis are in
general agreement with those obtained by previous
investigators, indicating that the vertical normal
mode expansion is a viable numerical approach to the
problem.

The method of vertical normal mode expansion was
extended to solve the problem of baroclinic instability
on the sphere using the global primitive equation model
linearized around a basic zonal flow with vertical and
meridional shear. The 3-D normal modes, obtained as
the free solutions to the linearized primitive equations
without the effects of basic zonal flow, were used as the
expansion functions. The evolution equations for the
spectral coefficients of truncated series in the 3-D nor-
mal mode functions were derived by application of the
Galerkin procedure. As a specific form of the basic
zonal flow, the 30° jet adopted earlier by Simmons,
Hoskins and Frederiksen was used. The stability of the
30° jet was investigated through the eigenvalue-eigen-
function approach. The growth rates and phase speeds
of unstable motions were compared with those ob-
tained by Simmons, Hoskins and Frederiksen using
different techniques. The 3-D structures of symmetric
and antisymmetric unstable motions were examined
in detail.

R
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A number of remaining issues were discussed in sec-
tion 4. The presence of upper and lower boundary
conditions in atmospheric modeling might have given
the impression that the use of the spectral method may
have disadvantages over the finite difference method.
This appears to be a false impression, though it may
be desirable to.devote more research to exploring the
characteristics of vertical normal mode functions under
various: boundary conditions (e g., Platzman 1988).
Comments were made concermng the treatment of the
dynamical effect of orography in primitive equation
modeling with the 3-D normal mode expansion as well
as the method of time integration. These questions are
not dnrectly relevant to the specific problems investi-
gated in thxs paper but these discussions are necessary
for a wider application of the 3-D normal mode ex-
pansion to atmosphenc modeling. In conclusion, we
find that not only is the vertical normal mode expan-
sion a viable'method for discretizing model variables
in the vertical, but also the 3-D normal mode expansion
provides a promising new avenue for numerical solu-
tion of the tnne-dependent primitive equations.
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APPENDIX

The Form of Basic Zonal Flow and the Basic
Temperature Distribution

The form of the 30° jet (¢, o) as the basic zonal
flow and the basic temperature distribution To(o) are
specified following Hoskins and Simmons (1975) as

(Al)

where ¢ = sing and ¢ = 2p/p, — 1. The functions
Us(o)and To(a) are constructed by fitting fifth-degree
polynomials in ¢ to the values

" Up(s) = (45, 35,22, 12,4) m s~
< To(a) = (220, 230, 250, 267, 280) K

(¢, o) = sin’rulo(v),

at
0'—( 08 —0.4,0, 0.4, 0.8)

respectwely, with the additional conditions that
Us(1) = Up(0.8) and T4(1) = T'(0.8 ) where the prime
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indicates differentiation with respect to ¢. Figure Al
shows the function Up(e) plotted against ¢ by solid
line. The long and short dashed lines are its reconstruc-
tion using the series of vertical structure function Gu(o)
with truncation N = 6 and 5, respectively. Notice that
the profile of Up( o) is approximated reasonably well
by these series except for the lower atmosphere.

The static stability S'is calculated from the definition

- L(L_an
Tu\l+ao de)’

The dimensionless angular velocity for the basic
zonal wind (A1) is given by

(A2)

a(¢, o) = u(¢, 0)/(2aQ cose)
= &(¢) 1% 8:G(o), (A3)
where )
Go(@) = sin’mp/(1 — p2)'/2, (A4)
= té";; ) G(o)do. (A5)
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