
JMA/NCEP/CMC Multi-Center Ensemble Forecast
Mio Matsueda1, Masayuki Kyouda2, and H. L. Tanaka3

1 : Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
2 : Numerical Prediction Division, Japan Meteorological Agency

3 : Center for Computational Sciences, University of Tsukuba, Japan
and Frontier Research Center for Global Change

1 Introduction
　　 Ensemble forecast is a collection of a number of fore-
casts that verify at the same time. In the ensemble fore-
casts, several model forecasts are performed by introduc-
ing perturbations in the initial conditions or in the models
themselves. Ensemble forecast has accomplished two main
goals: the first one is to provide an ensemble average fore-
cast that beyond the first few days is more accurate than
individual forecasts, because the components of the fore-
cast that are most uncertain tend to be averaged out. The
second and more important goal is to provide forecasters
with an estimation of the reliability of the forecast, which
because of changes in atmospheric predictability, varies
from day to day and from region to region (Kalnay 2003).

Operational ensemble forecasts for medium-range
forecasting have been performed at several numerical
weather prediction (NWP) centers. For example, the
European Center for Medium-Range Weather Forecasts
(ECMWF) has performed an operational Ensemble Pre-
diction System (EPS) daily since May 1994 (Palmer et al.
1993; Molteni et al. 1996), and has the most highest en-
semble model resolution with 102 ensemble members per
day whose perturbations were generated by singular vector
method.

The National Centers for Environmental Prediction
(NCEP) produces 11 ensemble members at 0000, 0600,
1200 and 1800 UTC everyday out to 16-days lead time.
NCEP has used a bred-vector (BV) perturbation method
introduced by Toth and Kalnay (1993). This method is
based on the argument that fast-growing perturbations de-
velop naturally in a data assimilation cycle and will con-
tinue to grow as short- and medium-range forecast error.
Further information for NCEP EPS is described in Toth
and Kalnay (1993) and Toth and Kalnay (1997).

The Japan Meteorological Agency (JMA) EPS has
been carried out with 25 members at 1200 UTC everyday
out to 9-days for medium-range forecasting since March
2001. Perturbed initial fields are obtained using the Breed-
ing of Growing Modes, same as NCEP. For further descrip-
tion of JMA EPS, see JMA (2002).

Also, Canadian Meteorological Center (CMC) has
performed an operational EPS at daily 0000 UTC since
February 1998, using a multi-model ensemble method.
CMC EPS consists of 17 different model runs, mainly with
different physical parameterizations. Nine members, con-
taining a control run, are driven by the SEF (Spectral Fi-
nite Element) models and other eight members are driven

by the Global Environment Multi-scale (GEM) models.
Also, CMC EPS adopts perturbed analyses as initial per-
turbation fields. For further information for CMC EPS,
see Houtekamer et al. (1996), Lefaivre et al. (1997) and
Pellerin et al. (2003).

Recently, a Multi-Center Ensemble (MCE) has at-
tracted international attention (e.g. Mylne et al. 2003;
Richardson 2001; Ziehmann 2000). Creating MCE pro-
vides not only increasing ensemble members without fur-
ther computing resources but also reducing the overall
model bias, and thereby the forecast skill of MCE is ex-
pected to be superior to that of individual ensemble fore-
cast.

In this study, we have created the MCE forecast, con-
sisting of ensemble forecasts by JMA, NCEP and CMC.
We investigated whether the forecast skill of the MCE
forecast is improved than that of JMA ensemble forecast.
Two variables, 500 hPa geopotential height (hereafter re-
ferred to as Z500) and temperature at 850 hPa (hereafter
referred to as T850) in the Northern Hemisphere (20◦N—
90◦N) during September 2005, are assessed using Anomaly
Correlation (AC), Root Mean Square Error (RMSE), and
Brier Skill Score (BSS).

2 Data and Methods
2.1 Data
　　 In this study, three ensemble forecast data, JMA,
NCEP, and CMC, are used. The details are summarized
in Tabale 1.

Table 1 Three ensemble configurations at JMA, NCEP
and CMC.

JMA NCEP CMC
Model Resol. T106L40 T126L28 TL149L23-41

Grid 2.5◦ × 2.5◦ 2.5◦ × 2.5◦ 1.0◦ × 1.0◦
Fore. Leng. 216hr 384hr 240hr(12hrly) (6&12hrly) (12hrly)
Init. Perturb. BVs BVs Anal. cycle
Init. UTC 12 00, 06, 12, 18 00
Mem./run 25 11 17
Mem./day 25 44 17

The data from different ensemble producer is created at
different resolutions. CMC ensemble grid is 1.0◦ × 1.0◦,
whereas JMA and NCEP grids are 2.5◦ × 2.5◦. So data



is interpolated into 2.5 degree grid spacing as a common
grid before the verification of MCEs. MCE forecasts that
we have created using above three ensembles are shown in
Table 2. As can be expected from Table 2, the alphabet
indicates center name, namely J, N and C indicate JMA,
NCEP and CMC, respectively, and the number behind
each alphabet indicates each ensemble member. So, for
example, J25N11C17 consists of 25 ensemble members of
JMA, 11 members of NCEP and 17 members of CMC and
the total number of the members is 53. J9N8C8, created
to compare with JMA25, contains JMA ensemble control
run, four perturbation pairs of JMA, 4 perturbation pairs
of NCEP and 4 perturbation pairs of CMC. Initial UTC of
MCE forecasts is set to 1200 UTC. So, the effect of Lagged
Averaged Forecasts (LAF) method is naturally contained
in MCE forecasts and J25N44C17 also contains that. In
this study, however, the effect of LAF method is not con-
sidered.

Table 2 MCE configurations. Left column is abbreviated
MCE name.

JMA mem. NCEP mem. CMC mem.
MCE (UTC) (UTC) (UTC)
JMA25 25 (12) - -
NCEP11 - 11 (12) -
CMC17 - - 17 (00)
J9N8C8 9 (12) 8 (12) 8 (00)

J25N11C17 25 (12) 11 (12) 17 (00)
J25N44C17 25 (12) 44 (00, 06, 17(00)

12, 18)

2.2 Methods
2.2.1 Deterministic Verification
　　We investigate the skill of ensemble mean forecasts
of MCE using anomaly correlation (AC) and root mean
square error (RMSE). Anomaly correlation (AC) is defined
by the following equation:

AC =
∑(xf − xc)(xa − xc)

√∑(xf − xc)2
√∑(xa − xc)2

, (1)

where xf , xa and xc indicate ensemble mean forecast,
analysis and climate, respectively. In this study, the
summation is taken in the Northern Hemisphere (20◦N—
90◦N). AC indicates a patterns correlation between fore-
cast anomaly and analysis anomaly, so AC decreases
with time. AC score of one (1.0) demonstrates perfect
skill. Based on experience with the anomaly correlation,
a score near 0.6 suggests forecast errors are sufficiently
large enough to indicate minimal skill while a score be-
low 0.6 signifies a forecast is not useful. In general, the
time when AC first becomes 0.6 is called the limitation of
predictability (hereafter referred to as LP). We used JMA
climate data for calculating ACs of all MCE although AC
is sensitive to the choice of the climatological reference.
It must be noted that our AC for NCEP11 and CMC17
is not exact value but approximate value. Also, although
calculating AC requires the analysis data, we regarded the
JMA control run at initial time as the analysis data except
for NCEP11 and CMC17.

Root mean square error (RMSE) is defined by the

following equation:

RMSE =
√

√

√

√

1
N

N
∑

k=1

(xf − xa)2 , (2)

where xf and xa indicate the ensemble mean forecast and
the analysis, respectively, and the summation is taken in
the Northern Hemisphere, as in AC. RMSE indicates a
forecast error and RMSE score of zero (0.0) demonstrates
perfect skill. RMSE doesn’t require the climate data dif-
ferently from AC, so RMSEs for NCEP11 and CMC17 are
accurate.

2.2.2 Probabilistic Verification
　　 The most commonly used verification diagnostic for
probabilistic forecasts is the Brier Score, originally intro-
duced by Brier (1950) and described in its modified stan-
dard form by Wilks (1995) as:

BS =
√

√

√

√

1
N

N
∑

i=1

(pi − oi)2 . (3)

The Brier Score is essentially the mean square error
for probability forecasts of an event, where pi and oi are
forecast and observed probabilities, respectively; oi takes
values of unity when the event occurs and zero when it does
not occur. N is the number of grid points in the spatio—
temporal domain, namely which indicates all grid points in
September 2005 in the Northern Hemisphere in this study.
BS becomes 0 only when ensemble mean forecast is perfect.
However, for example, when BS is equal to 0.6, it’s difficult
to evaluate whether the ensemble forecast has a good skill
or not. Therefore, Brier Skill Score (BSS), defined by the
following equation, is often considered:

BSS = BSclm − BS
BSclm = 1− BS

BSclm ,

where BSclm is a Brier Score for climate forecast. BSS
becomes 1.0 only when ensemble mean forecast is perfect.
Also BSS becomes 0 when ensemble forecast is equivalent
to climate forecast, indicating ensemble mean forecast has
no skill. Calculating BSS requires a threshold which is
defined for an event. So, we configured 4 thresholds for
Z500, whether anomaly is greter (less) than 1 or 2 (−1 or
−2) climatoligical standard deviation (hereafter referred
to as SD) , and 6 thresholds for T850, whether anomaly is
greter (less) than 2, 4 or 8 (−2, −4 or −8)K.

3 Results
3.1 Comparison of the JMA, NCEP

and CMC ensemble forecasts
　　 First, we make a comparison between the skills of
three ensemble mean forecasts, JMA25, NCEP11 and
CMC17, using AC and RMSE. When forecast skills among
them differ extremely, the effect of MCE might depend
largely on the most skillful forecast. AC was calculated
for Z500 in the Northern Hemisphere using JMA climate
and each analysis data. The monthly mean LP, when AC



Figure 1. Anomaly correlation skill for JMA con-
trol run and ensemble mean forecasts, JMA25, J9N8C8,
J25N11C17 and J25N44C17, Z500 in the Northern Hemi-
sphere (20◦N—90◦N).

becomes 0.6 first, of JMA25, NCEP11 and CMC17 are
174hr, 180hr, 168hr, respectively. NCEP11 is somewhat
superior to JMA25 and CMC17 although LP of NCEP11
and CMC17 may not be accurate because of using the
JMA climate. Also, RMSE was calculated for Z500 and
T850 in the Northern Hemisphere. RMSE does not require
climate data, so RMSE may be more accurate than AC.
RMSEs for 500 hPa at 168 hr of JMA25, NCEP11, CMC17
are about 56 m although that of CMC17 is slightly larger
than it. Also, RMSEs for 850 hPa at 168 hr of these are
all about 2.7 K although that of CMC17 is slightly larger
than it. Consequently, we might consider that the skills of
three ensemble forecasts are almost equivalent.

3.2 Effects of MCE forecasts and in-
creasing ensemble members

　　 Figure 1 illustrates ACs of JMA control run, JMA25,
J9N8C8, J25N11C17, and J25N44C17 for Z500. LP of
J9N8C8 is 180 hr, which indicates MCE is more skillful
than JMA25 in the latter half of the forecast. J25N11C17
seems to be slightly skillful than J9N8C8. It is interesting
that in spite of LPs of JMA25, NCEP11 and CMC17 are
174 hr, 180 hr and 168 hr, respectively, that of J25N11C17
exceeds 180 hr that is maximum within three single model
EPS. Also it is hoped that J25N44C17 is slightly skillful
than J25N11C17 in the latter half of the forecast although
J25N44C17 cannot be created over 156 hr lead time owing
to the forecast intervals. Same results are obtained with
respect to RMSE for Z500 and T850 (not shown). RMSEs
of MCE forecasts are smaller than that of JMA25, and that
of JMA25N44C17 is the smallest. The difference among
MCEs, J9N8C8, J25N11C17 and J25N44C17, however, is
small.

Figure 2 illustrates BSS of JMA25, J9N8C8,
J25N11C17, and J25N44C17 for the threshold whether
Z500 anomaly is greater than 1 SD. BSS of MCEs af-
ter +24h forecast time is superior to that of JMA25,
whereas BSSs of MCEs are inferior to that of JMA25 up
to +12h forecast time. Also J25N11C17 is more skill-

Figure 2. Brier Skill Score of probabilistic predictions,
JMA25, J9N8C8, J25N11C17 and J25N44C17, for Z500 in
the Northern Hemisphere (20◦N—90◦N). The threshold is
whether the anomaly is greater than 1 standard deviation.

Figure 3. Same as Fig. 2 but for T850. The threshold is
whether anomaly is less than -4 K.

ful than J9N8C8, and J25N44C17 is more skillful than
J25N11C17 in the latter half of the forecast. The same
result is obtained with respect to the threshold whether
anomaly is greater than 2 SD (not shown). However, for
−1 or −2 SD threshold there is not apparent difference
among MCE forecasts although all MCE forecasts are su-
perior to JMA25.

Figure 3 illustrates BSS of JMA25, J9N8C8,
J25N11C17, and J25N44C17 for the threshold whether
T850 anomaly is less than −4 K. BSS of J25N11C17 is al-
most equal to that of J9N8C8, and J25N44C17 is slightly
superior to these, although MCE forecasts are superior
to JMA25. The same result is obtained with respect to
the threshold whether anomaly is less than −2 or −8
K (not shown) except for that J25N11C17 is superior to
J9N8C8 for −8 K threshold. However, BSSs of J9N8C8,
J25N11C17 and J25N44C17 are not always superior to
that of JMA25 for 2, 4 and 8 K threshold even though
in the latter half of the forecast (not shown).



4 Conclusions and discussion
　　 In this study, we have created the multi-center en-
semble(MCE) forecast, consisting of ensemble forecasts by
JMA, NCEP and CMC. We investigated whether the fore-
cast skill is improved than that of JMA ensemble fore-
cast. Two variables, Z500 and temperature at T850 in the
Northern Hemisphere during September 2005, are assessed
using AC, RMSE, and BSS.

First, we made a comparison among the skills of three
ensemble mean forecasts, JMA25, NCEP11 and CMC17,
using AC and RMSE. The monthly mean LPs, when AC
becomes 0.6 first, of JMA25, NCEP11 and CMC17 are
174 hr, 180 hr, 168 hr, respectively. NCEP11 is somewhat
superior to JMA25 and CMC17. Also, RMSEs for 500 hPa
at 168 hr of JMA25, NCEP11, CMC17 are about 56 m
although that of CMC17 is slightly large than it. RMSEs
for 850 hPa at 168 hr of these are all about 2.7 K although
that of CMC17 is slightly large than it. Consequently, we
might consider that the skills of three ensemble forecasts
are almost equivalent.

Next, we compared JMA25 and J9N8C8 to investi-
gate the effect of MCE. It is noted that both JMA25 and
J9N8C8 consist of 25 ensemble members. LP of J9N8C8
is 180 hr, which is longer than that of JMA25. RMSE
of J9N8C8 is smaller than that of JMA25. Also, BSS of
J9N8C8 for Z500 threshold, whether anomaly is greater
(less) than 1 or 2 SD (−1 or −2SD), and T850 threshold,
whether anomaly is less than −2, −4 and −8 K, indicates
that J9N8C8 is superior to JMA25. BSS of J9N8C8 for
T850 threshold, whether anomaly is greater than 2, 4 and
8 K, is equivalent or inferior to that of JMA25. Looking
overall, however, MCE forecast is more skillful than single
model emsemble forecast.

Furthermore, we investigated the effect of increasing
ensemble members in MCE. In the sight of AC, J25N11C17
seems to be slightly skillful than J9N8C8 and JMA25. It
is interesting that in spite of LPs of JMA25, NCEP11 and
CMC17 are 174 hr, 180 hr and 168 hr, respectively, that of
J25N11C17 exceeds 180 hr that is maximum within three
single model EPS. Also it is hoped that J25N44C17 is
slightly more skillful than J25N11C17 in the latter half of
the forecast although J25N44C17 cannot be created over
156 hr lead time owing to the forecast interval. The same
results are obtained with respect to RMSE for Z500 and
T850. RMSE of MCE forecasts is smaller than that of
JMA25, and that of JMA25N44C17 is smallest. The differ-
ence among MCEs, J9N8C8, J25N11C17 and J25N44C17,
however, is small. In probabilistic verification for two
thresholds, whether Z500 anomaly is greater than 1 SD
and 2 SD, it is found that J25N11C17 is more skillful than
J9N8C8, and J25N44C17 is more skillful than J25N11C17
in the latter half of the forecast. However, for −1 or −2 SD
threshold there is no apparent difference among MCE fore-
casts although all MCE forecasts are superior to JMA25.
With respect to threshold, whether T850 anomaly is less
than −2, −4 and −8 K, J25N44C17 is most skillful and
MCEs are skillful than JMA25. However, BSS of J9N8C8,
J25N11CMC17 and J25N44C17 are not always superior to
that of JMA25 for 2, 4 and 8 K threshold even though in
the latter half of the forecast.

Based on above results, it might be difficult to evalu-

ate the effect of increasing ensemble members in the sight
of MCE configuration used in this study. However, it
seems to be rare that MCE forecast is always skillful within
all verification items. So, it seems that there exist the ef-
fect of increasing ensemble members.
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