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Abstract

In this study a new type of ensemble forecast assimilation technique is developed in order to improve
the forecast skill in the nonlinear dynamical system. The forecast assimilation is an analysis technique
in which a true value contained in each ensemble forecast is accumulated into a single assimilated fore-
cast such as a data assimilation. For the experiments, we used a Lorenz model, and a Kalman filter is
applied for the forecast assimilation.

The experiments are started by calculating 101 members of the ensemble forecast in which the initial
error with Gaussian distribution is superimposed around the truth, and one of the members is arbi-
trarily selected as a control forecast. The experiments of the forecast assimilation are repeated 5000
times for different sectors of the solution trajectory to obtain the statistical significance of the results.
The distribution of the ensemble members is stretched by a linear error growth at the beginning of the
forecast. After that, the nonlinear effect becomes dominant to distort the distribution. The forecast as-
similation is then started when the errors of the ensemble forecasts have grown to a certain threshold. It
is demonstrated that the forecast skill of the assimilated forecast is always superior to the control fore-
cast. In the range of the small root mean square error (RMSE) of the ensemble forecast, the skill of the
assimilated forecast is inferior to the ordinary ensemble mean. However, for the sufficiently large RMSE
before the saturation, it is shown that the skill of the assimilated forecast is superior to the ensemble
mean. The result suggests that the forecast assimilation is one of the viable approaches to the medium or
extended range forecast.

1. Introduction in the initial condition, even if we can have a
perfect prediction model. It is caused by the
fact that the atmosphere has the property of
the inherent nature of the nonlinearity and in-
stability. So, the atmospheric motion is essen-
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A discovery of chaos in an atmospherical dy-
namics by Lorenz (1963) indicates that a de-
terministic forecast is limited by a small error
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doubling time of the small error is estimated as
about 1.9 days by Nohara and Tanaka (2001).
Errico et al. (2002) commented that knowing
the limit of the atmospheric predictability is
important for setting a reasonable goal of the
numerical weather prediction.

In order to extend the predictable period, an
ensemble of numerical forecasts from slightly
perturbed initial conditions is used for the
medium range forecasts at many operational
weather forecasting centers. Since the ensem-
ble forecast is based on a probabilistic weather
prediction, it is necessary to create a probabil-
ity density function as diversely as possible for
the ensemble members. Therefore, at the Euro-
pean Center for Medium-Range Weather Fore-
casts (ECMWF), the ensemble forecast system
is constructed by an initial perturbation that is
a linear combination of singular vectors (Mol-
teni et al. 1996; Buizza et al. 2000). The singu-
lar vectors specify the directions of the greatest
growth of the linearized system over a pre-
determined time interval. At the National Cen-
ters for Environmental Prediction (NCEP), a
breeding method is introduced for the ensemble
forecast system in which the initial pertur-
bation is a linear combination of bred vectors
(Toth and Kalney 1993, 1997). The bred vectors
are perturbations created in directions where
past forecast errors have grown rapidly. These
ensemble forecasts have contributed to the
progress of the medium range forecast in the
1990’s.

Recently, a multi-model ensemble system has
been suggested by Palmer et al. (2000). The
ensemble members are constructed by many
operational forecasts from different operational
centers that run competitive state-of-the-art
operational analysis and model forecasts. The
ensemble average of the multi-model ensemble
is more skillful than the best individual fore-
casts (Fritsch et al. 2000). Krishnamurti et al.
(1999) has shown that if the multi-model en-
semble includes correction of the systematic er-
rors by regression (called superensemble), the
forecast skill is significantly improved.

Using these ensemble forecasts, some statis-
tical analyses like the ensemble mean perform
well in the nonlinear system. Certainly, if the
ensemble members distribute hyper cubic or
ellipsoid around the truth, the location of the
ensemble mean indicates the truth, and it
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becomes the best forecast. Nevertheless, the
actual distribution is folded by the nonlinear
effect as the forecast progresses. Then, the en-
semble mean is detached from the center of the
distribution of the ensemble members, since
the ensemble mean is only the average of the
ensemble members. If one statistical analysis
includes not only the temporal result of the en-
semble members, but also the time evolution of
the forecast error, it may be expected that the
skill of the new analyzed forecast is better than
the ordinary ensemble mean. For the statistical
analysis, the ensemble members are accumu-
lated into a single forecast by a Kalman filter
(Kalman and Bucy 1961), as in the atmospheric
and oceanic data assimilation. This is called
forecast assimilation. The Kalman filter assim-
ilates the explicit description of the evolution of
the forecast error, so it is competent for the
forecast assimilation.

The purpose of this study is to construct a
new technique of the forecast assimilation us-
ing the ensemble members in order to improve
the forecast skill. In order to examine the pex-
formance of the forecast assimilation technique,
we use a simple dynamical system of the Lor-
enz model (Lorenz 1963), which has been com-
prehensively studied in terms of chaotic behav-
ior, and the nonlinear system (Sparrow 1982;
Mukougawa et al. 1991). For the assimilation of
the ensemble members, we use the Kalman fil-
ter formulated by Kalman and Bucy (1961).

The experimental design is described in Sec-
tion 2, where the forecast assimilation is pre-
sented in detail. In Section 3, the result of the
assimilated forecast is presented to compare
the forecast skill with the ensemble mean fore-
cast. The summary and discussion are given in
Section 4.

2. Experimental design

In this section, we describe the experimental
design of the forecast assimilation in detail.
The forecast assimilation is a new technique
for improving the weather forecast skill. In this
study, the Lorenz model (Lorenz 1963) is used
to examine the effect of the forecast assimila-
tion.

2.1 Forecast assimilation
The forecast error of the ensemble mean is
generally smaller than the single forecast. Con-
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Fig. 1. Schematic flowchart of the forecast assimilation. The bold arrows and boxes denote the

stream of the forecast assimilation.

sider one ideal ensemble forecast, where the
initial states of the ensemble members are nor-
mally distributed around the truth. The en-
semble mean is the best estimation of truth be-
cause the mean coincides with the truth. The
distribution of the ensemble members would be
stretched by a linear error growth at the begin-
ning of the forecast. Since the distribution is
hyper cubic or elliptic, the ensemble mean is
still the best forecast by the same reason. After
that, the nonlinear effect becomes dominant in
the nonlinear system. When the distribution
is folded by the nonlinear effect, the ensemble
mean is detached from the center of the distri-
bution of the ensemble members. To avoid such
detachment, we introduce the forecast assimi-
lation in which the true value contained in the
ensemble members is accumulated into a single
forecast using a data assimilation technique.
Generally, the initial errors are superimposed
on the control run, since the truth is unknown
for the ensemble members. Nevertheless, com-
paring the forecast skill under the known truth
may be the first step to show the usefulness of
the assimilated forecast.

Figure 1 illustrates a schematic flowchart of
the forecast assimilation. The bold arrows and

boxes denote the stream of the forecast assimi-
lation. First, a control forecast and some en-
semble forecasts are calculated from the ini-
tial state at #9. Since we cannot know the true
initial state, the initial state of the control and
ensemble forecast contain unavoidable error
around the true state. As the time integration
proceeds, the forecast error would develop from
the initial error in spite of the perfect model
setting. At ¢;, some time after the beginning, we
start the forecast assimilation. Here, the en-
semble members at #; are regarded as the ob-
servations corresponding to the ordinary data
assimilation. We will refer to it as predicted
observations. Then the predicted observations
are assimilated into the background of the con-
trol forecast using the Kalman filter, and ana-
lyzed value is obtained by the forecast assimi-
lation. At the next time step fi;1, the next
predicted observation is assimilated into the
analyzed background. The forecast assimilation
is calculated every time step after the time ;1.
This new type of forecast is defined as assimi-
lated forecast. In this experiment, we compare
the forecast skill among control forecast, en-
semble mean, and the assimilated forecast at

any time 2,. '
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2.2 Lorenz model

In order to understand the features of the
forecast assimilation, we consider the Lorenz
model (Lorenz 1963), which has been studied
by the comprehension of chaotic behavior and a
nonlinear system (Sparrow 1982; Mukougawa
et al. 1991). The Lorenz model consists of three
differential equations,

dx

Et- - —a(x— y))

dy

E_x4+yx—y, (1)
dz

d—t—xy ‘/))Z,

where o,y, and § are the model parameters,
which are chosen ¢ = 10, y =28, and § = 8/3.
The Lorenz model has been used in many pre-
vious studies of data assimilation and ensem-
ble prediction (Palmer 1993; Miller et al. 1994;
Evensen 1997; Anderson and Anderson 1999).

2.3 Kalman filter

In order to examine the features of the
forecast assimilation, we use a Kalman filter,
which many laboratories conduct experiments
of the data assimilation for weather forecasting

(Bouttier and Courtier 1999; Anderson 2001;

Hamill et al. 2001). Many operational centers
are using three or four dimensional variational
data assimilation systems, called 3D-var or 4D-
var, for weather forecasting (Courtier et al.
1998; Rabier et al. 2000). It is shown that the
result of the forecast assimilation using 3D-var
results in the ensemble mean, as described in
the Appendix. On the other hand, the Kalman
filter includes an explicit description of the
evolution of forecast error covariance in a data
assimilation cycle, so the Kalman filter is supe-
rior to the variational analysis for data assimi-
lation. Therefore, we expect high performance
of forecast assimilation using the Kalman filter.
Especially, the Kalman filter in the nonlinear
system is called the extended Kalman filter,
which we utilize for the forecast assimilation
experiments in this study.

A detailed description of the extended Kal-
man filter is provided by Daley (1991) or Bout-
tier and Courtier (1999), so only a brief de-
scription is presented here. For the extended
Kalman filter, a nonlinear forecast model is re-
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quired. Then a vector of a forecast x; at time
i + 1 is predicted, using the nonlinear forecast
model M and a vector of an analysis x, at time
i

xp(i + 1) = M(xa(i)). (2)

At the same time, we have some vectors which
correspond to the observations x, that have the
same dimension as X; and x,. In the forecast
assimilation, x, are calculated as the ensemble
forecast by the same forecast model M rather
than the true observation. Next, new x, is then
obtained using x; and x, by means of the fol-
lowing equation:

Xq (1) = %p(1) + K@) (%, (1) — H(i)xp (i), (3)

where i is observation time, H is a observation
operator, and K is the Kalman gain matrix
given by
K(i) = P ())H" (i) (H()P; ()H (i) + R() ™
(4)
Here, Pr is a forecast error covariance matrix,
R is an observation error covariance matrix,
and H is a tangent linear matrix of the ob-
servational operator H in the vicinity of x;. In
this experiment, the observations are the same
variables in the model, so H and H are equal to

an identity matrix I. Therefore, Eq. (3) and Eq.
(4) are rewritten as

%a(1) = x(1) + KENXo (1) — x7(3)), (5)
K()) = P(Q);(P(), + R() ™. (6)

The observation error covariance matrix R may
be defined by a difference between x, and true
state x; by

R = (x, — %;)(%o — )7, )

where the overbar denotes an expectation
value. The P is predicted for the next time
step using the model, and given by the next two
equations,

Po(i) = (1 - K()Pr(2), (8)
P (i +1) = M()P.()M” (i) + Q(), (9)

where P, is an analysis error covariance ma-
trix, and Eq. (9) indicates the forecast of Py
using the tangent linear model matrix M of the
nonlinear forecast model M with a model error
covariance matrix Q.
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Egs. (2) and (9) are the prediction portion of
the extended Kalman filter, and Eqgs. (5), (6)
and (8) are the analysis portion. If Pr(¢;), R(t),
Q(#;), and x,(#;) are determined at the first step
of the forecast assimilation in Fig. 1, X, can be
routinely calculated for every time step of the
forecast model. Now, the X,(#) is randomly
chosen among the ensemble members. Pr(t:)
is assumed as Pr(t;) = R(t;), because the dis-
tance between the control forecast and the truth
equals the average distance between each en-
semble member and the truth. Furthermore,
we assume a perfect model for M, so @ =0.
Unfortunately, it is impossible to obtain R()
in Eq. (7), because the future of the true value
is unknown to us. Therefore, we consider that
R(t;) is obtained from an ensemble Kalman
filter technique (Evensen 1994; Burgers et al.
1998), which uses an ensemble forecast to esti-
mate R(t;). In the ensemble Kalman filter, the
ensemble covariance matrix R, (i) is used with
the ensemble mean X, for the substitute of x;

R(i) ~ Re(i) = (%o(0) — %) (%o () — ()"
(10)
In the data assimilation, since we cannot know
the truth, R is calculated by the previous X,
and the analysis value instead of x;. Similarly,
since X; is a better estimation of the truth than
the control forecast or ensemble members in
the future state, the R, (i) is considered as the
R(i). Therefore, the assimilated forecast is con-
tinuously calculated by the forecast assimila-
tion system using the ensemble members.

3. Results

First, a true run is integrated using the
Lorenz model with an initial state given
by (x0, y0,20) = (1.508870,—-1.531271, 25.46091)
for time ¢ = 0 to ¢t = 50000.0 with 0.001 time
step. The true run is divided into 5000 sectors
for every At = 10.0 (denoted as 0.0T to 10.0 T).
The examination of the forecast assimilation 1s
carried out for every sector. A control forecast
and 200 members of the ensemble forecast are
integrated from the start point of each sector of
the true run adding Gaussian noise with zero
mean and variance equals to 0.0025. First, the
observation error covariance matrix R at Eq.
(10) is caleulated from the 100 members of the
ensemble forecast. The remaining 100 mem-
bers are utilized for the forecast assimilation.
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Fig. 2. Initial distribution of the true
run, control forecast, ensemble mem-
bers, and the ensemble mean on x ~ ¥
plane at 0.0T. The ensemble members
are normally distributed around the
truth.

Figure 2 shows the initial distribution of the
true run, control forecast, 100 members of the
ensemble forecast, and the ensemble mean on
x — y plane at 0.0 T for an example of a sector.
The average root mean square error (RMSE) of
the control, and each ensemble member against
the true run is 0.05. Nevertheless, the RMSE
of the ensemble mean is nearly equal to zero,
because the distribution of ensemble members
is Gaussian around the true run. As time pro-
ceeds, the ensemble members diverge by the
linear and nonlinear effects of the Lorenz
model, so the RMSE of the ensemble members
exponentially increases, and the unimodal dis-
tribution evolves into a bimodal distribution.
As the first example, we describe one result
of the forecast assimilation on a sector with a
good forecast skill. The forecast assimilation
is started at 3.5T with 0.001 time step, and a
predicted observation is randomly chosen from
the 100 ensemble members. Figure 3 illustrates
forecast distributions of the true run, control
forecast, ensemble members, and the ensemble
mean on x — y plane at 3.5T. The distribution
of the ensemble members describes an arc, and
the true run and the control forecast lie on the
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Fig. 3. Same as Fig. 2, but starting point
of the forecast assimilation at 3.5T. The
distribution of the forecasts describes
an arc.

arc. The ensemble mean, however, is located
apart from the arc.

The first step of the forecast assimilation is
that the randomly chosen ensemble member is
assimilated into the control forecast in Fig. 1.
Figure 4 illustrates trajectories and RMSE of
the truth, control forecast, ensemble mean, and
assimilated forecast on the sector examined. At
the beginning of the forecast assimilation, the
trajectories of all forecasts are near the truth.
The RMSE of the assimilated forecast fluc-
tuates because of the effect of the forecast as-
similation. But it decreases to the error level
lower than the ensemble mean and becomes
stable at 3.6 T. Figure 5 illustrates the early
evolution of the forecast distributions of the
truth, control forecast, ensemble members, the
ensemble mean, and assimilated forecast on
x — y plane. The assimilated forecast is located
in the neighborhood of the ensemble mean, but
slightly closer to the truth. ‘

After time 4.0T in Fig. 4, the distribution
of the predicted observations spreads widely
around the truth, and the control forecast is
apart continuously from the truth. Then, the
fluctuation of the assimilated forecast is in-
creasing for spread observations from Eq. (5)
and reinforcement of the nonlinearity in the
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value of x variable, (b) y variable, (c) z
variable, and (d) RMSE for control fore-
cast, ensemble mean, and assimilated
forecast.

model states from Egs. (2) and (9). Figure 6
plots the time variation of a norm of the Kal-
man gain matrix. The range of the forecast
time is the same as in Fig. 4. When the norm of
the Kalman gain is large, mixing ratio of the
predicted observation into the background is
increasing from Eq. (6). Although in Fig. 4 the
assimilated forecast accumulates the observa-
tions with large error, the trajectory of the as-
similated forecast is close to the truth, and the
RMSE becomes one or two order smaller than
the other forecasts. Figure 7 illustrates contin-
uation of Fig. 5. A unimodal distribution of the
ensemble members at 4.0 T changes to bimodal
at 4.5T. Then, the ensemble mean is seen at
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Fig. 5. Evolution of the forecast distributions of the true run, control forecast, ensemble members,
the ensemble mean, and assimilated forecast on x — y plane.

RMSE for 5000 samples of the control forecast,
ensemble mean, and assimilated forecast. In
this case, it is indicated that the averaged
RMSE of each ensemble member is comparable
to the error level of the control forecast. The
RMSE of all forecasts, except for the assimi-
lated forecast, are exponentially growing at
the early stage, and the error gradually satu-
rates by the nonlinear effect. In this situation,
all forecast assimilations in every sector are
started at 3.5T. The RMSE of the assimilated
forecast, which has the same error as the con-

the center of the two distributions. Therefore,
the RMSE of the ensemble mean is larger
than the assimilated forecast at 4.5T even if
the ensemble mean is located in the neighbor-
hood of the true run and the assimilated fore-
cast at 4.0T. On the other hand, the assimi-
lated forecast that has obtained some true value
from some predicted observations lays on the
true run at 4.5T.

The forecast assimilation experiment is re-
peated for 5000 sectors, to increase the statis-
tical confidence. Figure 8 illustrates averaged
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trol forecast at the starting time of assimila-
tion, decreases below the ensemble mean in a
short time. After 3.8 T, the RMSE of the as-
similated forecast is exponentially increasing
as in the control forecast or ensemble mean.
At 6.0T, the RMSE of the assimilated forecast
exceeds the ensemble mean. When the RMSE
of the control forecast, or ensemble members
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approach to the saturated level, the predicted
observation used by the forecast assimilation
has little positional information of the true
state. Therefore, the error of the assimilated
forecast close to the saturated level grows more
rapidly than the normal forecast.

The effect of the forecast assimilation de-
pends on the distribution of the ensemble mem-
bers. Immediately after the start of the en-
semble forecast, the distribution is similar to
Gaussian for the linear error growth. If the
forecast assimilation starts earlier than 3.5T,
it is expected that the forecast assimilation
searches more accurate value of the truth be-
cause the ensemble members are close to the
normal distribution that is favorable to the
Kalman filter. Likewise, the state of the en-
semble mean is significantly close to the truth
for hyper elliptic distribution. Therefore, it is
necessary to compare the forecast skill of the
assimilated forecast with the ensemble mean
in various starting times of the forecast assimi-
lation.

Figure 9 illustrates the ratio of RMSE of
the assimilated forecast against the ensemble
mean. The abscissa indicates the forecast time
and the ordinate indicates the starting time of
the forecast assimilation. The area where the
assimilated forecast is more skillful than the
ensemble mean is shaded (the ratio is smaller
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Fig. 8. Averaged RMSE for 5000 samples
of the control forecast, ensemble mean,
and assimilated forecast. The forecast
assimilation is started at time 3.5T.

than 1). In this result, the error level of the en-
semble mean as time proceeds is comparable to
RMSE of the ensemble mean in Fig. 8. Simi-
larly, the average error of each ensemble mem-
ber is comparable to RMSE of the control fore-
cast in Fig. 8. From 3.0T to 6.0T forecast time,
the forecast skill of the assimilated forecast is
superior to the ensemble mean irrespective of
the starting time of the forecast assimilation.
The distribution of the ensemble members is
slightly folded by the nonlinear effect, e.g. Fig.
3, so the ensemble mean is detached from the
center of the distribution of the ensemble mem-
bers. The assimilated forecast is, however, in-
ferior before 3.0T, since the ensemble mean is
located near the truth by the assumption of the
error distribution centered around the truth. In
addition, it is inferior after 6.0T, since the en-
semble members have little positional informa-
tion of truth, because of saturated forecast er-
ror of the ensemble members. Nevertheless, the
assimilated forecast has a good performance at
the intermediate, where the nonlinear growth
dominates but is not saturated.

4. Summary and discussion

In this study a new type of ensemble forecast
assimilation technique is developed in order to
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Fig. 9. Ratio of RMSE of the assimilated
forecast to the ensemble mean. The ab-
scissa indicates the forecast time and
the ordinate indicates the starting time
of the forecast assimilation. The area
where the assimilated forecast is more
skillful than the ensemble mean is
shaded (the ratio is smaller than. 1).

improve the forecast skill in the nonlinear dy-
namical system. The forecast assimilation is
an analysis technique in which true value con-
tained in each ensemble forecast is accumu-
lated into a single assimilated forecast such as
a data assimilation. For the experiments, we
used a Lorenz model, and a Kalman filter is
applied for the forecast assimilation.

The experiments are started by calculating
101 members of the ensemble forecast in which
the initial error with Gaussian distribution is
superimposed around the true run; and one of
the members is arbitrarily selected as a control
forecast. The experiments of the forecast as-
similation are repeated 5000 times for different
sectors of the solution trajectory to obtain the
statistical significance of the results. The dis-
tribution of the ensemble members is stretched
by a linear error growth at the beginning of
the forecast. After that, the nonlinear effect be-
comes dominant to distort the distribution. The
forecast assimilation is then started, when the
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errors of the ensemble forecasts have grown to
a certain threshold.

It is demonstrated that the forecast skill of
the assimilated forecast is always superior to
the control forecast. In the range of the small
RMSE of the ensemble forecasts (e.g. 0.0T to
3.0T forecast time in Fig. 9), the skill of the as-
similated forecast is inferior to the ordinary
ensemble mean. Since the distribution of the
ensemble forecasts is similar to the hyper ellip-
soid until the nonlinear effect becomes domi-
nant, the center of the distribution is always
close to the truth. After the distribution is
folded by the nonlinear effect, e.g. Fig. 3, the
ensemble mean is detached from the distribu-
tion of the ensemble members. From 3.0T to
6.0T of the forecast time in Fig. 9, the skill of
the assimilated forecast is superior to the en-
semble mean. After 6.0T forecast time in Fig.
9, the skill of the assimilated forecast is poorer
than the ensemble mean, since the ensemble
members have little positional information of
the truth for saturated forecast errors of the
ensemble members. Nevertheless, the assimi-
lated forecast has a good performance at the
intermediate, where the nonlinear growth dom-
inates but is not saturated.

The reasons for the superior performance
of the assimilated forecast may be explained
by the following characteristics of the Kalman
filer. (1): Immediately after the starting point of
the forecast assimilation, the assimilated fore-
cast searches the true value contained in the
ensemble members because P(0) =R(0) has
been assumed at the beginning. In this range
the Kalman filter can quickly reduce the error
of the assimilated forecast. (2): Then, in the
direction of the error growth of the linearized
Lorenz model, the Kalman filter can quickly
reduce the error because P(i) contains informa-
tion about the unstable direction by its history.
Conversly, near the saturation of the error as
seen in Fig. 9 at time larger than 6.0T, the
Kalman filter rather increases the error by
assimilating ensemble members without infor-
mation about the truth.

Based on the above remarks, let us assume
that the distribution of the ensemble members
has been separated in two groups by the dy-
namical instability. Then the ensemble mean
chooses just the center of the two separated
groups regardless of the stability of the sepa-
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rated trajectories. In contrast, the trajectory of
the assimilated forecast randomly chooses one
of the two groups because the predicted obser-
vation is randomly selected. After the branch
point, we assume that there are two results of
the assimilated forecast: one becomes stable
trajectory, and the other becomes unstable tra-
jectory. In the former (latter) case, the assimi-
lated forecast absorbs relatively less (much)
positional information of the predicted obser-
vations that are included in the two groups.
Repeating the forecast assimilations, the tra-
jectory of the assimilated forecast in the former
(latter) case becomes smooth (fluctuative), and
it is difficult (easy) to shift to the unstable (sta-
ble) trajectory. Therefore, the assimilated fore-
cast tends to move from the unstable to the
stable trajectory. Since the stable trajectory is
one of the most suitable solutions in the en-
semble forecast, the forecast skill becomes su-
perior to the ensemble mean in the nonlinear
regime. _

One point to notice in our examination is that
the Gaussian distribution of the perturbations
has been assumed around the true initial state
for the ensemble members. Therefore, the mean
of the ensemble members knows the true value
at the beginning. After the nonlinear effect of
the forecast error is dominated, the forecast as-
similation searches for the truth better than
the ensemble mean. If the analysis errors and
model errors are cancelled as expected in the
multi-analysis multi-model, the forecast assim-
ilation would be one of the viable approaches to
the medium or extended range forecast.
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Appendix
Forecast assimilation using 3D-var

A detail description of the 3D-var is provided
by Daley (1997) or Kalnay (2002), so only a
brief description is presented in the following.
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The principle of the 3D-var is to avoid the com-
putation of Eq. (6) in the Kalman gain K, by
looking for the analysis as an approximate
solution to the equivalent minimization prob-
lem defined by the cost function J as

J(x) = % ((x - x,) TP (x - xy)
+ (x — %) TR (x - x,)), (11)

where Pr and R are forecast and observation
error covariance matrices, and Xy and X, are
vectors of control forecast and observation. For
the forecast assimilation, the ensemble mem-
ber x; is regarded as the predicted observa-
tion x,. Since an average error of individual
ensemble members from the truth theoretically
equals an error of the control forecast xy, it is
considered that R equals P;. If we use all en-
semble forecasts (n members) for the forecast
assimilation at the same time, the cost function
J is given by

I = ((x —x) TR (x - %))

+ i(x - x;) Py (x - Xf))- (12)
=1

The gradient of J is obtained by differentiating
Eq. (12) with respect to x,

vJ(x) = P7l(x — x7) + ipf-l(x —x;). (13)
i=1

At the minimum of J, the gradient cost function
of Eq. (13) leads to 0. Since Xy is considered as
a zeroth ensemble member of x;, so Eq. (13) is
rewritten by

in’l(x—xi) =0. (14)

i=0
Therefore, we obtain the best analysis x, as

YL (15)

. =
This equation indicates the ensemble mean.
Therefore, the result of the forecast assimila-

tion, using the 3D-var, results in the ensemble
mean of the ensemble members.
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