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ABSTRACT

Three-dimensional normal mode functions are applied to the analysis of the energetics of the general circulation
during the FGGE year. The GFDL FGGE data are used for the computation of both the normal mode energetics
and the standard spectral energetics.

The normal mode energetics of the global circulation are presented in a barotropic and baroclinic decomposition
for the zonal mean and eddy energies for the stationary and transient components of the flow. The energy
generated in the zonal mean baroclinic component is first transformed to the eddy baroclinic component
through the process of atmospheric baroclinic instability. It is then further transformed to eddy and zonal mean
barotropic components by the nonlinear up-scale cascade of kinetic energy. The zonal mean kinetic energy thus
maintains its barotropic structure by the activities of baroclinic waves. The time series of energy variables during
the FGGE Northern Hemisphere winter clearly indicates a sequence of energy transformations from the zonal
baroclinic component via the synoptic-scale baroclinic component, to the planetary-scale barotropic component.

Comparison of the normal mode energetics with the standard spectral energetics in the zonal wavenumber

domain indicates a general consistency of both schemes in the spectral energy transformations.

1. Introduction

Energetics of the atmospheric general circulation has
been investigated with orthogonal projections of the
circulation field onto various basis functions, which
includes spectral energetics schemes using a zonal har-
monic expansion (Saltzman 1957, 1970), a spherical
harmonic expansion in the zonal and meridional di-
rections (Eliasen and Machenhauer 1965), and em-
pirical orthogonal functions in the vertical direction
(Holmstrém 1963). Three-dimensional normal mode
functions (3-D NMFs) introduced by Kasahara and
Puri (1981) are orthonormal functions which can be
used as an expansion basis for the global energetics
analysis (Tanaka 1985). The three-dimensional nor-
mal mode energetics combines the three one-dimen-
sional spectral energetics in domains of zonal wave-
numbers, a meridional index, and a vertical index. The
scheme can diagnose not only the three-dimensional
spectral distribution of energy and energy transfor-
mations but also the energetics characteristics of Rossby
waves and gravity waves and the energy conversion
between the barotropic and baroclinic modes.
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A comparative normal mode energetics diagnosis
was performed for a winter month by Tanaka et al.
(1986) using the First GARP (Global Atmospheric
Research Program ) Global Experiment (FGGE) anal-
ysis datasets prepared by the Geophysical Fluid Dy-
namics Laboratory (GFDL) and the Goddard Labo-
ratory for Atmosphere (GLA). The analysis, however,
only involved a winter month. The extent of analysis
was also limited because of its preliminary nature. It
is desirable then to present the comprehensive normal
mode energy budget for the entire FGGE year with an
expanded analysis scheme. The present analysis in-
cludes the evaluation of energy flow in the normal
mode projection, further decomposition of the energy
budget into the stationary and transient components,
and time series analysis with a focus on the conversion
between baroclinic and barotropic components of dif-
ferent scales.

It should be noted that the assumptions and the spe-
cific computational procedures involved in the normal
mode energetics scheme may cause an inherent bias
in the energetics statistics. For example, the standard
spectral energetics in the zonal wavenumber domain
utilizes the temperature variance for the evaluation of
available potential energy. In the normal mode ener-
getics the perturbation geopotential is expanded in the
vertical structure functions, and the available potential
energy is evaluated by the square sum of the expansion
coefficients. Another example is that the numerical so-
lutions of the vertical structure equation have a prob-
lem of aliasing in the higher order baroclinic modes,
resulting in a misleading profile in the stratosphere and
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above (Sasaki and Chang 1985; Fulton and Schubert
1985; Staniforth et al. 1985). Also, the data projection
onto these functions imposes the boundary condition
of the 3-D NMFs not only for transient waves but also
for steady atmospheric fields which may take arbitrary
boundary structures. Energetics results of the steady
field thus might be affected by the data projection onto
the vertical structure functions. In fact, the contribution
to available potential energy has a large concentration
near the surface, implying a possible distortion in the
rapid change of geopotential field (e.g., Tenenbaum
1976). It is desirable to examine energetics character-
istics of steady and transient atmospheric fields, and
to compare the results with the standard spectral ener-
getics. Physically it is also preferable to examine the
barotropic and baroclinic components of energy vari-
ables of transient fields of motion.

The three-dimensional normal mode energetics can
complement the standard spectral energetics analysis
in the zonal wavenumber domain to produce a com-
prehensive understanding of the general circulation. In
this study, the normal mode energetics of the general
circulation are analyzed for the FGGE year using the
Level IIIb GFDL dataset. Results of the analysis are
summarized, based on the barotropic and baroclinic
decompositions of zonal and eddy energies for the sta-
tionary and transient flows of the circulation. Further,
a time series analysis is presented for the energy com-
ponents and energy transformations to explore non-
linear transformations among the different scales of
baroclinic and barotropic components. Some pertinent
comparisons of the normal mode energetics and the
standard spectral energetics are also made with the
same GFDL database.

2. Data and analysis scheme

This study utilizes the GFDL IIIb dataset of the
FGGE observations (twice daily at 0000 and 1200
UTC), for a one-year period from 1 December 1978
through 30 November 1979 (see Miyakoda et al. 1982;
Ploshay et al. 1983). The original GFDL analysis data
at 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100,
50 and 30 mb on a 1.875° by 1.875° grid were inter-
polated to a 4° by 5° grid from 90°S to 90°N and from
0°E to 355°E, as described by Kung and Tanaka
(1983).

The analysis scheme of the normal mode energetics
has been detailed in Tanaka (1985) and Tanaka et al.
(1986). The description of the scheme is summarized
in the Appendix with some modifications to the original
scheme. First, the vertical structure functions and the
Hough harmonics are computed, using a reference state
of the global mean temperature averaged for the FGGE
year (see Table 1 of Tanaka 1985). Sets of vertical and
Fourier-Hough transforms are then constructed based
on the orthonormality of the eigenfunctions (refer to
Kasahara and Puri 1981). For the computation of the
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Hough functions, 60 Gaussian latitudes were chosen.
The energetics terms computed at every 4° of latitude
are interpolated to the Gaussian latitudes after the ver-
tical transform has been performed.

Applied to a sequence of vertical and Fourier-Hough
transforms with proper scaling factors, the spectral
representation of the primitive equations becomes a
system of ordinary, dimensionless differential equa-
tions:

= Wym + 0nimWhim = bnlm + Copm + dnlmr 1)

dt

where the complex variables W um, Bntm, Cnim, and dnim
represent the vertical and Fourier-Hough transforms
of the variables: w,,,, for the horizontal wind and per-
turbation geopotential, b, for the nonlinear terms due
to the wind field, ¢, for the nonlinear terms due to
the mass field, and d,., for the diabatic processes in-
cluding friction (see Tanaka 1985). The symbol i is
the imaginary unit, and o, is the dimensionless ei-
genfrequency obtained as a solution of Laplace’s tidal
equation, with a basic state at rest. The subscripts 7,
/, and m are for the zonal wavenumber, meridional
index, and vertical index, respectively. (See Table |
for symbols, definitions, and variables in this text.) The
vertical modes m = 0 and m = 1-11 are regarded as
the barotropic (external) and baroclinic (internal)
modes, respectively (see Tanaka et al. 1986, for their
structures). The zonal wavenumber has been truncated
at n = 15. We have used a total of 50 meridional in-
dices, including 26 Rossby modes and 12 eastward and
12 westward gravity modes.

The corresponding energy balance equation in the
dimensional form is given by

d
— Enym =

dt Bnlm + Cnlm + Dnlm’ (2)

where

|
Euim = Epshm I wnlml 2, 3)

B = Qps Fom( W Dnim + Wotmb im), ©)
Chim = Ops hm( WhimCnim + Wpim€ m ), &)
Dy = sthm( Wiim dnlm + Wnlmdr‘:lm) . (6)

The dimensional factors A,,, ?, and p; are respectively
the equivalent height, angular speed of earth’s rotation,
and surface pressure which is treated as a constant
(1013 mb). The asterisk denotes the complex conjugate
here. According to Eq. (2), the time change of the total
energy E,.. defined by Eq. (3) is caused by the non-
linear mode-mode interaction among kinetic energy
B,um, available potential energy Cym, and a net energy
source and sink due to the diabatic process Dy, which
includes dissipation. The kinetic energy K., and the
available potential energy P, of each mode can be
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TABLE 1. Symbols, definitions, and variables.

Zonal wavenumber

Meridional index

Vertical index

Kinetic energy

Available potential energy

Total energy: E= K+ P

Wave-wave interaction of K

Wave-mean interaction of X

Wave-wave interaction of P

Mean-mean interaction of P

Nonlinear interaction of K: B(n) = L{n) — M(n)

Nonulinear interaction of P; C(n) = S(n) + R(n)

Net energy source and sink due to diabatic process
including frictional dissipation

Reference state temperature

Temperature deviation from T

Geopotential deviation from its reference state

Surface pressure of the reference state

Horizontal wind velocity

Vertical p-velocity (=dp/dt)

Earth’s gravity

Earth’s radius

Angular speed of earth’s rotation

Equivalent height

Time

Dimensionless time scaled by 2Q

Horizontal del-operator

dz/dt Vertical velocity

SIS LR

e N

QoINS TDRNR E

by Kronecker delta

i Imaginary unit

J( )dS Integral over the whole isobaric surface

> Transpose

() Complex conjugate

( ntm A component of indices n, {, m

T im Dimensionless eigenfrequency of Laplace’s tidal
equation

Woim Expansion coefficient of dependent variable vector

buten Expansion coefficient of nonlinear term vector due to
wind field

Crim Expansion coefficient of nonlinear term vector due to
mass field

dum Expansion coefficient of diabatic process including
friction

(0,03} Time dependent arbitrary meteorological variable

( s Contribution from stationary component

( s Contribution from annual cycle

( )r Contribution from transient component excluding an

annual cycle

retrieved by E,,, using the norm ratio of each Hough
vector function. The diabatic process D,,,, is evaluated
as the residual of Eq. (2).

By means of the inverse transforms of the vertical
and Fourier-Hough transforms, it can be shown that

Z ? E Bnlm
9
Z 2’ 2 Cnlm

m

IJ'J"’-' 0Pw
=— —V-PV——dpdS=0. (8
SgJs Jo ap b ®)

"D
=Lff _V.KV—-a—K-(ﬂdpdS=0, OB
SgJds Jo D
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We have assumed in this study that the surface wind
vanishes at the lower boundary of the atmosphere in
order to obtain an energetically consistent set of equa-
tions (see Appendix ). The right-hand sides of Eqs. (7)
and (8) become zero under this assumption and a scal-
ing of Tp > T even for the nonzero w at the lower
boundary.

Results of the energetics analysis presented in the
subsequent sections are for the summations of Rossby
and gravity modes unless otherwise stated. All of the
energetics analyses were carried out on a global basis,
except for the winter time series analysis, which was
done with only the Northern Hemisphere data. The
standard spectral energetics in the zonal wavenumber
domain, which were compared with the normal mode
energetics, were computed in accordance with the
analysis scheme by Kung and Tanaka (1983) for the
FGGE data.

3. Gross energy budget

The annual mean spectral distributions of kinetic
energy and available potential energy as functions of
the zonal wavenumber during the FGGE year are il-
lustrated in Fig. 1. The results of the normal mode
energetics (solid lines) are compared to those computed
by the standard spectral energetics during the same
period by Kung (1986) (dashed lines). The normal
mode scheme yields smaller available potential energy

- =« = Kung {1986)

Jm?

104 |

10° |

Wavenumber (n}

FIG. 1. Spectral distributions of kinetic energy and available po-
tential energy in the wavenumber domain during the FGGE year by
the normal mode scheme (solid line) and the standard spectral scheme
after Kung (1986) (dashed line).
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P(n) for all wavenumbers than that of the standard
spectral scheme. However, the normal mode energetics
produces a greater kinetic energy for the long waves
and a lesser kinetic energy for the short waves than the
standard spectral scheme. The available potential en-
ergy was evaluated using a relation in the vertical
structure equation, which has a second order derivative
(see Kasahara and Puri 1981). The numerically solved
vertical structure functions are known to have a prob-
lem of aliasing for the baroclinic modes, in which the
available potential energy resides (e.g., Sasaki and
Chang 1985; Staniforth et al. 1985). It has been sug-
gested that the data projection onto the higher order
vertical indices would lead to a misrepresentation in
the energy level, even though the functions form an
orthonormal basis in the vertical. Thus, the systematic
bias of energy levels in the present scheme may have
resulted partly from such an aliasing in the numerical
vertical structure functions and partly from the effect
of the lower boundary condition as discussed in the
Introduction.

Despite the aforementioned discrepancy in the en-
ergy level, the present normal mode scheme has a spe-
cific advantage in decomposing the energy into Rossby
and gravity modes. Figure 2 illustrates the annual mean
spectral distribution of the total energy in the wave-

10° |
Rossby Mode

Jm?

10}

Eastward Gravity Mode

Wavenumber {n)

FIG. 2. Zonal energy spectra E(n) = K(n) + P(n) for the Rossby
mode, and eastward and westward gravity modes during the FGGE
year.
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number domain for the Rossby mode and the eastward
and westward gravity modes. The spectral distributions
indicate a higher energy level of the eastward gravity
mode for the long waves, especially for » = 1. The
energy level of the gravity modes is very sensitive to
the atmospheric ageostrophic components, and thus
may be influenced by the assimilation process applied
to the dataset. The results shown in Fig. 2 may provide
baseline information for future diagnosis of analysis
data or model simulations.

In Fig. 3 the kinetic energy distributions for vertical
indices m = 0-3 are plotted as functions of the dimen-
sionless eigenfrequency (normalized by 292), which is
associated with each Hough harmonic. The eigenfre-
quency on the abscissa may be understood as the three-
dimensional wave scale index. It should be noted that
it differs from the wave frequency in space-time spectra
as analyzed in Hayashi and Golder (1983). The left
half of each diagram shows westward gravity modes
and Rossby modes, and the right half shows eastward
gravity modes. The distributions indicate clear kinetic
energy peaks within the Rossby modes for each vertical
index. The slope of the kinetic energy spectrum in the
low-frequency Rossby modes approximately obeys the
third power of the frequency. As was found in Tanaka
(1985), the kinetic energy spectrum of the largest-scale
Rossby mode merges with that of the largest-scale
gravity mode, both for the baroclinic and barotropic
modes. The highest kinetic energy levels in the right
half of the diagram are marked by the Kelvin mode of
n = 1 for the baroclinic indices. The energy level of
the Kelvin mode for m = 3 is as large as the peak
energy level in the Rossby modes. The higher energy
levels of the eastward propagating gravity mode in
planetary waves, as shown in Fig. 2, are clearly attrib-
utable to the internal Kelvin waves.

The results of the normal mode energetics during
the FGGE year are summarized in Table 2 by the
barotropic (m = 0) and baroclinic (2 = 1-10) decom-
position for zonal (n = 0) and eddy (n = 1-15) com-
ponents. The annual mean budget (YEAR) is listed
together with three month averages during December
to February (DJF), March to May (MAM), June to
August (JJA), and September to November (SON).
The baroclinic energy is defined here by the summation
of m = 1 to 10. The highest vertical index m = 11 is
excluded to avoid the uncertainty of aliasing and noises.
Although the summations of B, C, and D over all in-
dices n, [, and m should ideally be zero, this condition
is not met in the energy budget in Table 2. The dis-
crepancy is caused by the assumptions that were dis-
cussed in the introduction, and by the truncations at
n = 15 and m = 10. However, the energy budget is
believed to correctly present the modal characteristics
of the general circulation.

Zonal kinetic energy is characterized by its large
barotropic component, whereas the zonal eddies con-
tain a comparable amount of barotropic and baroclinic
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FIG. 3. Kinetic energy spectra in the dimensionless frequency domain (normalized by 2Q) for vertical indices m = 0-3. The energy of
the Rossby modes and gravity modes are plotted for wavenumber # = 1-6. Note that the frequency on the abscissa is the eigenfrequency
of Laplace’s tidal equation rather than the analyzed wave frequency in the space~time spectra.
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TABLE 2. Mean normal mode energy budget during the FGGE
year (YEAR), and three-month averages for December to February
(DJF), March to May (MAM), June to August (JJA), and September
to November (SON). Energies (K, P, and E) in unit of 10°J m™* and
energy transformations (B, C, and D) in W m™* are listed for the
zonal (# = 0) and eddy (n = 1-15) components by the barotropic
(m = 0) and baroclinic (m = 1-10) decomposition.

n m K P E B C D
YEAR
0 0 6.9 2.4 9.3 039 -0.16 -0.23
0 1-10 3.8 406 445 007 —1.47 1.54
1-15 0 33 0.2 3.3 0.32 0.10 -0.42
1-15 1-10 3.9 2.8 6.7 =075 1.46. =0:71
DIJF
0 0 6.5 1.9 8.4 047 =020 -027
0 1-10 4.1 442 483 -0.06 —1.85 1.97
1-15 0 3.6 0.2 38 0.33 0.10 —0.44
1-15 I-10 43 3.3 7.6 —0.82 1.63 —0.86
MAM
0 0 6.3 2.0 8.3 038 -=0.13 -0.24
0 1-10 3.6 4010 437 =005 =14l 1.32
1-15 0 34 0.2 3.6 0.30 0.10 —0.40
1-15 1-10 3.7 2.6 6.3 —0.73 1.44 =073
JIA
0 0 7.6 3.5. 1Ll 033 —0.12 —-0I18
0 1-10 3.7 383 420 -0.14 -1.07 1.29
1-15 0 2.9 0.2 3.0 0.30 0.08 -0.39
1-15 1-10 35 2.4 5.9 -0.59 1.11 —0.54
SON
0 0 7.1 2.4 9.5 039 -0.18 -0.25
0 1-10 39 399 439 -—0.02 -—1.54 1.57
1-15 0 35 0.2 3.7 0.32 0.13 -044
1-15 1-10 4.0 2.8 6.8 —0.88 1.65 —0.73

kinetic energies. Available potential energy is concen-
trated in the zonal baroclinic components. There is a
net energy generation in the zonal baroclinic compo-
nents (n = 0, m = 1-10) by the dominant differential
heating. The nonlinear interactions of available poten-
tial energy C indicate a large negative value in (n = 0,
m = 1-10) and a positive value in (n = 1-15, m = 1-
10), implying the available potential energy transfor-
mation from zonal baroclinic to eddy baroclinic com-
ponents. The nonlinear interactions of kinetic energy
B show a large negative value in (n = 1-15, m = |-
10), and positive values in (n = 1-15, m = 0) and (n
= 0, m = 0). This indicates kinetic energy transfor-
mations from eddy baroclinic to eddy barotropic and
also to zonal barotropic components. The conversion
between kinetic energy and available potential energy
cannot be explicitly shown in this scheme. However,
the t')aro_clinic kinetic energy, which supports the baro-
tropic kl_nctic energy, should be compensated by energy
conversion from eddy available potential energy in the
eddy baroclinic components (n = 1-15, m = 1-10)

Finally, net energy dissipations take place as indicateci
b)_/ negatgve net D values. These results are consistent
W1tl_1 earlier analyses by Wiin-Nielsen (1962) and Sma-
gorinsky (1963) concerning the baroclinic and baro-
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tropic conversions. In his formulation of mean-shear
flow interaction, Wiin-Nielsen assumed w = 0 at the
lower surface in order to suppress the available potential
energy transformation into eddy barotropic compo-
nents. Although w is not zero at the surface in the nor-
mal mode energetics, the transformation is similarly
suppressed by the assumption of vanishing surface
wind.

There is a significant seasonal difference of the global
energy variables as shown in Table 2, which is consis-
tent with previous findings by Kung and Tanaka
(1983). The comparison of energetics variables between
the seasons indicates that the small zonal barotropic
energy in DJF increases to a maximum in JJA and the
large zonal baroclinic energy in DJF decreases to a
minimum in JJA. Zonal eddy energy and energy in-
teractions show enhanced eddy activities in DJF as
compared to JJA. In view of Kung and Tanaka’s re-
sults, the seasonal differences of the global energy are
caused by the larger seasonal contrast in the Northern
Hemisphere rather than in the Southern Hemisphere.
Despite the large seasonal variation, the signs of energy
interactions and diabatic processes are consistent
throughout the seasons.

An overall flow of normal mode energy during the
FGGE year is shown in a box diagram in Fig. 4. The
four boxes represent the energy levels of baroclinic
(upper boxes) and barotropic (lower boxes) compo-
nents of zonal (left boxes ) and eddy (right boxes) ener-
gies. For the barotropic energy the kinetic energy of
the vertical mean flow dominates. The kinetic energy
of the vertical shear flow is generally associated with
the existence of available potential energy through the
thermal wind relation, with their sums seen as the total
baroclinic energy. The flow pattern of normal mode
energy, as shown in Fig. 4, is the net energy input and
output of processes B, C and D as shown in the annual
mean budget in Table 2. There is a net generation of
zonal baroclinic energy by the differential heating, with
this energy being the initial energy input into the sys-
tem. The zonal baroclinic energy is first transformed
into eddy baroclinic energy through transformation of
zonal available potential energy to eddy available po-
tential energy, which is further converted into eddy
kinetic energy of the vertical shear flow within the box
for eddy baroclinic energy. The eddy baroclinic energy
is then transformed into eddy and zonal barotropic
energies by the nonlinear interactions of kinetic energy.
Finally, the net energy dissipations take place with
zonal and eddy barotropic components and with the
eddy baroclinic components.

In constructing the diagram in Fig. 4, B of the zonal
baroclinic component and C of the barotropic com-
ponents are not considered since their magnitude is
small and th_eir cliirection is uncertain. Thus, the energy
glf::’ézh&\:nnﬁ Fig. 4 is the basic ﬂ.ow pattern that dom-

. lormal mode energetics, rather than a de-
tailed description of the transformation.
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1.5 0.7
44.5 6.7
Zonal P-40.6 1.5 P-=2.8 Eddy
Baroclinic K= 3.8 K=3.9 Baroclinic
n=90 ,m=1-10 n=1-15, m=1-10

0.4
0.3
9.3 3.5
Zonal P-2.4 P-=0.2 Eddy
Barotropic K-6.9 K=3.3 Barotropic
n=0 , m=0 n=1-1s, m=0
0.2 0.4

FIG. 4. Energy flow diagram by the barotropic and baroclinic decomposition of zonal
energy and eddy energy. Energies are in units of 10% J m 2 and transformations in W
m~2 Energy flows of available potential energy are distinguished by double arrows,

and those of kinetic energy by single arrows.

4. Stationary and transient components

A complex-valued coefficient of an arbitrary mete-
orological field may be partitioned into

Q(1) = Qs + Qu(0) + Qr(2), 9

where Qg is the time mean (stationary component),
Q,(t) the annual variation (annual cycle), and Qr(¢)
the transient component. After subtracting Qs from
Q(¢), the annual cycle is obtained as the first harmonic
of the one-year time series. The residual Qr(¢) of Eq.
(9)is then considered as the transient component. The
annual mean energies, given by the quadratic term of
Q(1), thus can be partitioned into contributions from
the terms on the right-hand side of the equation. The
resulting components of the energy levels in the normal
mode and standard spectral energetics are compared
in Table 3 for zonal (n = 0) and eddy (n = 1-15)
components. The values of the normal mode energies
are the summation of m = 0 to 10. The smaller P and
larger K found in the normal mode energetics as com-
pared to those in the standard spectral energetics are a
common feature for the zonal and eddy components,
and this is also true for the stationary, annual and tran-
sient components. The total energy £ = K + P is in
close agreement in both schemes, and about 90% of
the zonal energy resides in the stationary component,
whereas about 75% of the eddy energy resides in the
transient component for both schemes. The stationary

and transient energies seem to be projected reasonably
onto the basis functions.

Table 4 lists the normal mode energies and trans-
formations in the wavenumber and vertical index do-
mains during the FGGE year partitioned into contri-
butions from stationary components, annual varia-
tions, and transient components. For available
potential energy P, and consequently for the total en-
ergy E, the largest value is found in the stationary part
of the zonal baroclinic component. For kinetic energy,
however, large values of K are found in the stationary
barotropic and baroclinic parts of the zonal mean
component, and in the transient barotropic and baro-
clinic parts of the zonal eddy component.

The major source of kinetic energy for nonlinear
interactions is found in the eddy baroclinic component
of the transient motion as indicated by the large neg-
ative B value. The kinetic energy is transferred into
the eddy barotropic component of the transient motion
and the zonal mean barotropic component of the sta-
tionary motion, as indicated by the large positive val-
ues. Contrary to the kinetic energy, the nonlinear in-
teraction C supplies available potential energy mainly
from the source (the zonal mean baroclinic component
of the stationary motion) to the eddy baroclinic com-
ponent of the transient motion. Thus, the gain of avail-
able potential energy in the eddy baroclinic transient
motion supports the source of nonlinear kinetic energy
transfer in this component of the circulation. The net
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TasLE 3. Kinetic energy K, available potential energy P, and total
energy E (=K + P) for the zonal (n = 0) and eddy (n = 1-15)
components for the normal mode and standard spectral energetics.
The annual mean energy, in unit of 10° J m™? is partitioned into
contributions from stationary fields, annual variations, and transient
fields.

Normal mode energies Standard spectral

energies
n K P E K P E
Stationary Component
0 9.2 377 46.9 6.3 424 48.7
1-15 0.8 0.5 1.4 0.6 1.1 1.7
Annual Variation
0 1.1 5.1 6.2 08 5.6 6.4
I-15 0.5 03 0.9 0.3 0.8 i1
Transient Component
0 04 0.3 0.7 03 04 0.7
1-15 5.8 2.1 7.8 52 33 8.4

diabatic process D represents an energy source in the
zonal mean baroclinic component of the stationary
motion, while it also represents energy sinks in both
the zonal mean barotropic component of the stationary
motion and the eddy barotropic and baroclinic com-
ponents of the transient motion. Such a net energy
input into the general circulation should reflect, for the
most part, a generation of available potential energy

TABLE 4. Stationary components, annual variations, and transient
components of the annual mean normal mode energy budget during
the FGGE year (see Table 2). Energy (K, P, and E) in unit of 10° J
m~2 and energy transformations (B, C, and D) in W m™2 are listed
for the zonal (n = 0) and eddy (n = [-15) components by the
barotropic (m = 0) and baroclinic (m = 1-10) decomposition.

n m K p E B C D

Stationary Component

0 0 6.1 1.9 8.0 036 -0.15 -0.21
0 1-10 3.1 358 389 -003 -137 1.40
1-15 0 0.3 0.0 04 ~0.01 0.01 0.00
1-15  1-10 05 0.5 10 -0.11 0.12  —0.02

Annual Variation

0 0 06 0.5 1.1 001 -0.01 0.00
0 1-10 0.5 4.6 54 -004 —0.15 0.19
1-15 0 0.2 0.0 02 -00l 0.00 0.01
I-15  1-10 03 03 07 -005 0.01 0.04

Transient Component

0 0 0.2 0.0 0.2 0.02 000 -—0.02
0 I-10 02 0.3 05 —0.01 003 —0.02
1-15 0 2.8 0.1 29 0.34 008 —0.42
1-15  1-10 3.0 2.0 49 -0.60 1.3t -0.72
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and a net energy sink by the dissipation of kinetic en-
ergy in those components of the circulation field.

Figure 5 compares the spectral distributions of en-
ergy for the transient component of the motion Erand
the sum of Egand E,, i.e., the energies associated with
the stationary component and annual variation of the
motion, respectively. The same spectral distributions
obtained by the standard spectral energetics are also
shown as dashed lines for comparison. The two ener-
getics schemes indicate similar spectral distributionsin
the zonal wavenumber domain, except for a bias to-
ward lower energy levels in the normal mode scheme
as was mentioned above. The energy level of E+1s one
order larger than that of (Es + E,) for wavenumbers
greater than 5, indicating the dominance of transient
waves for synoptic-scale circulation.

The components of the individual vertical indices
from m = 0 to § in the transient kinetic energy Ky and
transient available potential energy Pr are presented
in Fig. 6 as functions of the zonal wavenumber. The
results show the dominant barotropic kinetic energy
(m = 0) for all zonal wavenumbers. The baroclinic
index m = 4 provides the largest contribution to Pr.
The first internal index m = 1 indicates relatively high
energy levels at wavenumbers 1 and 2 of K7, reflecting

109 |

Jm2

10t |

w0}

Wavenumber (n)

FI1G. 5. Energy spectra in the zonal wavenumber domain for con-
tributions from the steady component, plus annual variation of the
motion (Es + E,) and transient motion E7. The normal mode ener-
getics are solid lines, and the standard spectral energetics are dashed
lines.
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FIG. 6. Spectral distribution of transient kinetic energy Ky and transient available potential energy Prin the zonal
wavenumber domain for contributions from the individual vertical indices m = 0 to 5.

the occasional amplification and vertical propagation
into the stratosphere.

The kinetic energy interaction B corresponds to (L
— M) in the standard spectral energetics scheme (see
Kung and Tanaka 1983; Saltzman 1970), where L is
the wave-wave interaction and M the wave-mean in-
teraction of kinetic energy in the zonal wavenumber
domain. Likewise, the available potential energy in-
teraction C is equivalent to (S + R) in the standard
spectral scheme, where S and R are the wave-wave
and mean-wave interactions of available potential en-
ergy, respectively. The spectral distributions of B and
C are compared in Fig. 7 with those of (L — M) and
(S + R) (shown as dashed lines), computed from the
same GFDL dataset by Kung (1986). As seen in the
figure, the energy interactions in the two energetics
schemes show nearly identical spectral distributions.
The positive values of C and (S + R) at all wavenum-
bers indicate the transformation of zonal mean avail-
able potential energy to eddy available potential energy,
whereas the negative values of B and (L — M) show
the transformation of eddy kinetic energy to the zonal
mean component. As was discussed with Table 4, most
of these eddy energy transformations are associated
with the transient motion of the general circulation.
In Fig. 7 the spectral distributions of the kinetic energy

transformation due to the transient motion are pre-
sented for individual vertical indices of m = 0-5. It is
clearly shown that the kinetic energy source (indicated
by a negative By value) is in the baroclinic components
to support the supply of kinetic energy, the largest of
which is at m = 4, centered at the wavenumber 1 = 6.
In contrast, the barotropic component shows positive
By values, supporting the sink of kinetic energy through
dissipation (see Table 4). With the results in Fig. 7
and Table 4, there should be a net up-scale energy cas-
cade from baroclinic components of synoptic waves to
the barotropic components of long waves and the zonal
mean. The same spectral distributions are illustrated
in Fig. 7 for the available potential energy transfor-
mations for the transient motion Cr. A large positive
Cris seen in m = 4, centered at n = 6, implying that
the largest supply of available potential energy is in this
range. This energy transformation can be regarded as
a characteristic of the atmospheric baroclinic instability
(Charney 1947), by which the synoptic waves gain en-
ergy from the zonal available potential energy. As
mentioned in the preceding section, the baroclinic
conversion (that reaches its maximum at the largest
baroclinic instability) relating the available potential
energy and kinetic energy cannot be analyzed explicitly
in the present normal mode scheme. It is a part of the
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~-~- Kung (1986)

1} wavenumber

By (Transient)

102 wm?

102 wm?

2L wavenumbes (n}

FIG. 7. Spectral distributions of nonlinear energy transformations
in the zonal wavenumber domain in the normal mode scheme (solid
lines) and the standard spectral energetics scheme after Kung (1986)
(dashed lines). Also, transient parts of nonlinear energy transfor-
mations By and Cy are partitioned in the contributions from the
individual vertical indices m = 0 to 5.

residual processes which appears as a compensation of
the negative B with the positive Cr in the baroclinic
components. This result appears reasonable, and agrees
with existing studies (e.g., Smagorinsky 1963; Wiin-
Nielsen 1962).

5. A winter time series analysis

The box diagram in Fig. 4 only provides information
about net energy transformations. In order to trace the
paths of energy transformations, time series analyses
of normal mode energy and energy transformations
are presented for the FGGE winter. Figure 8 illustrates
the temporal variations of barotropic (m = 0) and
baroclinic (m = 3-10) energies for zonal mean motion
(n = 0), ultralong waves (n = 1-2), and synoptic waves
(n = 3-15) over the Northern Hemisphere during the
FGGE winter. The energetics variables of barotropic
and baroclinic components are evaluated using the
vertical and Fourier transforms of variables over the
hemisphere without the Hough transform. A three-day
running mean is applied to the results. The vertical
indices m = 1 and 2 are excluded from the computation
of baroclinic energy to eliminate the influence of
stratospheric variations. It is shown in Tanaka et al.
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(1986) that, resulting from the occasional vertical
propagation of planetary waves, the variation of m
= 1 is distinctly different from other vertical indices.

The time variation of zonal baroclinic energy (n
=0, m = 3-10) indicates clear energy peaks on 16 and
28 December and 9 January superimposed on the sea-
sonal trends. As is expected from Fig. 4, subsequent
increases in the baroclinic energy of synoptic waves
can be seen in the time series (n = 3-15, m = 3-10)
through a process of atmospheric baroclinic instability.
The time lag is about 5 days. Although not shown in
the figure, the time variation of synoptic-scale barotro-
pic energy (n = 3-15, m = 0) is almost in phase with
its baroclinic energy variation, implying that the insta-
bility process excites both of the barotropic and baro-
clinic energies in synoptic eddies. The barotropic energy
of ultralong waves (n = 1-2, m = 0) increases 3 days
later through the wave-wave interaction of kinetic en-
ergy. Finally, the baroclinic energy of planetary waves
increases after 3 days following its barotropic energy
peaks. We should note that the zonal barotropic energy
(n = 0, m = 0) remains almost constant through the
entire period.

109 m?
N
1
b
-
b

1 | 1 | 1 | | 1 l L1
10 20 30 10 20 30
Dec 1978 Jan 1979

FiG. 8. Time change of barotropic (m = 0) and baroclinic (m
= 3-10) energies for zonal mean motion (7 = 0), ultralong waves
(n = 1-2), and synoptic waves (n = 3-15) over the Northern Hemi-
sphere from 10 December 1978 through 31 January 1979. Appear-
ances of typical Rex blockings (after Kung and Baker 1986) are
marked by arrows over the time axis.
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FIG. 9. Time change of kinetic energy transformations B and avail-
able potential energy transformations C for the corresponding energy
terms in Fig. 8. Appearances of typical blockings after Kung and
Baker (1986) are marked by the arrows at the top of the diagram.

Time changes of kinetic energy transformation B
and available potential energy transformation C are
illustrated in Fig. 9 for the energy components exam-
ined above. The values are a 3-day running mean of
the original time series computed over the Northern
Hemisphere. The transformation C clearly indicates
the process of atmospheric baroclinic instability from
zonal to synoptic-scale baroclinic energy (lower ar-
rows). The time variation in Fig. 8 is consistent with
the time variation of C. Baroclinic conversion of avail-
able potential energy to kinetic energy, which is de-
scribed by the positive C and negative B in synoptic
waves, shows clear links with each other (middle ar-
rows). When the baroclinic waves decay, the up-scale
kinetic energy cascade occurs from the synoptic waves
to barotropic component of ultra-long waves (upper
arrows). The time series as shown in Fig. 9 are con-
sistent with the sequence of energy flows from zonal
baroclinic components, via synoptic-scale baroclinic
waves, to the barotropic components of ultra-long
waves as summarized in Figs. 4 and 7.

It is interesting to note here that the up-scale kinetic
energy cascade from synoptic waves to ultra-long waves
supports the major energy source of the Atlantic
blocking around December 25 (Hansen and Chen
1982) and Pacific blocking around January 9 (Kung
and Baker 1986) (see the arrows above the time axis
in Figs. 8 and 9). The present time series analysis shows
that such an up-scale kinetic energy cascade is accom-
panied by energy transformations from baroclinic to
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barotropic components. Since the blocking phenom-
enon is often characterized by its barotropic structure,
the barotropic and baroclinic decomposition of normal
mode energetics in this study may provide additional
information in the study of blocking phenomena.

6. Concluding remarks

The energetics characteristics of the global atmo-
spheric circulation during the FGGE year are examined
using the three-dimensional normal mode expansions,
and are summarized in the barotropic and baroclinic
components of the stationary and transient flows of
the general circulation.

There is a net energy generation by the differential
heating in the zonal baroclinic energy. The zonal baro-
clinic energy is transformed into eddy baroclinic energy
by a process of atmospheric baroclinic instability. After
the conversion of available potential energy to kinetic
energy in the baroclinic components of the synoptic-
scale waves, the synoptic-scale baroclinic energy is
transformed into the barotropic energy of the planetary
waves by way of the up-scale wave-wave interactions
of kinetic energy. Similarly, the eddy baroclinic energy
is transformed into zonal barotropic energy. The zonal
mean kinetic energy thus maintains its barotropic
structure by the activity of baroclinic waves. Although
the seasonal variability of the global energetics results
is noticeable, the signs of energy transformations are
consistent throughout the year. The analysis also in-
dicates that the available potential energy is trans-
formed from the stationary baroclinic part to the tran-
sient baroclinic part, whereas the kinetic energy is
transformed from transient baroclinic parts to the sta-
tionary barotropic part.

Time series analysis of the Northern Hemisphere
winter energetics variables supports the above results,
exhibiting a sequence of energy transformations from
the zonal baroclinic components, via synoptic-scale
baroclinic components, to planetary-scale barotropic
components.

A comparison of the energetics in the normal mode
and standard spectral schemes indicates that the non-
linear energy transformations in these two schemes are
similar. Thus, the normal mode energetics diagnosis
may supplement the standard spectral energetics in the
zonal wavenumber domain with specific energetics in-
formation that is not possible in the standard scheme.
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APPENDIX
Description of Normal Mode Energetics Scheme

A system of primitive equations in a pressure co-
ordinate may be reduced to three prognostic equations
of horizontal motions and thermodynamics with three
dependent variables (u, v, ¢). Using a matrix notation,
these primitive equations (Tanaka 1985) may be writ-
ten in a compact form:

a
M—W+LW=B+C+D, (Al)
where
W= (u,v, )7, (A2)
o ap2d
= I, 1, — , A
m dlag( , 1 apR'yép) (A3)
[ . 1o )
0 —2Q sinf 7 0S8N
L=|2Qsind O 19 (Ad)
s adb ’
10 18( ) cosf
La cosfor a cosfab
-V Vu—w%+wu
dp
]
B- | -v.vo-o 22 . (a3
ap a
0
0
C= 0 . (A6)
d(p OT)]
—|=|-V.- VT —w—
0p[v( dp
a T
D- [F F2 (@)] . (A7)
ap CpY

Refer to Appendix of Tanaka (1985) and Table 1 for
symbols, definitions, and variables. A scaling of Ty
> T has been introduced in the equation of thermo-
dynamics (see Holton 1975).

The three-dimensional normal mode functions
L. (A, 9, p) are obtained as eigensolutions of the ho-
mogeneous equation (Al) putting zero for the right
hand side (see Kasahara and Puri 1981). They are given
by a tensor product of vertical structure functions and
Hough harmonics. It is known that they form a com-
plete set of expansion basis and satisfy an orthonor-
mality condition under an inner product { , ) as:
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2 "D
<thm Hn'l'm’ = » SJ;’J; H:lm' Hn’l'm’dpdS
$

= O’ Ot Opm (A8)

where the surface pressure p, is treated as a constant
near the earth’s surface.

In order to obtain spectral primitive equations, we
assume in the following that the vectors in (A1) belong
to a subspace spanned by the series of the 3-D NMFs.
A similar assumption is already seen in the nonlinear
normal mode initialization technique which provides
successful initial data for the prediction models:

W(x9 0’ p’ t)

- %m % 2,0 Watnk ) X I\, 6, 5),  (A9)
BOV0.p,0 = §m % éo B )Y T, 0, ),
00,0 = %m % %0 (TN, 6, ),
DO, 0,5, = %w % "%0 D) TN, 0, D),

where the scaling matrices should be defined for each
vertical index as:

X"’I = diag((ghl")llz’ (ghlﬂ)|/25 ghm)a
Y,y = diag(2ghn) ", 20ghn) 2, 20).  (A10)

Taking the inner product of (A1) and Y,, ‘I, and
using (A8), we obtain the three-dimensional spectral
primitive equations of (1) in the text which are repre-
sented by the dimensionless expansion coefficients in
(A9):

d .
EE' Woim T 10 pmW nim = buim + Coim + dnlm- (All)

The corresponding energy balance equations in the
spectral domain are discussed in (2):

4
dt
For the energy balance equations (2) with their de-

scriptions (3)-(6), we can show the following identities
by taking the inner product of (A1) and (p,/2g)W:

Euim = Buim + Cuim + Dy (A12)

Ds d ® 2 2 d
LW M=—W) = s =
<28 ’ ot > nz=0 =0 m=0 tE"lm’

=dﬂtsigfsf’1<+ PdpdS

d 1 Ds -, 2
dt Sg sZRTod)S ds, (al3)
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! J‘ J“’«' 0Kw
i ~ VKV - =22 gpds,
Sg Js Jo L dp v
(A15)
ps o oo =] oo
<‘— W, C) T Z Z E Cm‘m;
2g n=0 =0 m=0
l J‘ J"’f dPw
= — —v.pv -2y
Sg Js Jo ap s

1
+—f£5—“’—5(~1/-vr~wﬁz) ds, (A16)
SgJds v ap /.

<§_5 W;D> = 2 Z 2 annn
&

n=0 {=0 m=0

5L weoror
=— F, + vF,
Sgsuu”+u

B o ey L f B:®: 5 4s, (A17)

YCp SgJds v
where the subscript s denotes the variables at P = Pps.
The dimensional factor of p,/2g is multiplied for the
inner products, so that the energy is expressed in a
physical units of J m 2. The first lines in the right hand
sides of (A13)-(A17) are derived by substitutions of
(A9) into the variables, using the orthonormality con-
dition (A8) and the scaling matrices (A10). On the
other hand, the second lines are the direct consequence
of the substitution of (A2)-(A7) into the variables,
The vertical change of the static stability parameter ¥
has been neglected as in Holton (1975).

The assumption of (A9) leads to the next relation
which has been used in (A13):

dps v
=tk
ap Ds TD

@y=0, at p=p. (AIR)

Moreover if we assume that the surface wind vanishes
at the lower boundary:

dz\ T
u,v,—| =0, at p=p,, Al9
( dt )s P =D ( )
we will obtain
aoh T
(p e R 4] W, = 0, at p = P:- (A?_O‘)

ot Ds
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Hence the surface integral in (A13) becomes

d' 1 Ds o A J'

di g Js IRT, #+ 95 = 55 Js $+04dS,  (A21)
which is the surface integral of geopotential flux across
the lower boundary. The available potential energy in
the normal mode energetics involves contributions
from geopotential flux. However, the observed variance
of ¢ is only one percent of K + P in the first term of
(A13), and thus negligible. The second surface integrals
in (A16) and (A17) should vanish in order to relate
the energetics variables with those in the standard
spectral energetics. One may expect the smallness of
¢ s as well as the weak horizontal wind near the surface,
disregarding the geopotential flux across the lower
boundary in (A21) (see Tanaka 1985). On the other
hand, it may be demonstrated that these surface inte-
grals vanish by the assumption (A19) applied to the
equation of thermodynamics with a scaling of To> T,
In this case the summations of B,,, and Cyuim respec-
tively become zero even for the nonzero w at the lower
boundary because Kw = 0 there and Puw is scaled out
compared to ¢w using Ty > T and (A18). We choose
the latter case in our present study because the surface
w is not zero in the normal mode energetics.

We have compared the energetics results for the en-
tire FGGE year assuming (A19) and also replacing
(A19) with a free-slip condition for the horizontal wind.
The results are similar to the present results except for
large contributions of C,,,, at the barotropic compo-
nents for the free-slip case as seen in Tanaka (1985).
The present results, which show rather small contri-
butions of C,,, m = 0, agree with Wiin-Nielsen’s
(1962) results in that the available potential energy
supports the eddy baroclinic kinetic energy. It seems
that the treatment of vanishing surface wind is a rea-
sonable assumption for the normal mode energetics.
Although (A19) is a compromise to avoid the com-
plexity near the surface, the assumption provides an
energetically consistent equation set, and thus it may
be acceptable for the global energetics analysis.
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