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Chapter 1

Tight-Binding Hamiltonian for Electron
Transport

1.1 Nano-scale system

We consider a center nano-scale system (C) sandwiched between a left electrode (L) and a right electrod
(R). We employ a simple tight-binding model, where electrons are spinless fermions having no Coulomb
repulsive interactions and each site has a single orbital. The Hamiltonian of this nano-scale system (C) i

written as R
HEO=— Y tyele;+ > Vicle, (1.1)

1<ij<N 1<i<N

Whereéj and¢; are the creation and annihilation operators of the electron attihsite,¢;; the electron
transfer energy between the nearest neighbariagd;-th sites, andV the number of sites in the nano-scale
system (C)V; describes the on-site energy of thth site, which represents the effects of external electric
fields. We consider that the entire region of the nano-scale system (C) is attached to the gate electrode; thu
all the on-site energies are uniformly varied by applying the gate voltage. Moreover, we apply the external
electric field to the nano-scale system (C), thus changing the on-site energy individually depending on its
position. In this caséy; is written as

Vi =VS+VE (1.2)

whereV'“ is the applied gate voltage, ahiF represents the potential due to the external electric field.

1.2 Electrodes

To study the transport properties of electrons, the edges of the nano-scale system (C) are connected to tt
left (L) and right (R) electrodes, as shown in Fig. 1.1. We assume that both electrodes are represented b
the tight-binding models of one-dimensional lattices having a half-infinity length. Thus, the Hamiltonian of

the electrode is written as A
HE == tfele; + > e, (1.3)
%] 7

where¢ denotes either left (L) or right (R) electrode. When we number the sites in the electrodes, as shown
in Fig. 1.1, the summation runs over the sites with 0 (: > N + 1) for the¢ = L (R) electrode ¢ is the
electron transfer energy between thand;j-th sites in thet electrode, ang? is the chemical potential of
electrode. In this case, the electrode is half filled with electrons because the on-site energies are equal t
the chemical potential.
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Figure 1.1: Schematic pictures of joint system of nano-scale system and half-infinite-length one-
dimensional electrodes. The transfer energies are shown by vasoWe adopt ther andy axes along

and perpendicular to the chain direction.
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Figure 1.2: (a) Schematic energy diagram of joint system in the equilibrium state. (b) Schematic energy
diagram of joint system in the nonequilibrium state. Electrons transfer from the left electrode to the right
electrode passing through the energy levels of the center system, as shown by arrows.

1.3 Connection to Electrode

In order to connect the electrodes to the nano-scale system, the following Hamiltonian is introduced,

W = —t/(&ér + Eéo + ven + el én), (1.4)
wheret’ is an electron transfer energy between the nano-scale system and electrodes. The total Hamiltonia
of the joint system is represented as follows using above Hamiltonians,

H=H+H+HE+W. (1.5)

When the joint system is in the equilibrium state, the electronic states are filled with electrons up to the
spatially uniform chemical potential, as shown in Fig. 1.2(a). In this equilibrium situation, the electrons
can’t flow effectively through the nano-scale system from the left electrode to the right electrode. Thus, we

have to employ the nonequilibrium Green’s function method.



Chapter 2

Schrodinger, Heisenberg & Interaction pictures

2.1 Schiddinger picture

First, we summarize the Sdidinger, Heisenberg and interaction pictures for following Hamiltonian,

H(t) = HE + HE + HE+W(1)

W), (2.2)

whereH, = H- + HC + #E and

W fort >t

2.2
0 fort <t (2:2)

W) = WOt — ty) = {

Each Hamiltonian has been already defined in Egs. (1.1)-(1.4). In thé@cber picture, well-known
equation of motion
Ol (1))

th—s—" = H()[ (1), (2.3)

is satisfied. Herejy(t)) is the state vector. We write the operator in the &lihger picture a®. The
expectation value of the operat@(¢)) in the statg(¢)) is obtained by(:(¢)|O[(t)). Let consider the
time-evolution operatof (¢, ty) in the Schédinger picture, which satisfies the relatign> ¢),

(L)) = S(t, to)|¥(to)). (2.4)

To calculate the nonequilibrium state, we need|th@)). However, we know only the initial equilibrium
state|(ty)). Thus, we must calculate the time-evolution operatar ¢,). Inserting Eq. (2.4) to Eq. (2.3),
we obtain

indS ):?:L(t)ﬁ(t,to). (2.5)

2.2 Heisenberg picture

Using the time-evolution operator, we define the operéxgft) and the state vectdr ;) in the Heisenberg
picture as

A

On(t) = 5T(t, t0)OS(t, 1), (2.6)

and

[Vu) = [¥(to)), (2.7)

4



respectively. The expectation value is obtained as

(O@1)) = (V| O (t)|vm). (2.8)

Using Eq. (2.4), we can confirm that the expectation value in thed8afger picture is equal to that in the
Heisenberg picture. The operatdy; (t) satisfies what we call Heisenberg equation of motion,

~

d(S(t, t0)OS(t, 1))

At o A ~

(t,¢
@S(t to) + St tO)OH(t)S*(t,tO)
t,to

} (2.9)

2.3 Interaction picture

The operator in the interaction pictu@g(t) is related to that in the Sabdinger picture as a unitary trans-
formation

Oy (t) = e H =10 GeiT12t-10). (2.10)

On the other hand, the relation between the interaction picture and the Heisenberg picture satisfies th
following equation, ) A A R
Ou(t) = Si(t, t0)Or(t)S(t, to), (2.11)

where we define the time-evolution operaﬁt)(t, to) in the interaction picture,
Si(t to) = e 1S (1 1), (2.12)

The state vector in the interaction picture is defined as

r(t)) = € FED(e)), (2.13)
because the expectation value has to be the same in any pictures. In other words, the expectation value c:

be written as follows, A R
(O@1) = (Lr®]01()]Yr(t)) = W(#)|O](1)). (2.14)

We note thaty(ty)) = |vr) = [¥1(t)). Using Eq. (2.4), we obtain the time-evolution of the state vector
in the interaction picture,

01(1)) = e@@*w)rw»
= 051, 1) [(t0)

— e - S(t, to) Y1 (to))
= Si(t,to) |11 (to)). (2.15)



For the practical applications it is quite important to derive an explicit formuﬁ‘i(tt to) interms oﬂ/i/f(t).
Let first derive an equation of motion ok (¢, o) from Eqg. (2.5) and Eq. (2.12),

.hagz(t,to)

i = h[ 720 R0 §(¢, ¢ )+el*t to) asgtto)] (2.16)
= —ng G0 S8 1) + 1 (D) S(t, L) (2.17)
— IOV () S (8, o) (2.18)
= () 0 0 § (1 ) (2.19)
= Wi (£)S(t, ). (2.20)

We now convert it to an integral equation by integrating fregnto ¢ and taking the initial condition
S(to, to) =1,

. 1 [t . .
S](t,to) =1+ ﬁ:b/ dTW[(T)S[(T, to). (221)
to
Successive iterative substitution yields
1 1
S (t to) = 1+ % dT1W[( ) 2— - / dT1/ dTgT W](Tl)WI(7_2)]
o 1 —@
= n_ — / dry - - / dr, T WI 1) W[(Tn)] (2.22)

_T Xp[ ﬁ/t drWi(r )}

0

where T is the time-ordering operator. The Hermitian conjuga@,(xf, to) Is written as
R R - i [t R
Si(t,to) = S;(to,t) = Texp [ﬁ / dTWI(T)], (2.23)
t/

whereT represents th&-product operator, which arranges the time-dependent operators in inverse chrono-
logical order.



Chapter 3

Nonequilibrium Green’s Function

3.1 Expectation value in mixed state

So far we have considered the expectation value in the pure state. In order to calculate the expectation valu
in the mixed state, the statistical (density) operatoy is introduced,

=) Palten (D) (¥ (1), (3.1)

where P, is the statistical probability that the system is to be in stafgt)). We can relatg(t) to initial
density operatop(t,) in terms ofS,

= ZPné(tato)‘wn(%»(‘ﬁn(to”y(t»to) S(t, t0)p(to) ST(t, o). (3.2)
By use ofy(t) we can calculate the expectation val@(t)) in the statistical ensemble,

= Z Po(tn ()| O(0) [t (1)) (3.3)
= Tr[ (t)0]
= Tr[S(t, t0)p(to) ST (t, ) O]
= Tr[p(to) 5" (t, t0) OS(t, to)]
= Trp(to) O (1) (3.4)
= (Ou(®))o, (3.5)

where TEXY] = Tr[Y X] is applied and- - - ) = Tr[j(t,) - - - ]. For the practical purpose, it is convenient
to write it in the interaction picture with aid of Eq. (2.11),

(O(t)) = (S}(t, t0)Or(t)Si(t, to))a (3.6)
= ((S;(t,+00) S (400, to))TOL ()51 (¢, t0))o (3.7)
= (S}(to, +00) S (400, ) Or(£) S (t, t0)o, (3.8)

whereS;(t,ty) = S;(t, +00)S;(+00, t,) is used.

3.2 Path-ordered Green'’s function

The equation (3.8) shows that the initial equilibrium state develops to the nonequilibrium state under the
operatorS;(t, ty), and then the physical quanti€y(¢) is observed at time, after that, the state develops
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Figure 3.1: Schematic picture of the time loop. the time loop consists of the chronological-order path (-
branch) and the inverse-chronological-order path (+ branch).

from timet to time+oo. Finally, the state returns from timiexo to timet, under theS”I(to, +00). Thus, the
time-evolution path consists of the chronological-order path (- branch) and the inverse-chronological-order
path (+ branch). This path is called as the time loop. The time loop is shown in Fig. 3.1.

When we calculate Eq. (3.8) concretely, we need to expand the time-evolution opétahyrsising
Eq. (2.22) and Eq. (2.23).

S B N B N o e, [t e
<O(t)>:§;m(ﬁ> M<F> /t dfl---/to dTn/tO dn---/to T g

<T[W1(T{) T WI(TQ)] T[Wl(ﬁ) e 'WI(Tm)@I(t)Do-

We can obtain the statistical averagét)) by solving the Eq. (3.9). For example, when the operétis

the electron number atth site, we se® asélé;. The statistical average- - ), in Eq. (3.9) is resolved into

the products of the pair-correlation functions suc@g )é;;(72))o when we apply the Wick’s theorem

to the statistical average. The pair-correlation functions are classified into four types dependent on whethe
the operator is in the- branch or in the- branch of the time loop. The four nonequilibrium Green functions

are defined as follows,

ih G (ty, ) = (Tlemi(t)el; (), (3.10)
ih G (1, ta) = (Tlemi(t) el (t2)]), (3.11)
ih G (t, t2) = (Cai(t) el (t2)), (3.12)
ih Gt (t,ta) = — (e (t2)emi(th)). (3.13)

Herecy; andéLz. represent the annihilation and creation operators of electrothatite in the Heisenberg
picture, respectively. In the case@fj’ (t1,12), the operatorEHi(tl)(éLj(tQ)) is in s(s’) branch of the time
loop. For convenience, we introduce the retarded Green funoignand the advanced Green functions
Gae
17

ih G (1, )
ih G (1, )

(Cas(t1) )y (82) + Eyy(t2) i (80)0(t1 — 1), (3.14)
—(Cai(tr)cly; (t2) + ey (t2) (1)) 0(ts — t). (3.15)



We readily have the following useful relations:

Gy (t,ta) + GE (t1, 1) = G T (t, ta) + G5 (1, 1), (3.16)
Gii(ti,ta) = Gy (tis ta) — G5 (t, t2), (3.17)

= Gl (t,ta) — GET (1), (3.18)

Gty ta) = G35 (B, ta) — G (1, 1), (3.19)

= G (t,ta) — GHT (1), (3.20)

Gy (t1t2) = —(GJi (2, t1))", (3.21)

G (t,t) = = (G (ta, 1)), (3.22)

G (t, 1) = — (G (t2,12))", (3.23)

G (t, t2) = (GYy(ta, 1)), (3.24)

where(- - - )* means the complex conjugate.

3.3 Dyson equation

Our aim in this section is to obtain the equation of motion for the Green functions. First, we differentiate
Green function:s’;f;' (t1,t2) with respect to the time,,

0
Zha—tl 1__ tl, tg Z tsz tl, tg
—t (tl){diOGlj (t1,t2) + 060Gy (t1,t2)} (3.25)
— U (t){0inGry (t, t2) + 0in1Goy (L, t2)}
+ 0;;0(t1 — ta),

ZFL%G++ tl, tg Z tl, t2
— t'(t){0i0 G} (t1, t2) + 0u Gyt (t, t2) } (3.26)
—t'(t){oinG Ny st t2) + 0 N-HGOJ (t1,t2)}

— 6ij5<t1 — tQ),

0
ih——Gt(ty,12) = ZtmeJ t1, )

oty
3.27
V() {0 G (s 1) + n Gt (11, 2)) (3.27)
=t (t){0inG N (s ) + 0 v 1 Gy (t, 1)},
0
zha_t F (4, 1) = thmeJ t1,ts)
(3.28)

(tl){fsz‘oGu (t1,ta) + 0n Gy (t1,t2)}
— ' (t){0inG N1 (1, t2) + din 1 Gj (t1,t2)



where we have used the Heisenberg equation,

miém(tl) = [Cai(tr), H(t1)]

Oty
=— Z timCrm(t1) — t'(t1) (0i0Cr1 (t1) + dicro(tr))

m

—t'(t1)(dinCan+1(t1) + 0i n1CHN (t1)). (3.29)

Here, we define'(¢) ast’ - (¢t — ty). If the electrodes are connected to the nano-scale systgm-at-oco,
we can suppose that the joint system has reached the steady state at anyimder the steady state, the
Green functiorG(¢,, t2) depend on only time difference betwegrmandt,. We define the Fourier transform,

+oo B
G(ﬂ:%/_ dE G(B)e—, (3.30)

wherer = t; — t,. When the Fourier transform is applied to Egs. (3.25)-(3.28), we obtain the following
equations,

E:umG——

—t {5i0G1j (E) +0aGy; (E)} (3.31)
— t/{diNG]_Vz-l,j (E) + 5@',N+1Gaj_<E)}
+ 52]7

EG++ Z tsz++

—t {5i0G1+j+( ) 4+ 00 Gyt (E)} (3.32)
— t'{5,-NGﬁi1’j(E) + (52-,N+1G6T(E)}
- 5ij>

= timGo (B

— {80GL () + 061Gyt (B)}

- t {61NGN+IJ(E) + 5i,N+1G(;j+(E)}7

EGH( E:um

—1 {5iOG T(E) + 001Gy (E)}
— t"{0inG N1, (B) + 0innGg (E)}
The matrix Green function is defined as

(3.33)
(3.34)

G (E) G;*(E)] . (3.35)

GZ(E) = |: Y_
! G (E) GiT(E)
Using the matrix Green functions, we rewrite the equations (3.31)-(3.34) as follows,

Z{E(;zm - tim }ij Z Zsz"m] = 51‘]‘7_,3, (336)

where
Yim = —t'{8i00m1 + 0:10mo0} — ' {0inOmnt1 + int10mn }s (3.37)
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and
11 0
TZ:|:0 _1]. (3.38)

When the perturbation terit) becomes zero, we rewrite the Green functiGh&) to the nonperturbative
Green functiong(F). Thus, we obtain the following equation from Eq. (3.36),

Z I (E)gmj(E) = 8;7, (3.39)
whereg; ! (E) is defined as
Gim (E) = Edin — (—tim)- (3.40)
Using Eq. (3.40), the equation (3.36) is rewritten as
> G (B)Gij(E) = > S G (E) = 7. (3.41)
Then we use the relationr, = 1, and we have
S G (B)Gj (B) = 1.5 G (E) = 6y, (3.42)
whereX;,, called the matrix self-energy is defined as follows,
Sim = Eﬁm_ ;ZI] e [Eom _gm] . (3.43)
Furthermore, equation (3.42) is rewritten as
> G (E)Gmj(E) = > 7.64%m G (E) = 0357, (3.44)
m Im
where we have used the relati®h,, = >, 6; 3. Inserting Eq. (3.39) to Eq. (3.44), we obtain
> 0 (B){ Gy (B) = 3 gu(B) S Gy (B) b = Zg E)gu(E (3.45)
n lm
Thus we yield the equation of motion for the nonequilibrium Green functions
Gy(E) = g;(E) + Z gi1(E) G (E), (3.46)
where
gij(E) = ig—gg ggigg;] ; (3.48)
S = Egn_ Z;H (3.49)

As you know, Equation (3.16) shows that the four Green functiéhs,, G**, G~*, andG*~, are not
independent each other. Thus, we can transform the four Green functions into the three Green functions
G2, G", andG* with aid of the transform matri®,

P % {_11 1] (3.50)

11



We introduce the Keldysh Green functiai?, which is defined as

GL(E) =G (E)+ G (E). (3.51)

ij
Actually, using Eqg. (3.50), the matrix Green functi@h; is transformed as follows,

PGP -t {G“—G*‘—G G G;j——G;;‘JrG;*—ij}

J
G, +G -G " G++ G, +G +G +GHT
[ &
Gl GE |

where we have used the equations (3.16)-(3.20). The matrix self-energy is transformed similarly,

(3.52)

. L[S 455 5 bt

1 —

P EUP D) |:Z__ E++ E__ —}—E++
(3.53)

1,
Egj = 5(21‘3‘ - Z;;Jr)a (3.54)
a 1 ——
Y= E(Eij — E;;Jr). (3.55)

Using Egs. (3.52) and (3.53), the transformed equation of motioGfprs written as

P'G,;P =P 'g;P+> P 'g,PP'%, PP 'G,,P, (3.56)
Im
y )=l 22 @l e,
ij | — iy 4 i m mi (3.57)
r k T k T k a T k
|:Gij Gij 9i;  Yi5 %: 9a G Xm0 ij ij

As a result, we obtain the following equation of motion for the nonequilibrium Green functions,

G4 (E) = gi(E) + Z 93(E)%,, G (), (3.58)
Gl (B) = gb(B) + Z {gu b0 (E) + gh(B)%0,Gay (B) }. (3.60)

12



We introduce the following Green functions and self-energies of the matrix form,

Ggo G81 U GSN Gg N+1
G%o GclLl T GLfN Gcf N+1
G* = ; : - : : : (3.61)
G(zlvo G(JIVI T G(JZVN G(JIV N+1
(le+1 0 G7v+1 1 N+l N G?v+1 N+1
go 0 0 0
0 911 9in 0
g' = ool e 5 : (3.62)
0 9m INN 0
0 0 0 gz%/+1 N+1
0o -t 0 0
—t 0 0 0
»o — : S : . (3.63)
0 0 0o -t
0 0 -t 0

The matrix forms of the other Green functions and self-energies are similarly introduced, and then we can
rewrite the Dyson equations as follows,

G =g + g"3°G*, (3.64)
G =g +g'¥G", (3.65)
GF =gf 4+ g"S"GF + gh3eGe. (3.66)

13



Chapter 4

Electronic Current Formulation

In this chapter, we express the electronic current using the Green'’s functions.

4.1 Equation of electronic current

We consider the electronic current through th site as shown in Fig. 4.1. We assume that the electronic
current betweer: — 1)-th site and-th site is represented ky. Similarly, the current betweenth site and

(i + 1)-th site is written byl,. We write the continuity equation arouridh site under the tight-binding
approximation,

Fon(®) — () = =220, @y

where the electron chargeiath site is written as
pui(t) = —eel, (1) emi(t). (4.2)

The electronic current betweetth site and(: + 1)-th site is the difference between the flow of electrons
from left to right and right to left. We thus expect the current operataf the form

Lig(t) = Aspr iy (0mi(t) — Asir &y (O)mig (1), (4.3)
The electronic current operatérbetween(i — 1)-th site andi-th site is similarly written,
Ly (t) = Asialyy(Demia (t) — Aivithy  (0emi(t). (4.4)
Using the Heisenberg equation, we find
Opmi(t 1. ~
PE) _ 2 (ps(0). P (1) (@5)
Ly, A ? R
= P ORn(0) = Hia ()il | (4.6)
e R N . .
= {3 tantl (e (t) = D tuchy (Demt) } (4.7)
m !

Figure 4.1: Schematic picture of the system.
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As shown in Fig. 4.1;-th site is connected to only both — 1)-th site and(: + 1)-th site. Therefore, we
have

aﬁHz<t) € R ~ A ~
2o = —{tin1l(02mia (0 + tiialy (Demi (1) “s)
—lim13Chyy (D) em(t) — ti+1,iéLi+1(t)éHi(t)}'
A comparison of equations (4.1) and (4.8) yields
e
Ahn::Zﬁhm- GLQ)
When we assumg,, = t,,;, the electronic current is written as follows
e . . . .
(L(1) = %ti,m@}{m(ﬂcm(ﬂ — &l (O)emin (b)) (4.10)
= ety {G (6 t) — Gt 1)}, (4.11)
where Eq. (3.13) has been used. In a steady state, using the Fourier transform (3.30), we have
et [T —+ -+
1) =5t [ ap{er e - ) (4.12)
e +o00 . N
= ﬁtiﬂ-‘rl /_OO dE{Gi-‘rl,i(E) - Gi,i—i—l(E)}' (4-13)

Here, to obtain Eqg. (4.13) we have used the following relations,

- 1 T a

In case of the joint system shown in Fig. 1.1, the electronic current can be written using the Green'’s func-

tions, as follows,

(1) = ot ” dE{Gk (B) -Gy (E)} (4.15)
2h ) o 10 01 : .
Similarly, we can obtain the electron number density#i site,

() = —e(6iéy) (4.16)

+o0

_ ¢ —

=5 | EGa(E) (4.17)

e +oo
=145 | ECGHE) + Gi(E) + Gy (). (4.18)

4.2 Green’s functions for the isolated systems

In this section, we produce the Green'’s functigi&’) of the isolated electrodes and the nano-scale system.

4.2.1 Green’s functions for the isolated electrodes

We assume that both source and drain electrodes are represented by the tight-binding models of one
dimensional lattices having a half-infinity length as shown in Fig. 4.2(a). The Hamiltonian of an electrode

is written as follows, R
HE == thele;. (4.19)

17<0
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tL
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Figure 4.2: (a) One-dimensional lattices having a half-infinity length under the tight-binding approximation.
(b) Infinite length one-dimensional lattice. (c) Half-infinite-length one-dimensional lattices produced by
removing the electron transfer betweeth site andl-st site.

To produce the half-infinity length one-dimensional lattice, we remove the transfer betvikesite and
1-st site from the infinite length one-dimensional lattice. The situation is shown in Figs. 4.2(b) and 4.2(c).
Therefore, we rewrite the Hamiltonian of the electrode as follows,

HE = HE + HE, (4.20)

where
= thele, (4.21)
HE =+l (eler + éléy). (4.22)

HE represents the Hamiltonian of the infinite length one-dimensional lattice. In the previous chapter, we
have already obtained the Dyson equations (3.58)-(3.60) from the Hamiltonian (2.1). In the similar way
with this process, we obtain the following Dyson equations from the Hamiltonian (4.20),

gzg( - glj + Z gil Ulmgm] E) (423)
g7,] ( = g’Lj + Z 9il Ulmgmj E) (424)
gzg( = gzy + Z {gzl Ulmgmj(E) + g?lk(E)glamggn](E)}v (425)

where the self-energies are defined as
Oy = Oy = t7(8100m1 + 6110mo)- (4.26)

Hereg;;(E) andg;;(E) are the Green’s functions for the half-infinite length electrode and the infinite length
one-dimensional lattice, respectively Inserting Eq (4.26) to Eq. (4.23), we obtain

9i5(E) = gt (B) + 1" Z 9i" (E)(6100m1 + 6110m0) G (E)
(4.27)

= gz’j (E) +1 giO (E)glj(E) + tLg?f(E)ggj(E).
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Both i and;j are zero or less, becaugg is the Green’s function of the left-side half infinite length one-
dimensional lattice shown in Fig. 4.2(c). Thus, the Green fungffotbecomes zero, because electrons in
the left-side lattice can not transfer to the right-side lattice. Thus, we yield following equation from Eq.
(4.27),

95(E) = gi(E) + t"g;'(E) g5, (E). (4.28)
Wheni = 0, we obtain the Green’s functiojg; as follows,
g4;(E) = i (4.29)
’ 1 —thgl(E)
Inserting Eqg. (4.29) to Eqg. (4.28), we have advanced Green’s functions for electrodes,
Oa Oa
gir' (E)goi (E)
“E) = ¢"YE) 4 tF—— 4.30
9 (E) = g (B) + 747 e (4.30)
In the same way, we obtain the retarded Green'’s functions,
o (VO (E
g:J(E) — g?]r(E) +tngl< )QOJ( ) (431)

1 —thggi(E)

The Green'’s functions for the infinite length one-dimensional |ag.‘f]€@?f) are necessary to calculate the
Green functiong, (g,).
0——

The Green'’s function,;

(t1,t,) for the infinite length one-dimensional lattice is defined as
0—— 1 A AT
gi; (ti,t2) = 2.—h<T[CHz‘(t1)CHj(t2)]>

= (et ()00 — 1) — (Ely (1) (1)) 608 — 1)},

(4.32)

whereéy;(t) = exp [—%%t]éi exp [%t]. When there is no interaction between electrons in the periodic
system, we can develop the operaioin the plane wave,

¢ui(t) = exp [_7;[_7:(?4 ¢; exp [—1—7:—575] (4.33)
1 . HE 7. HE
= ﬁ g exp [ik - (ia)] exp [_z'_fgt] Cr exp [—i—i—}gt} , (4.34)

wherek is the wavevector and, represents the annihilation operator of an electron with a wavevector
Here we put the distance between nearest neighbor sites:wilpplying the operatoéy;(t) to the state
|T), we obtain

ot R R
em()|I) = \/NZI;QXP ik - (i)] exp | == t]ckexp [+ - t}m, (4.35)
1 _ - HE 7. gk
=7 Zexp [ik - (ia)] exp _ngt] Cr, €Xp [—l—z%t] 1), (4.36)
VN < I
1 ) ) - &L gL
=N > exp [ik - (ia)] exp —%;t} exp [+Z_ihft] |F), (4.37)
- I
1 L r &L -&L 7.
— _\/N Zk: exp [ik - (ia)] exp _+Tt} éell), (4.38)
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where we have defindd) = ¢|1). £} and&l,. are represent the eigenenergieg#dffor the state$/) and
|F'), respectively. The energy differenéé — £L. corresponds to the energy of an electron with wavevector
k, thus we define

& =&k — &k (4.39)
Therefore, we have the following equation,
Ex
cuilty) \/_ Zexp [ik - (ia)] exp [ @%tl}ck, (4.40)
élyi(ta) = L > exp ik - (ja)] exp [H%@] &, (4.41)
VN <

Inserting Egs. (4.40) and (4.41) to Eq. (4.32), the Green funefion(ty, t,) is rewritten as

11 £ L Ey
0—— _ E A oAt zk(za)—z—]kt —ik'(ja)+i—E-t .
9 (ht2) = ﬁiﬁ{ ,<C’“ck’> W TVITIRO(ty — 1)
. (4.42)

_ Z ézlék —ik’ (ja)+i—k- Ent ta zk(za —ifk tle(tg _tl)}
kk'

To calculate the pair-correlation functions, we introduce the Fermi distribution funfition
(e en) = O s (4.43)
(erel)) = (O — Eex) = O — (L) = O (1 — fr). (4.44)
Using Eqs. (4.43) and (4.44), we have
11
0—— _ ik a —1 t1—t2)
9i; (ti,t2) = ﬁiﬁ{z (=5 M=) (1 — £)0(t — to)

(4.45)
_Zezkz ia k(tl tg)fk (tz—tl)}

This equation depends on only time deference (¢, — t»). Therefore we obtain the following equation
by performing the Fourier transform,

+o00
- —— iET
g% (E) = / dr g% (r)ctik

—0o0

11 oo . E—&p
_ - = )a i T
_ihN{g o fk)/ dreT
_ Z eik(i—j)afk/ dr 61'%7’}
L —00

ei( R Fid)T } T=t00

_ 11 ik(i—j7)a .
_ihN{Z S f’“){z(%ﬂ'a o

ki z(Ehg —i6) 77=0
N Ze fkl L gk _Z(S):|T=OO
1 ik(i—7) 1 _fk fk
= — Hem)e ) 4.46
Nzk:‘2 E—Gtid  E—& —is (4.46)
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We have the other Green’s functions similarly,

1 o -1+ fi —f
0++ _ ik(i—j7)a 4.47
9; " (E) Nzke {E—5k+i5+E—8k—i5}’ (4.47)
11 L
04— . ik(i—j)a . o
g () = =~ Ek:e D1 — fr)2md(E — E), (4.48)
11 Lo
0— _ - ik(i—j)a _
gy H(B) = —— Ek MmN f076(E — E). (4.49)

Using Egs. (4.46)-(4.49), we obtain the Green’s functigiéE), ¢ (E), andg’(E), as follows,

g5 (E) = g?j“(E) — g5 "(E) (4.50)
zk(z ja
N Z E—& +1id’ (4.51)
g?]@(E) = gij (E) - gzg “(E) (4.52)
zk(z ja
Q%E(E) = gij (E> + gij ~(E) (4.54)
= (1= 2f(E) (g5} (E) — g (E)), (4.55)

where the relation— = P + iw§(z) has been used. Note that the electron distribution funcfidt)
is included in only the Keldysh Green’s function. Becad3seds the eigenenergy of the infinite length
one-dimensional lattice, is written as

&y, = —2t" cos ka. (4.56)
Thus, we obtain the following retarded Green’s functigf( ),
1 eik(ifj)a

"(E)=— 4.57
9:j (F) NZE+2tLCOSka+i5 ( )

1 Na etkli=d)a
= dk . 4.58
N27r/w E + 2tL coska + i ( )

a

The Green’s funct|0@ depends on only site differenee = i — j. We can rewrite Eq. (4.58) as follows,

a [Th etklmla

g‘%‘(E) - %/_ﬁ dk E + 2t cos ka + i0 (459
. i6y m|

= % : E+ 2(;390)080 o (0= ka) (4.60)

jm| |

- % j2|=1 o % E+ tL(zZ+ ) +id (e=2") “oh
jm|

B QLM 7|{Z|:1 dz 122 —zEtLL"‘Sz +1} (462

The integrand has the following poles.

B /BT =47 + 6 - (14 BV

Zpole =
P 2tL

(4.63)
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Using the residue theorem, the Green’s funcy'ﬁm is obtained as follows.

e For—2tL < E < 2t%,
we have

: ; 2 _ 12\ Iml
gl%l(E):_ i (E—z\/4(tLL)‘ E) . (4.64)

4(tL)2 — E2 2t
In the same way, we have

Oa o l E +i\/4(th)?2 — E? |m]
g\m\(E) =+ Y B ( 5L ) . (4.65)

The absolute values of Green'’s functiorrgfh’;” and |g|9;| , are independent of the distange|. It
means that electrons in the energy band of the one-dimensional lattice can propagate without damp

ing.
e ForE < —2t%,
we have following form,

1 E 4 /E? —4(tF)2\ ™
or _
1 E 4 /E? —4(tF)2\ ™
g (E) = — - (") . (4.67)
E? — 4(tL)2 2t
e ForE > 2t%,
we have following form,
1 E — /E2 —4(tE)2\ ™
Oor _
1 E — /E* —4(th)z\ ™
Oa _
mi(B) = —7pr= 4(tL)2( 217 ) ' (4.69)

When electrons are in the outside of the energy band of the one-dimensional lattice, the absolute
values of Green’s function$g%| and|g%|, decrease proportional to the distanee. It means that
electrons can not propagate without damping.

Inserting Eqgs. (4.64)-(4.69) to Egs. (4.30) and (4.31), we can obtain the Green’s functions for electrodes.
Especially, the Green’s function at the ed@el{ site) of the electrode is written as

2 for £ > 2t",

B/ E2—4(tL)?

Oa E )
5 _ ) pe/srm (o g 2", (4.70)

a (Y =
oo E) 1—tlgl(E) 2(t)?

2 for B < —2t~.

\ E—\/ E2—4(t1)?
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4.2.2 Green’s functions for the isolated nano-scale system

The statistical average of operatbris given by Eq. (3.4),

(O(1)) = Trlp(to) O (1)] (4.71)
= Y (N, Up(to) [N, m)(N,m|On (t)|N, 1) (4.72)
= (N.1|p(to) N, I)(N. 1|On (t)|N, ). (4.73)

l

Here,| N, [) is the N-electron eigenstate of the Hamiltonia#f’ and has the eigenenergy. To obtain the
Green's functiony;;” (E), we calculatép(t))u = (N, l|p(to) |V, 1) and(g;; ™ (t1, t2))u = <N,l]T[échHj]|N 1y,
and then we obtain the Green'’s function by using Eq. (4.73). The density matrix is obtained as follows,

(ﬁ(to))u = <N7 l|,5(t0)‘N, l) (474)

(N | BHEHEN N

Trle-BHO-uOXO)] (4.75)

wherey© is the Fermi energy of the isolated nano-scale system. Then, we Qplgeﬁ(tl, t2))u as follows,
iP(g5; (trsta))u = (N 1T [egra(tr) ey, (82)] [N, 1)
_ Z (N e (t)IN + 1, m) (N + 1, miél, ()N, D0t — ) (4.76)
— (N, 1l (1) N = 1, m) (N = 1,mléum(t2)|N, D6(ts — tl)}.
Using the relatiort;;(t,) = exp | + z—tl}cm exp [ — z” t1], equation (4.76) is rewritten as follows,

g™ (M = D {e TITINUGIN + 1,m) (N + 1,mIel [N, )6(7)
" (4.77)
— e TN EIN = Lm(N = 1, ml&| N, )8(-7) },

wherer = t; — t,. We perform the Fourier transform for Eq. (4.77) and obtain,

+o0 B
gzg ll - E / dre"n’ Jﬂ

—1

e <N,llé}|N—1,m><N—17m|éilel>9<—T>}

STINLUEIN 4+ 1,m) (N 4+ 1,m|él|N, 1)6()

+00 E4E—Em s . + (478)
:Z{/ dre™ ™ TON(NGIN 4+ 1,m)(N + 1,m|¢t|N, 1)
0

0
— / dretiT R TR (N 1N = 1,m)(N — 1,m|¢]| N, z>}.

—0o0

Carrying out the integration, we have

__ (N U&N +1,m)(N + 1,m|é}|N, 1)
(95 (ENu =Y R
m (4.79)
. (N, 1ef|N —1,m)(N — 1,m|¢]|N, z>}

E-&+ &, —i0
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Other functions are obtained similarly,

T E)), = — J
(g5 (B =—- 3" i

(N, Uel|N — 1,m)(N — 1,m|¢;|N, 1)
* E—&+&,+id 2

(g5 (BE))u = —i Y _270(E + & — En) (N, 1|&|N + Lm)(N + 1,m|él| N, 1),

(95 (E)u =1 270(E + & — En)(NUel|N — Lm)(N — 1,m|é;|N,1).

We can produce the following functions using Eqs. (4.79)-(4.82).

(95 (E))u = (55~ (B = (955" (B)u
s { (N, 1|&|N + 1, m)(N + 1,m|ct| N, 1)
- E—l—gl —(c/'m‘i‘lé
L (NUEIN = 1m) (N = 1,m|| N, l>}

(95(E)u = (95~ (E))u — (g5~ (E))u
o AT
-y { (N, 1|&|N +1,m)(N + 1,m|e}|N, 1)
— E+&—-E&,—1i0
E-&+E&,—1 ’

(955 (E))u = (957 (E))u — (955 (E))u
_ (N U&:|N +1,m)(N + 1,m|e]| N, 1)
_zm:{ E+&—En+id

(N, 1[N +1,m)(N + 1,m|é]|N, 1)
E+&—&,—id

(N, Uel|N — 1, m)(N — 1,m|¢;|N, 1)
E—&+&,—ib
E-&+&,+1 '
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Using Egs. (4.73), (4.75) and (4.83), the advanced Green'’s function for the nano-scale system is given by,

gg<19>-—»§{j<p<uﬁ>u<gz<l?>»l (4.86)
zye N | N, ) (N, 1&|N + 1,m)(N + 1,m|é|N, 1)
Z HC—MCNC)] Z { E+&-E&,—10

l m

(N, ua}\N —1,m)(N — 1,m|é&|N, 1)
4.87
+ FE_&+&.—is } (4.87)

1
B Tr[@*ﬁ(”flc*ucﬁ/’c)]
Z{W l[e=PHO—ERO | >(N,l|é,~|N+1,m)(N+1,m|é;f|N,l)
- E+&—&n—1id
NG N — 1, m)(N —1,m|&| N, 1)
[|e PHO 1NN 1 W 116 ’ ’ 2L 4.88
N0 1) E—&+&n—i0 ) (4.88)
We consider the only first term,
N At
Z( e —MCNC)|N >(N,l|cz|N—i— 1,m)(N + 1?m|c]]N, l)
m E + 51 - 5m — 30
V.l B, (N + 1, m|ef|N, (N, 1|&;|N +1,m)
’ ’ E+&—-E&,—i
SN 11Ny (N, m|el|N — 1,I}(N — 1,1/¢;| N, m)
- E+&—En—id
; . NIEHN =1, m)(N — 1, m|&]| N, 1)
_ SN — 1, mlePECRO 11 : : = 4,
Inserting Eq. (4.89) to Eq. (4.88) we have
4 (B) = :
A P TG
NEIN = 1,m)(N —1,m|&| N, 1)
BEn—rCWN-1) | -pE-nonyy D1 ! 4
%}{@ e ) E—&+&n—1id Jo @)
In the similar way, we obtain
. 1
gz’j(‘E) = Tr[e_ﬁmc_“cﬁc)]
NG N — 1, m)(N —1,m|&| N, 1)
—B(Em—n®(N-1)) B(E1—p® (A, J ’ ’ Ll 4.91
%:{(e e ) E—&+&n+id } (4.91)
95(E) = (1 = 2f(E))(g;;(E) — ¢55(E)), (4.92)

where the relation — e #(5=19) = (1 — 2f(E))(1 + e #E=19) has been used.

When we assume that there is no Coulomb interaction between electrons, the Green functions becom
more simple form. For example, the eigenstidte= 3, /) where then-th, 5-th, andy-th energy levels are
filled with electrons is written as follows,

3,0) = akaal|o),  (a<pB <) (4.93)
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where the operatai! creates an electron at-th energy level with energy,,, and|0) is a vacuum state.
The eigenenergy, for the state becomes, + 5 + <. The orbital for then-th energy level is written in
the energy picture as follows,

la) = al |0). (4.94)
On the other hand, the orbital is also written in the site picture as follows,
= xaello), (4.95)

wherex® is the amplitude of thex-th wavefunction at:-th site. A comparison of Egs. (4.94) and (4.95)
yields
al, = > xaeh. (4.96)
We can carry ouf2, m|¢;|3, 1) with aid of Eq. (4.96),
(2,mlé,[3,1) = (0layacé;alalal|o)
= (g} acal)(e:al) — (a,al)(aca, ><cza};> + (gl (acal) ()

= 0pp0ca(Cia > 57;755&(01@5) + 0ny0ep(Cia >
= dppldeaX — 577“/5604)@ + 0y OB X - (4.97)

We do similar calculations about all eigenstates and obtain the following simple form of Green’s functions,

n*x. n

g6 () = Z % (4.98)
g, (E Z - fjg X; = (4.99)
gz’j(E) = (1 —2f(E ))(ng(E) - QZ(E»? (4.100)

where the summation runs over the all energy levels.

4.3 Green’s functions for the joint system

We have already obtained the Green'’s functions for the isolated electrodes and nano-scale system in th
previous section. To calculate the electronic current through the nano-scale system by using Eq. (4.15), w
must obtain the Keldysh Green’s functio@§, andGY%, for the joint system which consists of the electrodes

and the chain. Then the Dyson equations show that it is necessary to obtain the Green’s fa#ctiams

order to calculat&;f, andG%, (I = a,r, k; m(n) = 0,1, N, N + 1). Therefore, the following contracted
matrix forms of the Green’s functions and the self-energies should be considered instead of Egs. (3.61).
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(3.63),

TGl Gl Gy Gie
G¢ Ge Ge G¢
Ge=| G0 CGh Gy Giva | 4.101
Gh G4 Gy Giwm (4.101)
_G(JZV+1 0 G(]IV+1 1 G(]l\H*l N G?V+l N+1
_ggo 0 0 0
0 9(111 giLN 0
= , 4.102
=10 g gbw O (4.102)
L 0 0 0 9]%-4—1 N+1
[0 —¢ 0 0
. =t 0 0 o
Y4 = 0 0 0 ¢ (4.103)
0 0 — 0

The retarded Green’s functions and the self-energies are obtained similarly. Furthermore, using the Dysot
equations (3.64) and (3.65), we have the advanced and the retarded Green'’s functions of the joint system ¢
follows,

G*=(I-g'x") g% (4.104)
G =1-g'¥)'g, (4.105)

wherel is the4 x 4 unit matrix. The Keldysh Green’s functions obey the Dyson equation (3.66). We have
the following equation from Eg. (3.66),

Gr=1I-gx)'g"1+g*x"). (4.106)
Furthermore, using Egs. (4.104) and (4.105), we obtain
G = Grg"'ghgrlGe. (4.107)

When thei- and j-th sites are included in the nano-scale system, ij3¢omponent ofg” 'gFge~! is
written with aid of Eq. (4.100) as follows,

{g"'g"s" hy=(1-2f){g" (g — 88" )}y

=(1-2/){g" "}y —{&" }ip). (4.108)
Equation (4.108) is calculated as follows, by using Egs. (4.98) and (4.99),
{g" g}y = (1 =2 {g" "}y —{&" ) x (1 =2f) 6 = 0. (4.109)

It means that the Fermi energy of the isolated nano-scale system doesn’t contribute the electronic curren
On the other hand, When tlié= j)-th sites are included in the left or the right electrode, equation (4.108)
is calculated as follows,

{g" 'g" g =0 —-2/)({g" '}y —{g" }a)
(1 =2F5)((g8) ™" = (gb0) ™) fori =0,

- 1 —1 . 4.110
{(1 - 2fR)((gj‘§,+1 N+1)_ - (g?v+1 N+1) ) fori=N+1. ( )
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Thus, we obtain the Keldysh Green functions for the joint system,

G = (1= 2f)Gho((g80) ™" — (gh0) )G

+ (1 - QfR)GS N+1((9§LV+1 N+1)71 - (9§V+1 N+1)71)G(Jl\7+1 15 (4.111)
G’fo = (1 - 2fL>G§0((980)_1 - (960)_1)G80
+ (1 - QfR) 1 N+1((97v+1 N+1)_1 - (9§V+1 N+1>_1) 7\7+1 0 (4.112)

In this paper, first, we calculated numerically Eqgs. (4.104)-(4.105) and obtainét taedG", and then we
calculated numerically thé* using Egs. (4.111) and (4.112). Finally, the electronic currents are calculated
using Eq. (4.15)
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