
（千葉大学学位申請論文）

Quantum transport and Optical properties
of Nanostructure network systems

（ナノ構造ネットワーク系の量子伝導・光学物性）

2006年 1月

千葉大学大学院　自然科学研究科
多様性科学専攻　相科学

石井宏幸





Acknowledgements

I would like to express my most sincere thanks to Professor Takashi Nakayama
of Chiba University for his continual guidance and encouragement throughout
the course of the present work. I am deeply grateful to Dr. Jun-ichi Inoue for
many valuable discussions and stimulating suggestions. I also acknowledge to
Professor Yuhei Natsume for a lot of useful suggestions. Special thanks are
offered to Masato and Ryo and all the members of the research groups under
Prof. T. Nakayama and Prof. Y. Natsume for enjoyable conversations. I am in-
debted to Professor K. Shiraishi and Dr. H. Tamura and Dr. K. Ishida for a num-
ber of illuminating discussions. I am grateful to Professor T. Fukui and Professor
J. Motohisa for showing their experimental results.

This work was supported by the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan, the CREST program of JST, the Futaba Memorial
Foundations, and the 21COE program of Chiba University. I thank the Super
Computer Centers, ISSP, University of Tokyo and Chiba University for the use of
facilities.

Finally, I would like to thank my parents and brother for their heartwarming
support and encouragement for many years. I also wish to thank my grandparents
for their kind support.

This thesis would never have been accomplished without their great help.

“ARIGATOU GOZAIMASHITA.”

February 2006, Hiroyuki Ishii

i





Contents

Acknowledgements i

Contents iii

1 Introduction 1
1.1 Nanotechnology and Quantum effects . . . . . . . . . . . . . . . 1

1.1.1 Electronic states of Mesoscopic systems . . . . . . . . . . 1
1.1.2 Conductive properties of single molecular systems . . . . 6
1.1.3 The quantum-wire-network or quantum-dot-array systems

on semiconductor surfaces . . . . . . . . . . . . . . . . . 7
1.1.4 Organic molecular network systems . . . . . . . . . . . . 8
1.1.5 Flat-band systems . . . . . . . . . . . . . . . . . . . . . 10

1.2 Characteristics of flat-band eigenstates in
electronic-band structures . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Optical properties of Flat-band systems 15
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Model and Calculation method of exciton states . . . . . . . . . . 16
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Binding energies and radius of exciton . . . . . . . . . . . 18
2.3.2 Another flat-band system: Tasaki lattice . . . . . . . . . . 21
2.3.3 Perturbation analysis of flat-band exciton . . . . . . . . . 23
2.3.4 Magnetic field effect . . . . . . . . . . . . . . . . . . . . 26
2.3.5 The lattice-constant dependence of exciton binding energies 28

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Quantum electron transport properties of Kagomé-lattice-chain sys-
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Chapter 1

Introduction

1.1 Nanotechnology and Quantum effects

In the field of semiconductor electronics, the micro-fabrication and integration
techniques keep advancing. As a result, the sizes of the fabricated semiconductor
devices have achieved the nanometer scale. Another remarkable progress in the
production of nanometer scale systems is seen in a recent molecular science field.
The control of molecular bonding enables the synthesis of supramolecules, which
are made of simple molecules but have the designed bond networks with various
shapes. Furthermore, one is also able to observe the surface structures in atomic
level and control the single atom movements on the surfaces by dozing electronic
current using the scanning tunneling microscopy (STM).

In above mentioned micro systems, the quantum effects appear clearly at the
electronic states, and the interesting physical phenomena unable to explain by the
classical theories are observed. In this section, we introduce the various physical
phenomena originating from quantum effects, such as interference, of these micro
systems.

1.1.1 Electronic states of Mesoscopic systems

When sizes of material become gradually small and the physical properties
show quantum effects, such materials are called the mesoscopic systems. Some
examples of the quantum effects are mainly the interference effect and the con-
finement effect. The quantum-interference effect originates from the wave char-
acter of electrons. On the other hand, the confinement effect makes the energy of
electron become discrete values.

The mean free path and the phase coherent length are very important for the
mesoscopic systems. The mean free path is average length that electrons go ahead
through the system without the inelastic scattering and the elastic scattering. The
energy of electron is changed by the inelastic scattering, on the other hand, the
elastic scattering doesn’t change the energy of electrons. In other words, the phase
information of electrons is lost only by the inelastic scattering. The phase coherent
length is the length in which electrons go ahead, until the electrons lose the phase
information by the inelastic scattering. Examples of the inelastic scattering are

1
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(a)

(b)
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Figure 1.1: (a) Conceptual picture of AB effect. The two waves, which were di-
vided at the entrance of the ring, interfere at the exit of the ring. (b) Conceptual
picture of AAS effect. The clockwise wave and the anticlockwise wave produce
the localized states in the ring. The electrons go ahead straight until elastic scat-
tering. The electrons hold the phase information in the ring.

the phonon scattering or the scattering by the other electrons. An example of the
elastic scattering is the scattering by impurities. Generally, the mean free path is
shorter than the phase coherent length. When the system size is smaller than the
phase coherent length, the system is a mesoscopic system, because the existence
of interference distinguishes the macroscopic system and the mesoscopic system.

The mesoscopic systems are classified into two regions from the viewpoint
of the mean free path. When the system size is larger than the mean free path,
the physical properties of the system are independent of the shape of the system.
It is because the spatial distribution of the phase of electrons is disturbed by the
elastic scattering. Such systems are classified into the diffusive conduction region.
On the other hand, when the system size is smaller than the mean free path, the
shape of the system is important to the conductive properties. Such systems are
classified into the ballistic conduction region.

AB and AAS effects

For example, the mean free path of the fine wires fabricated by normal metal
is about 100 Å at low temperature. Usually, the system sizes made by normal
metals are larger than this length. Thus, the conductive properties are diffusive.
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However the interference effect appears in the conductive properties, because the
systems hold the phase information. Webb and coworkers observed the resistance
of the normal-metal ring under magnetic fields [1]. The conductive properties
of the ring as shown in Fig. 1.1(a) were investigated. The wavefunction under a
magnetic field satisfies the following Schrödinger equation,�

��� �������
��

� � ���

�
���� � ������ (1.1)

where ���� is the vector potential. Solving this equation, we obtain the wave-
function at position B shown in Fig. 1.1(a),

����� � ������ ���
�
� ��

�

�
��

��

��������
�
� (1.2)

where ����� is the wavefunction in case that no magnetic field is applied to the
ring. The line integral is depend on the path from the position A to the position B.
Therefore, the phase difference between electrons, which pass through �� side of
the ring and the �� side of the ring, is obtained as,

	
 � �

�

��
��

�������
�
��

������
�
� (1.3)

The integral is equal to a magnetic flux � which penetrates the ring. Thus, we
have

	
 �
��

�
� (1.4)

In case of no magnetic field, the phase difference is zero and the wavefunction � is
equal to ��. When the magnitude of magnetic field reaches � � �����, the phase
difference becomes �. As the result, the wavefunction amplitude at B becomes the
node, and the resistance becomes the infinity. When the magnetic field becomes
stronger and reaches � � ��, the resistance is equal to that in case of no magnetic
field, because the phase difference is ��. The periodic oscillation of magnetore-
sistance is called the Aharonov-Bohm effect (AB effect). Figure 1.2(a) shows the
experimental result of the magnetoresistance of the normal-metal ring measured at
low temperature 0.01K. Periodic oscillations are clearly visible superimposed on
a more slowly varying background. The period of the high-frequency oscillations
is 	� � 	�		
��� . This period corresponds to the addition of the magnetic flux
��. The Fourier power spectrum is shown in Fig. 1.2(b). A large peak around
	� � �	 [1/T] corresponds to the component of period � � ��.

There is a secondary large peak around 	� � ��	 [1/T] in Fig. 1.2(b).
Equations (1.1) and (1.2) show that when there is a clockwise wave in the ring, the
anticlockwise wave always exists in the case of no magnetic field. Figure 1.1(b)
shows a such situation. Generally, these two wavefunctions interfere each other
and produce the localized states in the ring. This localized state doesn’t contribute
to the conductivity. When a magnetic field is applied to the ring, the field changes
the phase of the clockwise wave to ���. On the other hand, the phase of the
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Figure 1.2: (a) Magnetoresistance of the normal-metal ring measured at T=0.01K.
(b) Fourier power spectrum of the magnetoresistance [1].

anticlockwise wave is changed to ����. Thus, the phase difference between
two waves is ����. When the phase difference is equal to �, the localized states
are destroyed. As a result, the resistance becomes small. When the magnitude of
magnetic field becomes larger, the resistance increases again by the interference.
Therefore, the period of oscillation of the resistance is � � �����. It is called
the Al’tshuler-Aronov-Spivak effect (AAS effect).

Landauer formula

The mean free path of electrons in semiconductor hetero structures is much
longer than one in fine wires of normal metal. It is about 50 �� at low temper-
ature. Therefore, we can observe the ballistic transport by using semiconductor
hetero structures. In the representative calculation method of the ballistic trans-
port, there is the Landauer formula. To simplify, we consider the system, which
consists of only a one-dimensional electrode. The schematic picture is shown in
Fig. 1.3(a). We assume that the left and right reservers are filled with electrons
up to Fermi energies �� and ��, respectively. The energies of electrons with
wavenumber � in the electrodes are written by ����. The current of electron with
� is defined as

�� �
�

�

�����

���
� (1.5)
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(a)

(b)

L RC

Reserver

Electrode

Reserver

Figure 1.3: The models to obtain the Landauer formula. (a) The left bulk reserver
and the right bulk reserver are connected by a fine wire. (b) A nanostructure (C)
is sandwiched between the left electrode (L) and the right electrode (R).
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where �������� is the group velocity and wavefunction is normalized in the
length �. The states whose energies locate between �� and �� effectively con-
tribute to the electronic current. Therefore we obtain the total electronic current
as

� � �

� ��

��

��
���

��
(1.6)

�
��

�

� ��

��

�����

��
�� (1.7)

�
��

�

� ��

��

�� (1.8)

�
��

�
��� � ���� (1.9)

where wavenumber �� and �� are defined as ����� � �� and ����� � ��,
respectively. The source-drain voltage is given by

�� � �� � ��� (1.10)

Thus, we have the conductance � as follows,

� �
�

�
�

���

�
� (1.11)

Then, as shown in Fig. 1.3(b), we consider the conductance of sample sand-
wiched between left and right electrodes. In the semiconductor hetero structure,
the wavelength of electrons can be smaller than the size of sample. In this case,
by the confinement effect, the electronic states in the sample are quantized and
have discrete energy levels. When the transmission probability of �-th eigenstate
is written by ��, the conductance of sample is given as

� �
���

�

�
�

��� (1.12)

Here, the summation runs over the state whose eigenenergies locate between two
Fermi energies of reservers. Equation (1.12) is called the Landauer formula. Wees
and coworkers observed the quantized conductance of point contact fabricated by
the AlGaAs/GaAs hetero structure. The point-contact layout is shown in inset
of Fig. 1.4 [2]. Figure 1.4 shows the point-contact conductance as a function of
gate voltage. The conductance shows plateaus at multiples of ����, because the
transmission probability of �-th eigenstate is 1.

1.1.2 Conductive properties of single molecular systems

It is an ultimate goal in nano-surface science to fabricate atomic and molecu-
lar electronic devices and to syntheses novel chemical species with desired per-
formance and properties via controlled surface chemical reactions at the single
atomic and molecular scale. Scanning tunneling microscopy (STM) is powerful
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Figure 1.4: Point-contact conductance as a function of gate voltage. Inset is the
point-contact layout [2].

tool for nano-surface science. Because, STM has been extending its versatility
from the study of surface structural and electronic properties, toward the manip-
ulations of adsorbates at the atomic scale. Various reactions induced by using
STM for molecule adsorbed on metal surfaces have been reported, for example,
the lateral hopping of carbon monoxide molecules on Pd(110) surface [3], the ro-
tation of acetylene molecules on Cu(100) [4], chemical reaction of trans-2-butene
molecule on Pd(110) [5], desorption of ammonia molecule on Cu(100) surface [6].
The mechanism of such reactions is that the inelastic current injected from STM
tip excites the molecular vibrations and the excited vibrations induce various re-
actions. A theory of inelastic current which induces the molecular vibrations was
first presented by Persson and Baraoff [7] on the basis of the so-called resonance
model. It was shown that we can choose the molecular vibration induced by in-
elastic current by controlling of the magnitude of source-drain voltage applying
to the molecule.

1.1.3 The quantum-wire-network or quantum-dot-array sys-
tems on semiconductor surfaces

Recent advances in the field of nanotechnology have made it possible to ar-
range semiconductor quantum wires/dots periodically on semiconductor substrates.
In these systems, electrons or holes can move only along wire/dot directions; thus,
these systems are sometimes called artificial lattices. The artificial lattices have
two fascinating characteristics that are different from those of real crystals. One
is the flexibility to design various lattice shapes. For example, using pattern-
ing techniques, Fukui and coworkers fabricated square, triangular, and Kagomé
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��� ��� ���

Figure 1.5: The TEM images of (a) the square lattice [8], (b) the Kagome lat-
tice [9,10], and (c) the triangular lattices [11] made of semiconductors. The lattice
constant of the Kagomé lattice is 0.72 ��.

��� ���

Figure 1.6: The schematic pictures of (a) the square molecular network and (b)
the Kagomé molecular network [15].

lattices made of InAs wires on a GaAs substrate as shown in Figs.1.5(a)-(c), re-
spectively [8–11]. Another one is the controllability of the number of electrons
in a lattice without Jahn-Teller effect, which is realized by applying a gate volt-
age [12].

From these characteristics, the artificial lattices provide new stages to demon-
strate exotic theoretical predictions for lattice systems. For example, in 1976,
Hofstadter predicted theoretically that the two-dimensional lattice systems give
fractal energy spectra when an external magnetic field is applied to the systems,
by using tight-binding model [13]. In 2001, Albrecht and coworkers produced a
two-dimensional square lattice using GaAs quantum wires and showed the exis-
tence of fractal energy spectra by applying an external magnetic field [14].

1.1.4 Organic molecular network systems

Remarkable progress in the production of artificial lattice systems is seen in
a recent molecular science field [16]. The control of molecular bonding enables
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(a)

(b)

Figure 1.7: The Schematic pictures of (a) the T-shape tape-porphyrin molecular
wire [20] and (b) the triangular nanographene molecules [21].

(a) (b)

Figure 1.8: The calculated current distribution of (a) the T-shape tape-porphyrin
molecular wire [20] and (b) the triangular nanographene molecules [21]. The right
schematic picture in Fig. 1.8(b) illustrates the orientation of electronic-current
flow.

the synthesis of supramolecules, which are made of simple molecules but have
the designed bond networks with various shapes. For example, Moulton and
coworkers built large square and Kagomé lattices from simple small molecular
polygons by linking them together at vertices or edges as shown in Figs. 1.6(a)
and 1.6(b), respectively [15, 17, 18]. Schmitt and coworkers synthesized hybrid
organic-inorganic supramolecules, which have honeycomb structures [19]. In ad-
dition, many chemists are seeking the modulability of lattice-system’s nature due
to the incorporation of different guest molecules.

Tagami and Tsukada calculated the electronic transport properties of the T-
shape tape-porphyrin molecular wires and triangular nanographene molecules as
shown in Figs. 1.7(a) and 1.7(b), respectively [20, 21]. They clarified that the
intra-loop current, whose magnitude is much larger than the source-drain-current
magnitude, appeared in these systems as shown in Figs. 1.8(a) and 1.8(b). It is
because the time-reversal symmetry between the doubly degenerate states of the
isolated molecule is broken by contact with source and drain electrodes. Further-
more, they discussed the magnetic properties induced by intra-loop current.
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Figure 1.9: (a)The schematic picture of the Kagomé lattice under the tight-binding
approximation. (b)The calculated electronic band structure of Kagomé lattice un-
der the tight-binding approximation.

1.1.5 Flat-band systems

Among various lattices, the Kagomé lattice is unique because it has a complete
flat band in an electronic band structure. The schematic picture of the Kagomé lat-
tice under the tight-binding approximation is shown in Fig. 1.9(a). The electronic
band structure calculated under the tight-binding approximation is shown in Fig.
1.9(b). A flat band appears at the top of the band structure. Mielke clarified that
the origin of the flat band appearance is the interference of the electronic wave-
functions reflecting the spatial symmetry of Kagomé lattice [22–24]. The details
about the characteristics of flat-band eigenstates are described in next section.

Mielke and Tasaki investigated the magnetic property of the Kagomé lattice
by employing a Hubbard model, and showed that the Coulomb repulsive interac-
tion between degenerate flat-band eigenstates induces ferromagnetism when the
flat band is half filled with electrons [22–25]. The local spin-density functional
calculation based on the effective-mass approximation also showed that the sur-
face ferromagnetism appears on the InAs Kagomé quantum-wire system when the
flat band is half filled [12,26]. These type of ferromagnetism is called as flat-band
ferromagnetism.

1.2 Characteristics of flat-band eigenstates in
electronic-band structures

When the lattice systems have flat bands in the electronic band structures, these
flat bands are divided into the following two types.

(1) The flat-band states originating from spatially localized electrons

As an example, we consider the electronic band structure in the one-dimensional
lattice by using the tight-binding model. Then, the Hamiltonian of electrons
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is written as follows,
� � ��

�
��	

������	� (1.13)

where � represents the electron transfer energy between nearest-neighbor
sites, and ��� is an annihilation operator of electron at �-th site. We obtain
the electronic band from diagonalization of the Hamiltonian as follows,

���� � ��� ��� ��� (1.14)

where � and � represent the wave vectors and the lattice constant, respec-
tively. This equation shows that when the electron transfer energy becomes
zero, the flat band structure appears. That is to say, the electrons, which
completely localize spatially at each site, produce the flat-band states. It
is not expected that the interesting physical property is obtained in such
systems.

(2) The flat-band states originating from itinerant electrons

Mielke, Lieb, and Tasaki found that although the conductive electrons run
in the lattices, the flat bands appear in the electronic band structures by
reflecting the unique spatial symmetry of the lattices [22–25,27,28]. These
electronic flat-bands have following common characteristics [29].

(a) localization characteristics: One can choose eigenstates of a flat
band completely localized around one unit cell such that they have
no wave-function amplitude outside the unit cell. This occurs due to
the specific geometry of the lattice and the interference of the electron
wave function. As an example, the flat-band eigenstates in the Kagomé
lattice under the tight-binding approximation are shown in Fig. 1.10.
One of the flat-band eigenstates is completely localized at the hexago-
nal area, surrounded by orange solid line. We call the hexagonal area
the “plaquette” in this paper. The numbers on the sites represent the
wave-function amplitudes.

(b) itinerant characteristics: These localized eigenstates are nonorthog-
onal and have finite overlaps with each other. Thus, the Wannier func-
tions of a flat band are extended over an entire system. On the basis of
these facts, one can say that the flat-band electronic states have both
localized and itinerant characteristics. In the case of Kagomé lattice,
the localized flat-band eigenstate exists in each hexagonal area. Fig-
ure 1.10 shows that two localized flat-band eigenstates, surrounded by
orange solid line and broken line, have the overlap.

(c) degenerate characteristics: Since each unit cell has a localized eigen-
state, the sum of such eigenstates becomes a complete set of flat-band
states having the same eigenenergy. This feature produces a macro-
scopic degree of energy degeneracy and becomes the origin of a flat
band.
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Figure 1.10: One of the localized flat-band eigenstates under the tight-binding
approximation.

The reason of existence of flat band originating from itinerant electrons is
explained like the following. Although the bandwidth of the flat band is
zero, the bandwidth must be finite value in order to permit the electron trans-
fer. To avoid this contradiction, the total bandwidth becomes finite value by
having some dispersive bands. One of dispersive bands is changed to the
flat band, which has the localized eigenstates by using the interference of
the electron wavefunctions. These localized eigenstates have finite overlaps
with each other; thus, electrons in a flat band are extended over the systems.
The lattices with such flat bands are mainly classified into three types; Lieb
type, Tasaki type, and Mielke type. The detailed explanation is described in
appendix A.

1.3 Purpose

As shown in the previous sections, the several interesting physical properties
which originate from quantum effects, such as interference and degeneracy, at
the mesoscopic systems have been reported. In this thesis, therefore, we investi-
gated the quantum transport and optical properties of the nanostructure network
systems, which have the unique electronic states induced by the quantum effects.

In chapter 2, we theoretically investigated how quantum effects appear in the
optical properties of nanostructure network systems. Concretely, we studied exci-
ton states of the semiconductor Kagomé-lattice systems with flat electronic bands.
It is because the flat-band systems have the multiple degenerate states originating
from the quantum interference induced by the special symmetry. Furthermore,
in chapter 3, we theoretically investigated whether the Kagomé-lattice systems
show the conductive nature. Because the flat bands have both the localized and
the itinerant characteristics. Recently, in experiments about conductive properties
of mesoscopic systems, the energy dissipative process and the dynamics attract
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attention. However, the calculation method of time development current has not
yet been established. Thus, in chapter 4, we develop the calculation method of
time-development current. Finally, we summarized this thesis in chapter 5.





Chapter 2

Optical properties of Flat-band
systems

2.1 Purpose

Mielke and Tasaki showed that the Coulomb repulsive interaction between
degenerate flat-band eigenstates induces ferromagnetism on the Kagomé lattice
system when the flat band is half filled with electrons [22–25]. On the other
hand, it is expected that the Coulomb attractive interaction between degenerate
eigenstates induces the unique phenomena. Therefore, we investigate the exciton
states, which are the bound states of an electron in the conduction band and a
hole in the valence band, in the flat-band systems. Especially, we analyze the
exciton binding energies and the exciton diameters from the view of the flat-band
characteristics, i.e., multiple degenerate, itinerant, and localization characteristics.

The spatial-dimension dependence of exciton binding energies

In this study, we consider the exciton states in two-dimensional artificial lattice
systems and one-dimensional quantum dot array made on the semiconductor sur-
face. Before the starting discussions, we review the general characteristics of
exciton binding energies [30]. The binding energies �� of the Wannier excitons
which are confined spatially in three, two, and quasi-one dimensional systems are
written as follows,

� Three dimensional system
�� � ��� (2.1)

� Two dimensional system
�� � ���� (2.2)

� Quasi-one dimensional system

�� �
��

���
��� � �� (2.3)
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where, �� � �
����
�

�
��, and �
 represents the reduced mass of an elec-

trons and a hole. �� is defined by ��������
�
��, where �� represents the

vacuum dielectric constant. The quantity �� is decided by the diameter of
the quasi-one-dimensional system. When the diameter decreases to zero, ��

becomes zero; thus the binding energy of exciton diverges to infinity in the
perfect one-dimensional systems.

It is the well-known fact that the binding energies of excitons in spatially high
dimensional systems are smaller than those in spatially low dimensional systems.

2.2 Model and Calculation method of exciton states

We investigate the Kagomé quantum-wire system, where the quantum wires
are made of InAs and surrounded by In����Ga����As barrier regions. The width
of quantum wires is 10.4 nm, and the lattice constant is 72 nm. A system of this
size can be produced by recent nanotechnology [9, 10]. Figure 2.1(a) shows the
electron density in the conduction band of this system calculated by the local den-
sity approximation [12, 26]. The electron densities at red regions are higher than
those at yellow regions. Therefore, Figure 2.1(a) shows that the electron density
localizes at the cross points of the quantum wires. A similar result is obtained for
the hole density because InAs quantum wires also work to confine holes. There-
fore, we assume that the electronic structures of electrons and holes in the lower
conduction and higher valence bands are well described by employing the tight-
binding model, where electrons and holes are located at the cross points of quan-
tum wires and transfer along the wires. This situation is schematically shown in
Fig. 2.1(b). Moreover, an electron and a hole are assumed to be other kinds of
fermions, for simplicity [31]. Under these assumptions, the model Hamiltonian of
the system becomes

�� �
�
���	�

���	��
�
���	 �

�
���	�

��	��
�
�
��	 �

�
��	

����	���
�
����

���	
��	� (2.4)

where ��� and ���, respectively, represent the annihilation operators of an electron
and a hole at the �-th cross point of quantum wires. ���	 and ��	 are transfer energies
of an electron and a hole from the �-th to the �-th cross points, respectively. The
summation ��� �� runs over the entire nearest-neighbor cross-point pairs. ����	�
is the Coulomb attraction energy between an electron and a hole, for which we
employ the form [31, 32];

����	� �

�
��� for � � �

� ������

�
�����
for � 	� ��

(2.5)

where ��	 is the distance between the � and �-th cross points; � represents the dis-
tance between the nearest-neighbor cross points of quantum wires evaluated as 36
nm. The employment of this form of Coulomb energy is equivalent to the intro-
duction of the cut-off parameter in one-dimensional systems to avoid the diver-
gence of the eigenvalue of the Hamiltonian (2.4) and corresponds to the screening
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Figure 2.1: (a)A cross sectional view of LSDA-calculated total charge density is
shown when five electrons are contained in each unit cell. The electron density
localizes at the cross points of the quantum wires [12]. (b)Tight-binding model for
exciton state in the Kagomé quantum-wire system. An electron in a conduction
band (large solid circle) and a hole in the valence band (large open circle) locate
at the cross points of quantum wires, and transfer between two nearest neighbor
cross points as shown by arrows. The Coulomb attractive interaction ����	� works
between an electron and a hole.

around the on-site [31, 32]. The band-gap energy between the valence band and
the conduction band has an arbitrary value in our model.

We must estimate the transfer energies, �� and �, and the on-site Coulomb
energy, ��, for the InAs Kagomé lattice on the semiconductor surface to evaluate
the exciton binding energy. The local density approximation calculation shows
that the total width of the conduction bands is about 10 meV as shown in Fig.
2.2(a) [26], while the corresponding bandwidth by the present model is 6�� as
shown in Fig. 2.2(b). Therefore, we are able to take the electron transfer energy,
��, as 1.67 meV. Note that since the lowest energy state at the cross point has the s-
like orbital, the s-s coupling between the nearest sites gives a negative value to the
electron transfer energy, ��, in most cases. However, as shown in the subsection
2.3.4, the sign of �� is easily changed by applying a magnetic field to the lattice
system. Thus, in this work, we assume that �� has a positive value. In this case,
the flat band appears as the lowest conduction band. We approximate the hole
transfer energy, �, equal to the electron transfer energy, ��, for simplicity. This
is because the reduced mass of an electron and a hole in InAs is almost equal to
the effective mass of an electron. On the other hand, when an electron and a hole
are located at nearest-neighbor sites, the Coulomb attraction energy between them
is �������, where � represents the relative dielectric constant of InAs, �=12.4,
and � is the elementary electric charge. Thus, the on-site Coulomb energy �� is
estimated as 4.18 meV.

The wave functions of exciton states are written as follows, because we assume
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Figure 2.2: Electronic band structures of Kagomé lattice calculated by using (a)
the LSDA [26] and (b) the tight-binding model. Insets are the Brillouin zones
corresponding to the unit cells in Fig. 2.1(b).

that an electron and a hole are other kinds of fermions,


�� �
�
��	

��	
�����
����� (2.6)

where 
����� represents the base function of electron on �-th site, 
� ��� represents
the base function of hole on �-th site. The coefficients ���	� are obtained as the
eigenvectors from the diagonalization of Hamiltonian.

The exciton states are obtained as the lowest-energy bound eigenstates of the
Hamiltonian. The exciton binding energy, �� , is calculated as

�� � ���� � 	�� ���� 	� 	�� (2.7)

where ���� � 	� and ���� 	� 	� are the lowest eigenvalues of the Hamiltonian
without and with the Coulomb attraction interaction, respectively. The Hamilto-
nian is numerically diagonalized by the Lanczos method for Kagomé lattices of
finite size as large as 15 � 15 unit cells with periodic boundary conditions. To
check the convergence of the calculated binding energy of exciton, we varied the
size of the system and confirmed that the binding energy of an exciton is obtained
with 1% accuracy in the present calculation.

2.3 Results and Discussion

2.3.1 Binding energies and radius of exciton

First, we consider the exciton binding energy in the Kagomé lattice. In order
to clarify the characteristics of the Kagomé-lattice system, we compare binding
energies among various lattice systems. Schematic diagrams of one-dimensional,
two-dimensional Kagomé, triangle and square lattices are shown in Figs. 2.3(a) to
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Figure 2.3: The lattice models adopted in this work: (a) one-dimensional, (b)
Kagomé, (c) triangle and (d) square lattices. Unit cells of these lattices are shown
in (a) to (d) by gray square frames. Kagomé and triangle lattices are obtained
from one-dimensional and Kagomé lattices, respectively, by allowing the carrier
transfer along broken lines in (a) and (b).

2.3(d) as solid lines, respectively. Unit cells of these lattices are also represented
by gray square frames in Figs. 2.3(a) to 2.3(d). The calculated electron and hole
band structures of these lattices are shown in Figs. 2.4(a) to 2.4(d). As shown in
Fig. 2.4(b), the flat bands appear as the lowest conduction and the highest valence
bands for the Kagomé lattice. It should be noted here that when we introduce
another transfer energy, ��, shown by broken lines in Figs. 2.3(a) and 2.3(b), the
triangle and Kagomé lattices are obtained from the Kagomé and one-dimensional
lattices, respectively, by changing �� from �� � 	 to �� � �� � �. This treatment
enables us to study the effect of the continuous dimensional change of a lattice
from a one-dimensional lattice to a two-dimensional triangle lattice by way of a
Kagomé lattice.

Figure 2.5 shows the calculated binding energies of excitons for various lat-
tices. It is seen that the exciton binding energies in the one-dimensional lattice
are larger than those in the triangle and square lattices, which is consistent with
the familiar knowledge that the exciton binding energy increases as the spatial
dimension of the system decreases. However, it should be emphasized that the
binding energy in the two-dimensional Kagomé lattice is larger than that in the
one-dimensional lattice.

We then consider the spatial localization feature of exciton states. The calcu-
lated exciton densities are shown in Figs. 2.6(a) to 2.6(d) for various lattices. In
these figures, the electron is fixed on one specific site denoted by white arrows
and the hole distribution is displayed. Apparently, all wave functions are s-like
nodeless states. To evaluate the localization nature of excitons, the exciton Bohr
radius is calculated by fitting the following distribution function to the exciton
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Figure 2.4: The electronic band structure of (a) one-dimensional, (b) Kagomé, (c)
triangle and (d) square lattices. Solid and open circles represent an electron state
at the bottom of the conduction band and a hole state at the top of the valence
band, respectively, and the wavy lines schematically indicate the Coulomb attrac-
tion interactions. Insets are the Brillouin zones corresponding to the unit cells in
Fig. 2.3.
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Figure 2.5: Calculated binding energies of excitons for various lattices. Transfer
energy, ��, which corresponds to the carrier transfer along broken lines shown in
Figs. 2.3(a) and (b), is continuously changed from �� � 	 to �� � � � �� � �,
yielding the gradual modification from the one-dimensional and Kagomé lattices
to the Kagomé and triangle lattices, respectively. Calculations are performed for
the 15 � 15 unit cells.

density shown in Fig. 2.6,

���� � �� ���
�
� �
�� ��


 

�
� (2.8)

Here, �� is the coordinate of the fixed electron and  is the exciton radius.
The calculated exciton radiuses are 102, 42, 36, and 108 nm for the one-

dimensional, Kagomé, triangle, and square lattices, respectively. Therefore, the
excitons are localized in the Kagomé lattice as compared to the one-dimensional
and square lattices, which is one of the reasons for the large exciton binding en-
ergy in the Kagomé lattice because the binding energy increases as the localization
increases. However, excitons in the Kagomé and triangle lattices have almost the
same radiuses. This result indicates that the localized nature of excitons alone
cannot explain why the excitons in the Kagomé lattice have larger binding energy
than those in the other lattices discussed here.

2.3.2 Another flat-band system: Tasaki lattice

Next, we consider the exciton states in another flat-band system, i.e., the Tasaki
lattice, which is shown in Fig. 2.7(a) [33]. The electronic band structure of the
Tasaki lattice is shown in Fig. 2.7(b). The flat bands appear at the bottom of
conduction band and the top of valence band. The exciton state in the Tasaki
lattice is calculated in a similar way to those in the other lattices given in the
previous subsection. The calculated binding energy is also shown in Fig. 2.5.
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Figure 2.6: Calculated exciton densities for various lattices. The electron is fixed
on one specific site shown by white arrows and the hole spatial distribution is
shown for (a) one-dimensional, (b) Kagomé, (c) triangle and (d) square lattices.
White square frames in (a) to (d) are unit cells. Calculations are performed for the
6 � 6 unit cells.
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Figure 2.7: (a) Schematic diagram of the Tasaki lattice. In this lattice, the transfer
energies of an electron and a hole are � between two sites, which are connected by
straight solid lines, while the transfer energies are �� between two sites connected
by straight broken lines. The transfer energies represented by broken circular lines
are ���. When �� � 	, the lattice corresponds to the square lattice. On the other
hand, when �� � �, the original Tasaki lattice is obtained. (b) The electronic band
structure of the Tasaki lattice with �� � �.

It is seen that the exciton binding energy in the Tasaki lattice (4.2 meV) is
much larger than that in the Kagomé lattice (3.3 meV). This is because, as shown
in Fig. 2.7(b), the Tasaki lattice has the full band gaps between the flat bands and
the other normal bands, and thus, the localizations of an electron and a hole state
in the flat band are stronger compared to the case of the Kagomé lattice. The
calculated exciton radius is shown in Fig. 2.8. It should be noted here that the
exciton binding energy is larger than even the on-site Coulomb attraction energy
of �� � 4.18 meV. Note that �� is the maximum value of the Coulomb attraction
energy for the case of one-site localization of both an electron and a hole. This
result clearly indicates that the localized nature of flat-band states is not the unique
origin of larger exciton binding energy.

2.3.3 Perturbation analysis of flat-band exciton

To clarify the origin of the large binding energy of an exciton in the flat-
band-lattice systems, we perform the perturbation calculations of exciton states
using the finite and periodic system. The Coulomb attraction interaction, the third
term in Eq. (2.4), is treated as the perturbation term, �! . For simplicity, we as-
sume that the interaction is of short range and works only at the same site as
����	� � ���Æ�	 . Moreover, the 2 � 2 finite Kagomé lattice with the periodic
boundary condition is used, together with the corresponding-size square lattice
for comparison.
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Figure 2.8: Calculated exciton densities for Tasaki lattices. The electron is fixed
on one specific site shown by white arrows and the hole spatial distribution is
shown. Calculations are performed for the 6 � 6 unit cells.

In the case of the square lattice, the lowest eigenstate of an electron 
"����
or a hole 
"��� is the linear combination of the �-site localized states, 
��, with
the same-magnitude coefficients, ��, as 
"���� � 	

� ��
��, where the sign of ��

is given as shown in Fig. 2.9(a). Remember that the electron and hole transfer
energies have positive values in this paper, and thus, that coefficients of nearest-
neighbor sites have different signs. The unperturbed exciton eigenstate is the ten-
sor product of these states as


����� � 
"����
"��� � (2.9)

Then, the first-order perturbation gives the binding energy of exciton �
���
� as

�
���
� � ������
 �! 
����� (2.10)

� �


�
�� � (2.11)

where the value of denominator, 16, corresponds to the number of the lattice points
in Fig. 2.9(a), and reflects the extended nature of electron and hole band states.

In the case of the Kagomé lattice, it is well known that the lowest eigenstates
of an electron 
"���� � and a hole 
"��� � are the linear combinations of the localized
states around hexagonal plaquettes, respectively, as shown in Fig. 2.9(b) [22–24].
Namely, the site coefficients have the same magnitudes and possess the signs as
shown in Fig. 2.9(b). Since there are four plaquettes in the present � � � lattice,
both the eigenstates, 
"���� � and 
"��� �, are fourfold degenerated with �� � �  to �,
which is the origin of flat-bands. Since these localized states produce complete
sets of flat bands, the unperturbed eigenstates are given by


����
���	�� � 
"���� �
"��	 �� (2.12)
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Figure 2.9: Schematic of the lowest eigenstates of a conduction-band electron or
a valence-band hole: (a) square and (b) Kagomé lattices. The frames (gray lines)
display the localization regions of eigenstates and the inserted numbers on the
sites, � and �, represent the amplitudes of eigenfunctions. In the case of the
Kagomé lattice, the lowest eigenstates are degenerate as shown by 
"���

� � to 
"���� �.
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which are 16-fold degenerated. Since these states are nonorthogonal, i.e., overlap
each other, we have to apply the degenerate nonorthogonal first-order perturbation
to estimate the exciton binding energy, � ���

� , as follows:

�	�
�
�

�������
� 
! 
����

� � � ��
���
�

�	�
�
�

�������
� 
����

� � � (2.13)

Here, # denotes the basis pair, ��� ��.
One can classify the matrix elements in Eq. (2.13) into three groups reflecting

the physical characteristics of flat-band states: (i) The diagonal matrix elements
of the left-hand side reflect the localized nature of flat-band eigenstates, because
�����

� 
 �! 
����
� � is the simple average of the Coulomb interaction by the single state,


����
� �, similar to Eq. (2.10). (ii) The nonzero off-diagonal matrix elements have

the values of���� and appear due to the degeneracy of flat-band states, similar
to the case of the usual degenerate perturbation. On the other hand, (iii) the off-
diagonal matrix elements of the right-band side reflect the itinerant (nonorthogo-
nal) nature of flat-band states. To clarify the contributions of these three groups
of the matrix elements to the exotic exciton state, we multiply off-diagonal matrix
elements of a group (ii) by the factor $ and those of a group (iii) by the factor  .
The solution of thus modified Eq. (2.13) gives the exciton binding energy as

�
���
� �

��� � �$ �


 � �$ � �$� �

��� � � �
��� (2.14)

In the case of $ �  � 	, which corresponds to the case of neglecting both
the itinerant nature and the degeneracy but considering only the localized nature
of flat-band states, ����

� � ����. This value is larger than that of the square
lattice, which indicates that the exciton in the Kagomé lattice is more localized
than that in the square lattice and is consistent with the results of numerical cal-
culation presented previously. We then switch on the factors, $ and  , step by
step as displayed in Fig. 2.10. When we change the value of  from 0 to 1, which
corresponds to the case considering the itinerant and the localized nature of flat-
band states, ����

� decreases to ���. This is because the itinerant (nonorthogonal)
nature induces the extension of the localized flat-band states and gives the loss of
attractive Coulomb energy. When both $ and  have the values of 1, corresponding
to the case considering not only the localization and itinerant natures but also the
degeneracy of flat-band states, ����

� again increases to ����. From this analysis,
we can clearly conclude that not only the localization nature, but also the degen-
eracy of the flat-band eigenstates, is essential origin to enlarge the binding energy
of flat-band exciton.

2.3.4 Magnetic field effect

Here, we consider the exciton binding-energy variation when the magnetic
field is applied perpendicular to the lattice surface. In the tight-binding model,
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Figure 2.10: Schematic diagram representing contributions to exciton binding en-
ergy by the present step-by-step perturbation analysis. (i) localization contribu-
tion, (ii) itinerant (nonorthogonal) nature contribution, and (iii) degeneracy con-
tribution. In case of square lattice, only the localization contribution exists.

Figure 2.11: Calculated exciton binding energies of various lattices as a function
of the magnetic field perpendicular to the lattice plane. Upper panels show the
schematic band structures of the Kagomé lattice, in the cases of -3.7T, 0T and
3.7T from the left to the right. Calculations are performed for the 15 � 15 unit
cells.
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the magnetic field effect is introduced into the Hamiltonian by multiplying the
transfer energy ��	 by the phase factor [34],

��	  ���
�
�
���

�%

�
��

��

���� ��

�
� (2.15)

where ���� is the vector potential, and �� is the position vectors of the �-th site.
Figure 2.11 shows the calculated exciton binding energies for various lattices

as a function of the magnetic field. Here, in the case of 3.7T, fourfold unit mag-
netic fluxes are included in the unit cell of the Kagomé lattice. The schematic
band structures in the cases of the magnetic fields of -3.7, 0, and 3.7T, without the
Coulomb attraction interaction, are also shown in the upper panels of Fig. 2.11.
In general, the magnetic field bends the flat-band dispersions and changes the
position of flat bands. It is seen in Fig. 2.11 that the binding energy of an ex-
citon in the Kagomé lattice suddenly decreases with applying the magnetic field
and that its magnitude becomes comparable to those in other two-dimensional lat-
tices. This result indicates that the large exciton binding energy is obtained only
when the flat bands appears as the lowest-conduction and highest-valence bands.
Moreover, from this result, we can say that in the Kagomé lattice, one can largely
control the binding energy of excitons by applying a magnetic field.

Finally, we comment on the sign of electron and hole transfer energies. As
shown in the upper pictures of Fig. 2.11, an electron and a hole transfer energies
in the case of �3.7T are ��� and ��, respectively, while those in the case of 0T
are �� and �. In this way, we can change the sign of carrier transfer energies by
applying an external magnetic field. This is the reason why we take �� and � as
positive in section 2.2.

2.3.5 The lattice-constant dependence of exciton binding ener-
gies

In the subsection 2.3.1, the calculated exciton binding energy in the Kagomé
lattice is 3.3 meV, which is larger than those in the square lattice (1.4 meV) and
in bulk InAs (1.6 meV). Thus the difference of binding energy among these sys-
tems is observable in careful experiments. However if one produces the Kagomé
quantum-wire lattice with small lattice constants, it is expected that the exciton
binding energy in the Kagomé lattice becomes much larger. This is because the
exciton is localized in one plaquette of the Kagomé lattice, on the other hand, the
excitons in other lattices are sufficiently extended. Thus, it is expected that as
the lattice size decreases, the exciton-energy difference between the Kagomé and
other lattices increases. Therefore, we investigate that how the exciton binding
energies change when the lattice constants decrease.

To calculate the lattice-constant dependence of the binding energies, we esti-
mate the lattice-constant dependence of the electron and hole transfer energies by
using the square lattice without energy degeneracy. The electronic band structure
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of the conduction band bottom or the valence band top is written as,

���� � ��


� � � ��� ��� � � ��� ��� � �

�
� � ��� ����� � ��� �����

(2.16)
where the ���� ��� represents the wave vector. Because the electronic band has the
minimum value at � point, the ���� is expanded around � point as follows,

���� � ���
�
� � � ���

�
���
�

�

� ���

�� ����

�
�

(2.17)

where �� � �� � � has been used. The effective mass, �, at � point is defined as
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The following form is deduced as transfer energy by using Eq. (2.17) and Eq.
(2.18),

� �
���

���
� 

��
� (2.19)

Equation (2.19) shows that the transfer energy is inverse proportional to the square
of the distance, �. On the other hand, we already know that the on-site Coulomb
attractive interaction, ��, is inverse proportional to the distance, �. Thus, when
the distance, �, is � nm, the transfer energy, �, is estimated as follows,

� �
��
 meV

�� nm�� nm��

� ���� meV�

(2.20)

The on-site Coulomb interaction attractive interaction is also estimated as

�� �
��� meV

�� nm�� nm�

� ���� meV�

(2.21)

We obtain � � �	�� meV and �� � ���	� meV, similarly in case of � � �
nm. The calculated binding energies of exciton in various lattice with different
lattice constants are shown in Fig. 2.12. The binding energies of excitons in all
lattices become larger when the lattice constants decrease. Especially, the binding
energies of excitons in the Kagomé lattice are much larger than those of exciton
in the other lattices in the case of the distance � � � nm. Then the binding energy
of exciton in the Kagomé lattice reaches about �	 meV, which is observable easily
by experiments.
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Figure 2.12: The lattice constant dependence of the binding energies of excitons
in the one-dimensional, Kagomé, triangular, and square lattices.

2.4 Conclusions

The flat-band exciton in the InAs Kagomé quantum-wire system was studied
employing a tight-binding model. We found that the binding energies of flat-band
excitons in the Kagomé and Tasaki lattices are much larger than those in other
two-dimensional lattices and even larger than that in the one-dimensional lattice.
Furthermore, it was found that as the lattice size decreases, the exciton-energy
difference between the Kagomé and other lattices becomes larger. By the pertur-
bation analysis, it was shown that both the localized nature and the macroscopic
degree of degeneracy of the flat-band eigenstates of electron and hole are the ori-
gins of large exciton binding energy. It was also found that when the magnetic
field is applied, the binding energy of a flat-band exciton shows a large variation.



Chapter 3

Quantum electron transport
properties of Kagomé-lattice-chain
systems

3.1 Purpose

The motivation of the present work arises from the simple question whether we
can observe the unique features originating from the flat-band states in transport
properties. Especially, we note how the flat-band characteristics, i.e. localiza-
tion and itinerant natures, contribute to the conductivity. Kimura and coworkers
calculated the conductivity of the two-dimensional Kagomé lattice with periodic
boundary condition using the Drude weights [35], and showed that the group ve-
locity of conduction electrons is zero when the Fermi energy is located at the flat
band; thus, the system becomes an insulator. On the other hand, in the presence
of a magnetic field, the flat band has a finite dispersion and the group velocity
becomes finite, resulting in a metallic behavior. However, in their study, it is not
clear what relationship exists between the transport properties and the unique fea-
tures of flat-band states, because applied magnetic fields are too strong and the flat
band is completely broken. Furthermore, using an electric field to remove the de-
generate flat-band states localized in each unit cell is more interesting than using
a magnetic field, because an electric field has spatial directivity.

In this work, thus, we investigate how the degenerate flat-band states are re-
moved and contribute to the transport properties when a magnitude or a direction
of electric field applied to the systems is changed. To apply a finite-magnitude
electric field to the Kagomé lattice, we employ the finite-size Kagomé-lattice
chain shown in Fig. 3.1(b). From this viewpoint, we investigate the transport
properties of the finite-size Kagomé-lattice system under external electric fields,
by employing the simple tight-binding model and the nonequilibrium Green func-
tion method, and clarify the effects of unique features of flat-band states.

31



32 Chap. 3 � Quantum electron transport properties of Kagomé-...

3.2 Model and Calculation method of quantum
electron transport

3.2.1 Kagomé-lattice chain

We consider Kagomé-lattice chains shown in Fig. 3.1(b) made of semiconduc-
tor quantum-wire and molecular networks. The electrons in the former system are
mainly localized at the cross points of wires and move along the wires as shown
in Fig. 2.1(a) [12,26], while those in the latter system are localized on cross-point
atoms and transfer between them. Thus, we reasonably assume that the use of
the simple tight-binding model to describe the electronic states of these systems
is effective [36]. To simplify, we treat electrons as spinless fermions having no
Coulomb repulsive interactions, and suppose that one lattice point has one single
orbital. Then, the Hamiltonian of this chain is written as

��� � �
�

����	��

��%���%	 �
�

�����

���%
�
��%�� (3.1)

where �%�� and �%� are the creation and annihilation operators of the electron at the
�-th site, � the electron transfer energy between the nearest neighboring �- and �-
th sites, and ' the number of sites in the Kagomé-lattice chain, i.e. ' � � �
( � . �� describes the on-site energy of the �-th site, which represents the
effects of external fields. We consider that the entire region of the Kagomé-lattice
chain is attached to the gate electrode; thus, all the on-site energies are uniformly
varied by applying the gate voltage. Moreover, we apply the external electric field
along or perpendicular to the chain, thus changing the on-site energy individually
depending on its position. In this case, �� is written as

�� � � � � � �
� � (3.2)

where � � is the applied gate voltage, and � �
� represents the potential due to the

external electric field whose detailed form is displayed in the following.

Relation between Kagomé-lattice chain and two-dimensional Kagomé lattice

We show that the electronic states of finite-size Kagomé-lattice chains are re-
lated to the electronic states of two-dimensional Kagomé lattices. Figure 3.1(a)
schematically shows the tight-binding model of a two-dimensional Kagomé lat-
tice, where electrons are localized at solid circles and transfer along the solid lines.
As shown in this figure, one of the flat-band eigenstates in this lattice is localized
completely in a hexagonal area surrounded by broken lines. We call this area the
plaquette in this paper. The other flat-band eigenstates are localized in the other
plaquettes, similarly.

When the Kagomé-lattice chain has an infinite length, ( � �, the square
region in Fig. 3.1(b) becomes a unit cell of periodicity and the electronic states
have the band structure shown in Fig. 3.2(a). Here, we assume that the period
equals to ��. The flat band appears at the energy of ��. On the other hand, in
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1 MM-1M-2M-3M-4

Figure 3.1: Schematic pictures of Kagomé-lattice systems. (a) Two-dimensional
Kagomé lattice and (b) ( -plaquette Kagomé-lattice chain. In both (a) and (b)
lattices, flat-band eigenstates are localized in the hexagonal region surrounded by
broken lines. Their wave functions have the same amplitude with alternative signs
at every lattice point, while they have no amplitude outside the hexagonal region.
The length between the nearest neighbor sites is defined as “�”.
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Figure 3.2: (a) Electronic band structure of one-dimensional Kagomé-lattice
chain. As shown in Fig. 3.1(b), �� is the periodicity of the lattice along the chain
direction. (b) Energy levels of four-plaquette Kagomé-lattice chain. The numbers
in parentheses indicate the degree of the energy degeneracy of individual energy
levels.



34 Chap. 3 � Quantum electron transport properties of Kagomé-...

x

y
a

0

Figure 3.3: Schematic pictures of joint system of finite-size Kagomé-lattice chain
and half-infinite electrodes. The transfer energies are shown by various �’s. We
adopt the ) and * axes along and perpendicular to the chain direction.

the case of the Kagomé-lattice chain with a finite ( plaquette length, ( -fold
degenerate states appear at the same energy. For example, Fig. 3.2(b) shows the
energy spectra of a four-plaquette Kagomé-lattice chain. The wave functions of
the flat-band state in Fig. 3.2(a) and the fourfold degenerate state in Fig. 3.2(b)
are localized in one plaquette, as seen in Fig. 3.1(b), similar to the case of two-
dimensional Kagomé lattice in Fig. 3.1(a). Here, �, � and 	 represent the wave
function amplitudes corresponding to �

�
�, ��� and 	, respectively. Each

plaquette in the Kagomé-lattice chain has this type of eigenstate, which produces
the flat band in Fig. 3.2(a) or multiple degenerate energy levels in Fig. 3.2(b).

3.2.2 Source and Drain electrodes

To study the transport properties of electrons, the edges of the Kagomé-lattice
chain are connected to the source and drain electrodes, as shown in Fig. 3.3. We
assume that both electrodes are represented by the tight-binding models of one-
dimensional lattices having a half-infinity length. Thus, the Hamiltonian of the
electrode is written as

��� � �
�
��	

���%���%	 � ��
�
�

�%���%�� (3.3)

where  denotes either left (L) or right (R) electrode. When we number the sites
in the electrodes, as shown in Fig. 3.3, the summation runs over the sites with
� � 	 (� � ' � ) for the  � L (R) electrode. �� is the electron transfer energy
between the �- and �-th sites in the  electrode, and �� is the chemical potential
of electrode. In this case, the electrode is half filled with electrons because the
on-site energies are equal to the chemical potential.

3.2.3 Connection to electrode

To study the electron transport properties through the Kagomé-lattice chain, the
edges of the chain are connected to the source and drain electrodes, as shown in
Fig. 3.3. In order to connect the electrodes to the chain, the following Hamiltonian
is introduced,

�� � �����%���%� � �%���%� � �%���%�� � �%����%� �� (3.4)
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where �� is an electron transfer energy between the Kagomé-lattice chain and elec-
trodes. The total Hamiltonian of the joint system is represented as follows using
above Hamiltonians,

�� � ��� � ��� � ��� � ��� (3.5)

When the joint system is in the equilibrium state, the electronic states are filled
with electrons up to the spatially uniform chemical potential �, as shown in Fig.
3.4(a). In this equilibrium situation, the electrons can’t flow effectively through
the Kagome-lattice chain from the left electrode to the right electrode. Thus, we
have to employ the nonequilibrium Green function method discussed in section
3.5.

3.2.4 Electronic current formula under the nonequilibrium Green
function method

Figure 3.4(b) shows the schematic energy diagram of this joint system under
the nonequilibrium state. The electrons transfer from the left electrode to the
right electrode passing through the energy-level channels of the central Kagomé-
lattice chain. The source-drain voltage � sd is given as �� sd � �� � ��. To
scan such channels, we apply the gate voltage � � to the Kagomé-lattice chain
to move the energy-level positions. The electronic steady current flowing along
the Kagomé-lattice chain is calculated by employing the nonequilibrium Green
function method [37,38]. In this method, the Green functions of the electrode and
chain, +���, are separately calculated, assuming that these systems are isolated.
Then, we connect the electrodes and chain to calculate the Green functions of the
joint system, ����. The electronic current is obtained using these ����.

The electronic structure of the Kagomé-lattice chain is obtained by numeri-
cally diagonalizing the Hamiltonian (3.1). Using Eq. (3.226), the ��-th site com-
ponent of the retarded Green function for the Kagomé-lattice chain is obtained
as

+
�	��� �
�
�

,�
� ,

�
	
�

� � �� � �Æ
� (3.6)

where � and � denote the site numbers from 1 to ' , �� is the eigenenergy of an #-
th eigenstate, ,�

� represents its wave function at the �-th site, and Æ is the infinites-
imal value. The sum in Eq. (3.6) runs over all the eigenstates of the Kagomé-
lattice chain. The advanced Green function +�

�	��� is obtained using the following
relation: +��	��� � �+
	�����

�. Using Eq. (3.227), the Keldysh Green function is
obtained as

+��	��� � �� �-�����+
�	���� +��	����� (3.7)

where -��� shows the Fermi distribution function of the isolated Kagomé-lattice
chain. As long as there is no interaction between electrons, the final results with
respect to the current do not depend on the choice of this distribution function [39].

Due to the simple nature of one-dimensional terminated lattices, the Green
functions for the isolated left and right electrodes are obtained in an analytic form.
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Figure 3.4: (a) Schematic energy diagram of joint system in the equilibrium state.
(b) Schematic energy diagram of joint system in the nonequilibrium state. Elec-
trons transfer from the left electrode to the right electrode passing through the
energy levels of the center system, as shown by arrows.
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For example, the edge components of the retarded Green functions, which will be
used to solve the Dyson equation below, are written as (see Eq. (3.197))

+
����� �
� � �� � �



������ � �� � ����

������
� (3.8)

+
�������� �
� � �� � �



������ � �� � ����

������
� (3.9)

The advanced and Keldysh Green functions are obtained using a formula similar
to that in the case of the Kagomé-lattice chain.

Next, we consider the Green functions for the joint system of the Kagomé-
lattice chain and two electrodes. First, we introduce the self-energy � to connect
two electrodes to the Kagomé-lattice chain (see Subsec. 3.5.4). In case shown in
Fig. 3.3, the self-energy � �� �
 � ��� can be written as

��	 � ����Æ���Æ	�� � Æ���Æ	�� � Æ���Æ	��� � Æ����Æ	���� (3.10)

where �� is the transfer energy between an electrode and a Kagomé-lattice chain.
Then, we obtain the retarded, advanced, and Keldysh Green functions of the joint
system, �
, ��, and ��, by solving the following Dyson equations

�
��� � �
��� � �
��� ��
���� (3.11)

����� � ����� � ����� ������� (3.12)

����� � ����� � ����� ������ � �
��� ������� (3.13)

where we used the matrix representation for the Green functions and the self-
energy. Since the self-energy has only a few off-diagonal components, these equa-
tions are easily solved.

It is noted that the electronic current at left contact is the same as that at right
contact due to charge conservation. Therefore, using the Green functions, the
electronic current flowing along the Kagomé-lattice chain is calculated using the
current at the left contact as

��� � � �

��
����%���%� � �%���%��

� � �

��
��
� �

��

�
��
��������

�����
�
���

(3.14)

where � is a Planck constant [38].
Here, we deduce shortly the analytic forms of the Keldysh Green functions,

��
�� and ��

��, in Eq. (3.14). Using Eqs. (3.11) and (3.12), equation (3.13) is for-
mally solved as follows,

����� � �
����
����������������������� (3.15)
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In the case of no Coulomb interaction between electrons, Keldysh Green functions
can be written using advanced and retarded Green functions,

��
�� � �� �-���
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� 

+���
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+
��

�
��
��
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����

� 
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+
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�����
(3.16)
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where -� and -� represent the Fermi distribution functions of electrons in the left
and right electrodes, respectively. We can confirm that the current is independent
of the Fermi distribution function of the isolated Kagomé-lattice chains. Solving
the Dyson equations (3.11), the retarded Green functions are obtained by using
the unperturbed Green functions as follows,

�

�� � +
��

� +
�� ��+
������
�

�

� (3.18)
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where
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(3.22)

We can obtain similarly the advanced Green functions. Using the charge conser-
vation law, i.e., ���

�� � ��
��� � ���

���� � ��
���� �, the formula (3.14) can be

transformed into a more understandable one:

��� � �
�

�
��
�

� �

��

�� �-����� -�����

Im�+������� �


�� ��� �

�
����� Im�+�����������

(3.23)

where the Green function �

�� is defined by +
���
. The Green function ��

�� is
defined similarly. In this formula, �� indicates the coupling between the Kagomé-
lattice chain and two electrodes, while Im�+�

��� and Im�+������� are the electron
densities of states of the left and right electrodes. The part �


����
�� is the trans-

port probability from the left edge to the right edge of the Kagomé-lattice chain.
The local densities of states (LDOS) at various site of left electrode are shown in



Sec. 3.2 � Model and Calculation method of ... 39

2tL

tL

0

tL

2tL

E
ne

rg
y

LDOS 
[arb.unit]

0-1-2-3-20

Figure 3.5: The calculated electron local densities of states at 0-, -1-, -2-, -3-, -20-,
and -�-th site of the left electrode.

Fig. 3.5. The electronic band structure of infinite one-dimensional lattice diverges
at the band edge. However, in case of a half-infinity-length electrode, the local
density of state at the edge of the electrode doesn’t have divergence. The electron
number density at the �-th site is similarly calculated as

���� � ��%���%��

� � �

��

� �

��

���

����� ���

����� ���
�����

�
���

(3.24)

We calculate the current vs gate-voltage spectra using Eq. (3.14), while we analyze
such spectra using Eq. (3.23).

3.2.5 Calculation parameters

In the calculation of the current passing through the Kagomé-lattice chain,
one has to determine relevant energy parameters. We first choose the transfer
energy in the Kagomé-lattice chain, �, as an energy unit standard. �� is the coupling
between the electrode and the Kagomé-lattice chain, which induces the changes in
electronic states in the Kagomé-lattice chain when the connection is realized. To
observe the characteristic features of electronic states in the Kagomé-lattice chain,
a small value is desirable for ��; thus, we adopt �� � 	��. On the other hand, the
transfer energies �� and �� determines the bandwidths of the electrodes. To avoid
the singularity of a one-dimensional band, a large �	� is used for both �� and ��.

The difference in chemical potential between the left and right electrodes,
�� � ��, corresponds to the applied source-drain voltage � sd. The every discrete
energy levels under the Fermi energies of the left or right electrodes contribute to
the electronic current. However, in the case of no Coulomb interaction between
electrons, the energy levels under the both �� and �� don’t contribute effectively
to the current, because the current flowing from the left to right electrodes is equal
to one from right to left electrodes when the energy level locate under the both ��

and ��. As a result, the only energy levels located between two Fermi energies
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contribute to the electronic current. Actually, using Eq. (3.24), we have confirmed
that the energy levels under the two Fermi energies are filled with electrons as
shown in Fig. 3.4(b). Thus, as seen in Fig. 3.4(b), the energy difference between
two Fermi energies determines the width of energy window, which is used to scan
the current channels in the Kagomé-lattice chain and determine the spectral res-
olution. For example, if we increase �� � ��, the number of current channels
between the chemical potentials increases and the current spectra become broad.
The source-drain voltage dependence of the current vs gate-voltage characteristics
is shown in Figs. 3.21(a)-(c) in Sec. 3.6. To observe each channel separately, � sd

should be smaller than various �’s, thus a value of � sd � 	�	�� is adopted.
On the other hand, the inverse temperature, . � ��� , appearing in the

Fermi distribution functions of the electrodes represents the broadening of the
electron occupation around the chemical potentials, thus simply promoting the
broadening of the current spectra. The temperature dependence of the current vs
gate-voltage characteristics is shown in Fig. 3.22 in Sec. 3.6. Since we are not
interested in such broadening, a small value of .�� � 	�	� is used in this work.

The imaginary part of the denominator of the Green function in Eq. (3.6), Æ,
denotes the inverse of the lifetime of the electronic states in the Kagomé-lattice
chain reflecting the scatterings of electrons by other freedoms such as lattice vi-
brations. We assume that there is no scattering and use an infinitesimal value,
Æ � 	���. This small value is sufficient in maintaining the charge conserva-
tion in the numerical calculation. The current passing through the Kagomé-lattice
chain is calculated numerically using the formula (3.14). In the integration of
Eq. (3.14), we adopt the energy mesh having the interval of 	���. By varying
the values, we found that the above values ensure the numerical accuracy of the
calculated current with a relative error of 	�	.
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Figure 3.6: Calculated current vs gate-voltage characteristics of (a) two-, (b) four-
, and (c) ten-plaquette Kagomé-lattice chains in case of without external electric
field. The unit of current is 	��
�
���. The broken line in (c) denotes the density
of states of the Kagomé-lattice chain with an infinite length.

3.3 Results and Discussion

3.3.1 Current vs gate-voltage spectra

We first study the general features of the electronic current flowing through the
Kagomé-lattice chain in the case when there is no external electric field. Figures
3.6(a)-3.6(c) show the calculated currents of the Kagomé-lattice chains with two,
four, and ten plaquettes, respectively, as a function of the applied gate voltage.
The broken line in Fig. 3.6(c) represents the density of states of the Kagomé-
lattice chain having an infinite length.

In these figures, the flat-band channel is located at � � � ���, which is recog-
nized by observing the energy spectra in Figs. 3.2(a) and 3.2(b) or the density of
states in Fig. 3.6(c). It is seen that the currents through the flat-band channel are
almost zero for the chains with ( � � and 10 plaquettes, being in agreement with
the calculation by Kimura �� �/� [35]. This result occurs because of the infinite
effective mass, i.e., localized nature, of the flat-band states, the details of which
are discussed later. On the other hand, a small peak appears at � � � ��� in Fig.
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3.6(a) due to the finite-size effect of the Kagomé-lattice chain.
The other current peaks seen in the region from � � � ���� to 	 originate

from normal-band channels. As the length of the chain increases, the number of
peaks increases in this region and the magnitude of each peak decreases. These
changes occur due to the formation of an electronic band structure; the number of
electronic states in one band increases in proportion to the length of the Kagomé-
lattice chain. On the other hand, since the electronic states in such a normal band
are extended and the amplitude of their wave functions at the edges, i.e., at � � 
and ' sites, is proportional to the inverse of the system size, the transfer proba-
bility of electrons from the left edge to the right edge of the chain decreases as the
length of the chain increases.

The current-peak magnitude of normal-band channel can be estimated in an
analytic form using approximate Green functions. For the isolated Kagomé-lattice
chain, when the #-th eigenstate has the energy �� with no degeneracy, the Green
function around � � �� is approximately given as

+
�	�� � ��� �
,�
� ,

�
	

� � �� � �Æ
� (3.25)

For the isolated left electrode, since the bandwidth is large such as 
��
 � 
� �
��
, we can approximate the Green function as

+
�� � ��


��
� (3.26)

Similar formulas can be used for +

����� of the right electrode. Using these

Green functions and solving the Dyson equation, the Green function �

�� of the

joint system is written as
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where � represents the broadening of the energy level due to the contact to the
electrodes and is given by

� � Æ �
���
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�,

�
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�,�

� � (3.30)

Noting that Æ is infinitely small. Using above approximated Green functions, when
the temperature is zero, the current formula (3.23) can be rewritten as
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�� ��
�� � (3.31)
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After carrying out the integration of above equation, the current magnitude is
obtained as follows,
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where the summation in Eq. (3.33) runs over the discrete energy levels between
two Fermi energies of the electrodes. We assume that every ,� is roughly given
as 

�
' , because the normal state expands in the whole chain system. Then, the

current magnitude is obtained as

��� �
�
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����� (3.34)

where

���� � ��
�

�

���

��'
� (3.35)

Here, �� � �� has been used. ���� is the current magnitude through the #-th
eigenstate. This equation clearly shows that the current peak intensities in the
normal-band channels decrease with increasing size of the Kagomé-lattice chain.

As seen in Figs. 3.2(a) and 3.2(b), normal-band electronic states also exist
in the energy region from ���� to ���. However, one cannot see any current
peaks in the region from � � � ��� to ���� in Figs. 3.6(a)-3.6(c). This result
is related to the symmetry of the present joint system. The Kagomé-lattice chain
has a reflection symmetry along the * direction in Fig. 3.3. The normal-band
electronic states in the region from ��� to �� have an ungerade symmetry and
the amplitudes of their wave functions are exactly zero at the � �  and ' sites,
where the connection to the electrodes is realized. Thus, the transport of electrons
is inhibited through these channels. In fact, when we change the contact sites
to the electrode, the current peaks are revealed. As an example, an ungerade
eigenstates of four-plaquette length Kagomé-lattice chain is shown in Fig. 3.7.
This state locates at the neighbor of the flat-band states.

Finally, we briefly comment on the width of current peaks. There are three
factors that broaden the spectra; the finite source-drain voltage � sd, the tempera-
ture .��, and the contact broadening �. In our present calculation, their values
are 	�	��, 	�	�, and � 	�			��, respectively; thus, the � sd factor is relevant. In
fact, as seen in Figs. 3.6(a)-3.6(c), every peak has a width of about 	�	��.

3.3.2 Electric field effects

We then study how the current spectra change when a small external electric
field is applied to the Kagomé-lattice chain. Two cases are considered: the uni-
form electric field along the chain and that perpendicular to the chain, i.e., the )
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Figure 3.7: Ungerade eigenfunction of four-plaquette Kagomé-lattice chain. �
and � in circles are the signs of wave function amplitudes, while the tone repre-
sents the magnitude of amplitude.
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Figure 3.8: Calculated current vs gate-voltage characteristics of four-plaquette
Kagomé-lattice chain when electric field is applied along chain, i.e., along ) di-
rection, with � � � 	�	��. The unit of current is 	��
�
���.

and * directions in Fig. 3.3, respectively. In the former case, we assume that the
on-site potential is given by

� �
� � � ���(�� )����(��� (3.36)

where )� is the ) coordinate of the �-th site in a chain and � � represents the
electric-field magnitude. Figure 3.8 shows the calculated current spectra of the
four-plaquette Kagomé-lattice chain as a function of gate voltage, where the value
of � � � 	�	�� is adopted. It is seen that the overall spectra are similar to those in
the case with no electric field shown in Fig. 3.6(b). We found that this result does
not change when the � � value is changed.

In the case of the electric field along the * direction, we assume the on-site
potential as

� �
� � � �*��

�
���� (3.37)

where *� is the * coordinate of the �-th site in a chain and � � represents the
electric-field magnitude. Figures 3.9(a)-3.9(c) show the calculated current vs
gate-voltage spectra for the two-, four-, and ten-plaquette Kagomé-lattice chains,
respectively, where � � � 	�	�� is employed. Since the electric field is small,
the currents through the normal-band channels have almost the same position and
spectral magnitude as those in Figs. 3.6(a)-3.6(c). On the other hand, it is note-
worthy that a large current peak appears at � � � ���, i.e., at the position of the
flat-band channel.
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Figure 3.9: Calculated current vs gate-voltage characteristics of (a) two-, (b) four-,
and (c) ten-plaquette Kagomé-lattice chains when electric field is applied perpen-
dicular to chain, i.e., along * direction, with � � � 	�	��. The unit of current is
	��
�
���.
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The application of the external small electric fields removes the energy degen-
eracy of the flat-band states in the Kagomé lattices. To understand what changes
occur for these states, we investigate their wave functions. In the case of the four-
plaquette Kagomé-lattice chain, for example, fourfold degenerate flat-band states
change to have different energies. Figures 3.10(a)-3.10(d) show the wave func-
tions of these states in the case corresponding to Fig. 3.8. In these figures, � and
� are the signs of the wave functions, while the tone represents their amplitude.
It is seen that all these states are localized around one of the plaquettes in the
Kagomé-lattice chain. This is because each plaquette has a different on-site en-
ergy when the electric field is along the chain direction. In fact, four eigenstates
have energies in the order from (a) to (d) in Fig. 3.10. Reflecting such a localized
nature of the wave functions, the electron transport probability of these channels is
considerably small. Therefore, one cannot see current peaks around the flat-band
channel in Fig. 3.8.

When the electric field is applied perpendicular to the chain, fourfold-degenerate
eigenstates change to have different energies and have wave functions shown in
Figs. 3.11(a)-3.11(d). It is seen that all these states are extended over the Kagomé-
lattice chain. Thus, several current channels originating from these states are
opened and induce the sudden appearance of large current peaks at � � � ���,
as shown in Fig. 3.9(b). On the basis of these results, one can observe the mul-
tiple energy degeneracy of the flat-band states by applying the electric field per-
pendicular to the chain. Noting that the flat-band states have both localized and
itinerant characteristics, one can say that the electric field along the chain direc-
tion promotes the emergence of the localized characteristic of these states and
thus induces no current. On the other hand, the electric field perpendicular to
the chain promotes the emergence of the itinerant characteristic and produces the
large current.

3.3.3 Current spectral variation

We note in Figs. 3.9(a)-3.9(c) that the current peaks through the flat-band
channel have almost the same magnitude, which is independent of the size of the
Kagome-lattice chain [40]. Moreover, although the application of the electric field
removes the energy degeneracy of the flat-band states to produce several different
energies, one can see only a single current peak around the flat-band channel. To
understand these features, we study how the current spectra vary as the magnitude
of the electric field, � �, changes.

Figure 3.12 shows the current spectra of the four-plaquette Kagomé-lattice
chain around the flat-band channel for various values of � �. The spectral variation
is categorized into three regimes depending on the magnitude of the electric field.
In regime I (� � 0 	�	��), one can see a single peak in the flat-band channel at
around � � � ���. With increasing � � from zero to 	�	��, this peak slightly shifts
its every position and sharply increases its magnitude from zero to a maximum
value. In regime II (	�	�� 0 � � 0 	��), the peak gradually shifts its energy
position as � � increases but maintains almost the same maximum magnitude,
which dose not depend on the � � values. Then, in regime III (	�� 0 � �), the peak
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Figure 3.10: Eigenfunctions of four-plaquette Kagomé-lattice chain correspond-
ing to flat-band states, when electric field is applied along chain, i.e., along )
direction. � and � in circles are the signs of wave functions, while the tone
represents their amplitude.
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Figure 3.11: Eigenfunctions of four-plaquette Kagomé-lattice chain correspond-
ing to flat-band states, when electric field is applied perpendicular to chain, i.e.,
along * direction.
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Figure 3.12: Calculated current vs gate-voltage characteristics of four-plaquette
Kagomé-lattice chain around flat-band channel, for various values of electric field
along * direction. The unit of current is 	��
�
���.

shifts its energy position and broadens to split into several peaks with increasing
� �. The mechanism of these variations is explained as follows.

We first consider regime III. In this regime, since the electric field is large,
the energy degeneracy of flat-band states is broken and each electronic state ex-
ists separately in energy. Thus, one can use the Green function in Eq. (3.29) to
describe the current channel corresponding to each electronic state. Moreover, if
we denote the representative energy separation between such states as Æ��, Æ��

increases with increasing � � and becomes larger than the difference in chemical
potential between the left and right electrodes, such as Æ�� 1 �� � ��. This
situation is schematically displayed in Fig. 3.13(a), where only a single channel is
scanned at each gate-voltage value and we have many peaks in the current spectra.
In this sense, we can say that the flat-band channels in regime III behave like the
normal-state channels.

When we decrease the electric field and enter regime II, the energy separation
decreases such as ����� 1 Æ��, which is shown in Fig. 3.13(b). In this case, all
the flat-band channels are scanned simultaneously at a single gate-voltage value,
and the sum of these channels produces a large single current peak. This is why
the peak has almost the same magnitude in regime II, which does not depend on
the � � values. On the other hand, since the electronic states are extended over
the entire system as in Fig. 3.11, the current magnitude originating from a single
channel is proportional to the inverse of the number of sites, '�� � �( � �,
as described by Eq. (3.35). However, ( channels simultaneously contribute to
the current spectra. Thus, the current peak has also a constant magnitude, which
is independent of the system size. On the basis of these results, we can observe
the multiple energy freedom of flat-band states as a large single current peak in
regime II.

When we further decrease the electric field and enter regime I, the energy
separation becomes smaller than the broadening of the respective energy level as
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� 1 Æ��. This situation is shown in Fig. 3.13(c). In this regime, in stead of Eq.
(3.29), one can approximate the Green function as

�

���� � �flat� � ,�

�,
�
� � ,�

�,
�
� �   � ,�

� ,�
�

� � �flat � ��
� (3.38)

where �flat represents the average energy of the flat-band states. As seen in Figs.
3.11(a)-3.11(d), the sign of the product of wave function amplitude, ,�

�,
�
� , of the

#-th eigenstate is opposite to those of the nearest �# � �- and �# � �-th states.
This sign alternation reflects the number of nodal planes in the wave function
of the eigenstate along the chain direction. Therefore, the sum in the numerator
cancels out one another among the flat-band states and produces a small current
peak. Figure 3.14(a) shows the calculated imaginary parts of the ��

����� at � � �
	�	� in regime I. For the comparison, the Green function at � � � 	�	�� in regime
II is shown in Fig. 3.14(b). The positive and negative peaks observed in Fig.
3.14(a) overlap with each other and decrease the magnitude. Such cancellation
occurs apparently due to the quantum interference between the wave functions of
flat-band states. Thus, we can say that the quantum interference dominates regime
I and promotes the abrupt variation in current-peak magnitude.

Here, we reconsider why the current is zero for the flat-band channel when
there is no electric field applied, using Eq. (3.38). In the localized picture of the
flat-band states, since the electronic state is localized in a certain plaquette, each
product of two different sites, ,�

�,
�
� , is zero and produces no current. On the other

hand, in the itinerant picture of the flat-band states, such products alternatively
have different signs and their sums cancel one another in the numerator of Eq.
(3.38) to produce no current.

Finally, the conditions for observing the large current are discussed. To scan
all the flat-band channels, as discussed above, the energy separation, which occurs
due to the application of an electric field, must be smaller than the difference in
chemical potential between the left and right electrodes; thus, �� � �� 1 Æ��

is required. On the other hand, to prevent the quantum interference between flat-
band states, such separation should be larger than the broadening of the respective
energy level; thus, Æ�� 1 � is required. In the regime of a moderate electric field
satisfying both conditions, one can observe a large current originating from the
large energy freedom of flat-band states.

3.3.4 Degeneracy breaking

We have shown in previous subsections that the application of an electric field
removes the energy degeneracy of flat-band states. In particular, the localized
characteristic emerges in wave functions when the electric field is applied along
the chain direction, while the itinerant characteristic emerges when the electric
field is applied perpendicular to the chain direction. To understand why such
different characteristics appear depending on the direction of the electric field, we
simultaneously apply the electric fields of both directions to the Kagomé-lattice
chain and study how the current peak through the flat-band channel changes.
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Figure 3.13: Schematic energy diagrams representing relative positions of flat-
band states and two electrodes. Bars in the center denote the energy levels of
flat-band states. These states have the energy separation of ÆE� and the energy
broadening of �. (a) Regime III: ÆE� 1 ��� � ��� 1 �; (b) regime II: ��� �
��� 1 ÆE� 1 �; and (c) regime I: ��� � ��� 1 � 1 ÆE� .
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Figure 3.14: Calculated imaginary parts of the Green function ��
�� at (a) � � �

	�	� and (b) � � � 	�	��. The peaks numbered from “a” to “d” corresponding to
the flat-band channels shown in Figs. 3.11(a) to 3.11(d), respectively.
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Figure 3.15: Contour-map plot of current-peak magnitude of flat-band channel
for four-plaquette Kagomé-lattice chain, as a function of two-dimensional com-
ponents of electric field, � � and � �. The current shown has a unit of 	��
�
���.
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Figure 3.16: Energy levels of four-plaquette Kagomé-lattice chain as a function
of electric field, � �. (a) All energy-level spectra and (b) extended picture around
flat-band energy levels.

Figure 3.15 shows the contour-map plot of the current-peak magnitude of the
flat-band channel for the four-plaquette Kagomé-lattice chain, as a function of the
two-dimensional components of the electric field, � � and � �. One notes that the
current can be obtained roughly in the region of � � 1 	�
�

�
� � �. This feature

reflects the difference of energy-degeneracy breaking between two directions as
follows. When a small electric field is applied along the chain, the degenerate
flat-band states couple with each other to become localized states having different
energies, as shown in Fig. 3.10. This recoupling is caused by the first-order pertur-
bation by the electric field, � � as shown in Figs. 3.16; thus, the energy separation
between the states is proportional to � �.

On the other hand, when a small electric field is applied perpendicular to the
chain, the degenerate flat-band states couple with each other to become extended
states, as shown in Fig. 3.11. In this case, however, such recoupling does not break
the energy degeneracy. This is because the flat-band states in the Kagomé-lattice
chain have a gerade symmetry with respect to the reflection-symmetry operation
along the * direction and thus have no interactions with each other when the elec-
tric field is applied along the * direction. The breaking of energy degeneracy
is realized by the second-order perturbation between the flat-band state and the
normal-band states. This feature can be confirmed by examining the energy level
variation by changing the � � value, which is shown in Figs. 3.17(a) and 3.17(b).
It is apparent that the energy separation is proportional to the square of the elec-
tric field, � �. Considering the difference in perturbation between two directions,
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Figure 3.17: Energy levels of four-plaquette Kagomé-lattice chain as a function
of electric field, � �. (a) All energy-level spectra and (b) extended picture around
flat-band energy levels.

we can expect that the large current is dominated by the itinerant characteristic of
flat-band states in the region of � � 1

�
� � �, which well explains the feature in

Fig. 3.15.
Finally, we briefly comment on the observation of the flat-band-channel cur-

rent in experiments. As seen in Fig. 3.15, the flat-band channel suddenly opens
when a small electric field is applied perpendicular to the Kagomé-lattice chain.
Thus, the simplest method of confirming the present results is to apply an electric
field and observe the sudden appearance of a current peak. Moreover, we expect
that the present anisotropic feature of electron transport may be used to produce
unique devices by fabricating the Kagomé-lattice network systems.
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3.4 Conclusions

Electron transport properties are investigated in the Kagomé-lattice-chain sys-
tems, using the simple tight-binding model and nonequilibrium Green function
method. We found that the current through the flat-band channel is sensitive to
the direction of the applied electric field; a large current is observed to flow along
the chain when the electric field is applied perpendicular to the chain, while no
current is observed to flow along the chain when the electric field is applied along
the chain. By analyzing how the flat-band degeneracy is broken, this strange
anisotropy is shown to originate from the unique feature of the flat-band states,
that is, they have both itinerant and localized characteristics. Moreover, we found
that the transport characteristic changes from the quantum interference to nonin-
terference regimes with increasing electric field, and the current magnitude be-
comes nearly independent of the size of the Kagomé-lattice chain at the boundary
of both regimes. The conditions for observing the flat-band current were also
determined.
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3.5 Appendix I; Nonequilibrium Green function method

In this section, we show how to calculate the electronic current by using the
nonequilibrium Green function method. Caroli and coworkers treated the elec-
tronic current using the following way [38]. At initial time � � ��, the two
electrodes and the Kagomé-lattice chain are separated each other. In other words,
the electrode  �� ��2� and the chain � are equilibrium state with chemical po-
tential �� and �� , respectively. Then, we connect the electrodes and the chain at
� � ��, and physical quantity is observed at time ��1 ���. One of the advantages
of their method is that the three different chemical potentials ��, ��, and �� can
be introduced through the initial condition.

3.5.1 Schrödinger, Heisenberg and interaction pictures

Schrödinger picture

For the later discussions, we summarize the Schrödinger, Heisenberg and interac-
tion pictures for following Hamiltonian [41],

����� � ��� � ��� � ��� � �����

� ��� � ������
(3.39)

where ��� � ��� � ��� � ��� and

����� � �� 
��� ��� �
�

�� for � 1 ���

	 for � � ���
(3.40)

Each Hamiltonian has been already defined in Eqs. (3.1)-(3.4). In the Schrödinger
picture, well-known equation of motion

��
&
�����

&�
� �����
������ (3.41)

is satisfied. Here, 
����� is the state vector. We write the operator in the Schödinger
picture as ��. The expectation value of the operator ������ in the state 
����� is
obtained by �����
 ��
�����. Let consider the time-evolution operator �3��� ��� in
the Schrödinger picture, which satisfies the relation �� 1 ���,


����� � �3��� ���
������� (3.42)

To calculate the nonequilibrium state, we need the 
�����. However, we know only
the initial equilibrium state 
������. Thus, we must calculate the time-evolution
operator �3��� ���. Inserting Eq. (3.42) to Eq. (3.41), we obtain

��
& �3��� ���

&�
� ����� �3��� ���� (3.43)
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Heisenberg picture

Using the time-evolution operator, we define the operator ������ and the state
vector 
��� in the Heisenberg picture as

������ � �3���� ��� �� �3��� ���� (3.44)

and

��� � 
������� (3.45)

respectively. The expectation value is obtained as

������ � ��� 
 ������
���� (3.46)

Using Eq. (3.42), we can confirm that the expectation value in the Schrödinger
picture is equal to that in the Heisenberg picture. The operator ������ satisfies
what we call Heisenberg equation of motion,

��
� ������

��
� ��

�� �3���� ��� �� �3��� ����

��

� ��
� �3���� ���

��
�� �3��� ��� � �� �3���� ��� ��

�3��� ���

��

� � �3���� ��� ����� �� �3��� ��� � �3���� ��� �� ����� �3��� ���
� � �3���� ��� ����� �3��� ��� �3���� ��� �� �3��� ���

� �3���� ��� �� �3��� ��� �3
���� ��� ����� �3��� ���

�
�
������� ������

�
(3.47)

interaction picture

The operator in the interaction picture ������ is related to that in the Schrödinger
picture as a unitary transformation

������ � ��
���
�
������ �����

���
�
������� (3.48)

On the other hand, the relation between the interaction picture and the Heisenberg
picture satisfies the following equation,

������ � �3����� ���
������ �3���� ���� (3.49)

where we define the time-evolution operator �3���� ��� in the interaction picture,

�3���� ��� � ��
���
�
������ �3��� ���� (3.50)

The state vector in the interaction picture is defined as


������ � ��
���
�
������
������ (3.51)
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because the expectation value has to be the same in any pictures. In other words,
the expectation value can be written as follows,

������ � ������
 ������
������ � �����
 ��
������ (3.52)

We note that 
������ � 
��� � 
�������. Using Eq. (3.42), we obtain the time-
evolution of the state vector in the interaction picture,


������ � ��
���
�
������
�����

� ��
���
�
������ �3��� ���
������

� ��
���
�
������ �3��� ���
�������

� �3���� ���
�������� (3.53)

For the practical applications it is quite important to derive an explicit formula of
�3���� ��� in terms of ������. Let first derive an equation of motion for �3���� ���
from Eq. (3.43) and Eq. (3.50),

��
& �3���� ���
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� ��

�
�
���

�
��

���
�
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(3.54)
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�
������ �3��� ��� (3.57)

� ������ �3���� ���� (3.58)

We now convert it to an integral equation by integrating from �� to � and taking
the initial condition �3���� ��� � ,

�3���� ��� �  �
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��

�4 ����4� �3��4� ���� (3.59)

Successive iterative substitution yields
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(3.60)

where T is the time-ordering operator. The Hermitian conjugate of �3���� ��� is
written as

�3����� ��� �
�3����� �� � T̃ ���

� �
�

� �

��
�4 ����4�

�
� (3.61)

where T̃ represents the T̃-product operator, which arranges the time-dependent
operators in inverse chronological order.
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3.5.2 The expectation value in the mixed state

So far we have considered the expectation value in the pure state. In order to
calculate the expectation value in the mixed state, the statistical (density) operator
�5��� is introduced,

�5��� �
�
�

��
������������
� (3.62)

where �� is the statistical probability that the system is to be in state 
������. We
can relate �5��� to initial density operator �5���� in terms of �3,

�5��� �
�
�

��
�3��� ���
��������������
 �3���� ��� � �3��� ����5���� �3

���� ���� (3.63)

By use of �5��� we can calculate the expectation value ������ in the statistical
ensemble,

������ �
�
�

��������
 �����
������ (3.64)

� Tr��5��� ���
� Tr� �3��� ����5���� �3

���� ��� ���
� Tr��5���� �3

���� ��� �� �3��� ����

� Tr��5���� ������� (3.65)

� � ��������� (3.66)

where Tr� �6 �7 � � Tr� �7 �6� is applied and �   �� � Tr��5����    �. For the practical
purpose, it is convenient to write it in the interaction picture with aid of Eq. (3.49),

������ � � �3����� ��� ������ �3���� ����� (3.67)

� �� �3������� �3����� ����
� ������ �3���� ����� (3.68)

� � �3�������� �3����� �� ������ �3���� ������ (3.69)

where �3���� ��� � �3������� �3����� ��� is used.

3.5.3 Path-ordered Green function

The equation (3.69) shows that the initial equilibrium state develops to the
nonequilibrium state under the operator �3���� ���, and then the physical quantity
���� is observed at time � , after that, the state develops from time � to time ��.
Finally, the state returns from time �� to time �� under the �3��������. Thus,
the time-evolution path consists of the chronological-order path (- branch) and the
inverse-chronological-order path (+ branch). This path is called as the time loop.
The time loop is shown in Fig. 3.18.
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branch
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t 

Figure 3.18: Schematic picture of the time loop. the time loop consists of the
chronological-order path (- branch) and the inverse-chronological-order path (+
branch).

When we calculate Eq. (3.69) concretely, we need to expand the time-evolution
operators �3� by using Eq. (3.60) and Eq. (3.61).
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�T̃� ����4
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��    ����4

�
��� T� ����4��    ����4�� ����������

(3.70)

We can obtain the statistical averages ������ by solving the Eq. (3.70). For exam-
ple, when the operator �� is the electron number at �-th site, we set �� as �%���%�. The
statistical average �   �� in Eq. (3.70) is resolved into the products of the pair-
correlation functions such as ��%����4���%�	�4���� when we apply the Wick’s theorem
to the statistical average. The pair-correlation functions are classified into four
types dependent on whether the operator is in the � branch or in the � branch of
the time loop. The four nonequilibrium Green functions are defined as follows,

�� ���
�	 ���� ��� � �T��%�������%

�
�	������� (3.71)

�� �
�	 ���� ��� � �T̃��%�������%

�
�	������� (3.72)

�� ��
�	 ���� ��� � ��%�������%

�
�	������ (3.73)

�� ��
�	 ���� ��� � ���%��	�����%�������� (3.74)

Here �%�� and �%��� represent the annihilation and creation operators of electron at
�-th site in the Heisenberg picture, respectively. In the case of ����

�	 ���� ���, the

operator �%��������%
�
�	����� is in 8�8�� branch of the time loop. For convenience, we

introduce the retarded Green functions �

�	 and the advanced Green functions ��

�	 ,

�� �

�	���� ��� � ��%�������%

�
�	���� � �%��	�����%�������
��� � ���� (3.75)

�� ��
�	���� ��� � ���%�������%

�
�	���� � �%��	�����%�������
��� � ���� (3.76)



Sec. 3.5 � Appendix I 61

We readily have the following useful relations [42]:

���
�	 ���� ��� ��

�	 ���� ��� � ��
�	 ���� ��� ���

�	 ���� ���� (3.77)

�

�	���� ��� � ���

�	 ���� ������
�	 ���� ���� (3.78)

� ��
�	 ���� �����

�	 ���� ���� (3.79)

��
�	���� ��� � ���

�	 ���� ������
�	 ���� ���� (3.80)

� ��
�	 ���� �����

�	 ���� ���� (3.81)
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�	 ���� ��� � ���

	� ���� ����
�� (3.82)

��
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	� ���� ����
�� (3.83)
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�	 ���� ��� � ����

	� ���� ����
�� (3.84)
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�	���� ��� � ��


	����� ����
�� (3.85)

where �   �� means the complex conjugate.

3.5.4 Dyson equation

Our aim in this subsection is to obtain the equation of motion for the Green
functions. First, we differentiate Green functions ����

�	 ���� ��� with respect to the
time ��,

��
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&��
���

�	 ���� ��� � �
�
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������
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where we have used the Heisenberg equation,

��
&

&��
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� �
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� �������Æ���%������� � Æ�����%�������� (3.90)

Here, we define ����� as �� 
������. If the electrodes are connected to the Kagomé-
lattice chain at �� � ��, we can suppose that the joint system has reached the
steady state at any time �. Under the steady state, the Green function ����� ��� de-
pend on only time difference between �� and ��. We define the Fourier transform,

��4� �
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� �

��

�� ��������
�
� � (3.91)

where 4 � �� � ��. When the Fourier transform is applied to Eqs. (3.86)-(3.89),
we obtain the following equations,
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The matrix Green function is defined as

��	��� �
�
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�	 ��� ��
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�
� (3.96)
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Using the matrix Green functions, we rewrite the equations (3.92)-(3.95) as fol-
lows, �

�

��Æ�� � ���������	����
�
�

�����	��� � Æ�	4 � (3.97)

where

��� � ����Æ��Æ�� � Æ��Æ��� � ���Æ��Æ��� � Æ���Æ���� (3.98)

and

4 �
�
 	
	 �

�
� (3.99)

When the perturbation term �� becomes zero, we rewrite the Green functions
���� to the nonperturbative Green functions ����. Thus, we obtain the following
equation from Eq. (3.97), �

�

+���� �����	��� � Æ�	4 � (3.100)

where +���� ��� is defined as

+���� ��� � �Æ�� � ������� (3.101)

Using Eq. (3.101), the equation (3.97) is rewritten as�
�
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�����	��� � Æ�	4 � (3.102)

Then we use the relation 4 4 � , and we have�
�
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4 �����	��� � Æ�	4 � (3.103)

where ��� called the matrix self-energy is defined as follows,
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Furthermore, equation (3.103) is rewritten as�
�

+���� �����	����
�
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4 Æ�!�!���	��� � Æ�	4 � (3.105)

where we have used the relation ��� �
	

! Æ�!�!�. Inserting Eq. (3.100) to Eq.
(3.105), we obtain
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+���� �����	���� (3.106)



64 Chap. 3 � Quantum electron transport properties of Kagomé-...

Thus we yield the equation of motion for the nonequilibrium Green functions

��	��� � ��	��� �
�
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where
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As you know, Equation (3.77) shows that the four Green functions, ���, �,
��, and ��, are not independent each other. Thus, we can transform the four
Green functions into the three Green functions, ��, �
, and �� with aid of the
transform matrix �,

� � �
�

�
 
� 

�
� (3.111)

We introduce the Keldysh Green function, ��, which is defined as

��
�	��� � ���

�	 ��� ��
�	 ���� (3.112)

Actually, using Eq. (3.111), the matrix Green function ��	 is transformed as fol-
lows,
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where we have used the equations (3.77)-(3.81). The matrix self-energy is trans-
formed similarly,
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where the retarded self-energy and the advanced self-energy are defined respec-
tively as follows,
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Using Eqs. (3.113) and (3.114), the transformed equation of motion for ��	 is
written as

�����	� � �����	��
�
!�

�����!��
���!���

����	�� (3.117)
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As a result, we obtain the following equation of motion for the nonequilibrium
Green functions,
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We introduce the following Green functions and self-energies of the matrix form,
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Figure 3.19: Schematic picture of the system.

The matrix forms of the other Green functions and self-energies are similarly in-
troduced, and then we can rewrite the Dyson equations as follows,

�� � �� � ������� (3.125)

�
 � �
 � �
�
�
� (3.126)

�� � �� � �
�
�� � ������� (3.127)

3.5.5 Electric current formula

We consider the electronic current flowing through the �-th site as shown in
Fig. 3.19. We assume that the electronic current between �� � �-th site and �-th
site is represented by ��!. Similarly, the current between �-th site and �� � �-th
site is written by ��
. We write the continuity equation around �-th site under the
tight-binding approximation,

��
����� ��!���� � �&�5�����

&�
� (3.128)

where the electron charge at �-th site is written as

�5����� � ���%�������%������ (3.129)

The electronic current between �-th site and ����-th site is the difference between
the flow of electrons from left to right and right to left. We thus expect the current
operator ��
 of the form

��
���� � 9�����%
�
�������%������ 9�����%

�
������%������� (3.130)

The electronic current operator ��! between ��� �-th site and �-th site is similarly
written,

��!���� � 9������%
�
������%�������� 9������%

�
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Using the Heisenberg equation, we find
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As shown in Fig. 3.19, �-th site is connected to only both ����-th site and ����-
th site. Therefore, we have
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(3.135)

A comparison of equations (3.128) and (3.135) yields

9!� �
�
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�!�� (3.136)

When we assume �!� � ��!, the electronic current is written as follows
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where Eq. (3.74) has been used. In a steady state, using the Fourier transform
(3.91), we have
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Here, to obtain Eq. (3.140) we have used the following relations,
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In case of the joint system shown in Fig. 3.3, the electronic current between the
left electrode and the Kagomé-lattice chain is written as
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Similarly, we can obtain the electron number density at �-th site,
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3.5.6 Green functions for the isolated systems

In this subsection, we produce the Green functions ���� of the isolated elec-
trodes and the Kagomé-lattice chains.
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Figure 3.20: (a) One-dimensional lattices having a half-infinity length under the
tight-binding approximation. (b) Infinite length one-dimensional lattice. (c) Half
infinite length one-dimensional lattices produced by removing the electron trans-
fer between 	-th site and -st site.

Green functions for the electrodes

In this paper, we assume that both source and drain electrodes are represented by
the tight-binding models of one-dimensional lattices having a half-infinity length
as shown in Fig. 3.20(a). The Hamiltonian of an electrode is written as follows,

��� � �
�
�	��

���%���%	� (3.146)

To produce the half-infinity length one-dimensional lattice, we remove the transfer
between 	-th site and -st site from the infinite length one-dimensional lattice.
The situation is shown in Figs. 3.20(b) and 3.20(c). Therefore, we rewrite the
Hamiltonian of the electrode as follows,
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� � (3.147)

where
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� � �

�
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���%���%	� (3.148)

���
� � �����%���%� � �%���%��� (3.149)

��
� represents the Hamiltonian of the infinite length one-dimensional lattice. In

the previous subsections, we have already obtained the Dyson equations (3.119)-
(3.121) from the Hamiltonian (3.39). In the similar way with this process, we
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obtain the following Dyson equations from the Hamiltonian (3.147),
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where the self-energies are defined as
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Here +�	��� and +��	��� are the Green functions for the half-infinite length elec-
trode and the infinite length one-dimensional lattice, respectively. Inserting Eq.
(3.153) to Eq. (3.150), we obtain
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Both � and � are zero or less, because +��	 is the Green function of the left-side
half infinite length one-dimensional lattice shown in Fig. 3.20(c). Thus, the Green
function +��	 becomes zero, because electrons in the left-side lattice can not trans-
fer to the right-side lattice. Thus, we yield following equation from Eq. (3.154),
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When � � 	, we obtain the Green function +�
�	 as follows,
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Inserting Eq. (3.156) to Eq. (3.155), we have advanced Green functions for elec-
trodes,
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In the same way, we obtain the retarded Green functions,
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The Green functions for the infinite length one-dimensional lattice +���	 (+�
�	 ) are
necessary to calculate the Green functions +�

�	(+


�	).

The Green function +����	 ���� ��� for the infinite length one-dimensional lattice
is defined as
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��� � ���
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�

(3.159)
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where �%����� � ��� �� ���
�

��
���%� ��� �

���
�

��
��. When there is no interaction between

electrons in the periodic system, we can develop the operator �%� in the plane wave,
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(3.160)

�
�
'

�
�

��� ���  ����� ���
�
�

���
�

��
�
�
�%� ���

�
�

���
�

��
�
�
� (3.161)

where � is the wavevector and �%� represents the annihilation operator of an elec-
tron with a wavevector �. Here we put the distance between nearest neighbor sites
with �. Applying the operator �%����� to the state 
��, we obtain

�%�����
�� � �
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where we have defined 
; � � �%�
��. ��
�� and ��

�" are represent the eigenenergies
of ���

� for the states 
�� and 
; �, respectively. The energy difference ��
�� � ��

�"

corresponds to the energy of an electron with wavevector �, thus we define

�� � ��
�� � ��

�" � (3.166)

Therefore, we have the following equation,
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�%�� (3.167)

�%��	���� �
�
'

�
�

��� ����  ����� ���
�
��
��
�
��

�
�%��� (3.168)

Inserting Eqs. (3.167) and (3.168) to Eq. (3.159), the Green function +����	 ���� ���
is rewritten as
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(3.169)

To calculate the pair-correlation functions, we introduce the Fermi distribution
function -�.

��%����%�� � Æ���-�� (3.170)
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��%��%���� � �Æ��� � �%����%�� � Æ��� � ��%����%�� � Æ����� -��� (3.171)

Using Eqs. (3.170) and (3.171), we have
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(3.172)

This equation depends on only time deference 4 � ���� ���. Therefore we obtain
the following equation by performing the Fourier transform,
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We have the other Green functions similarly,
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Using Eqs. (3.173)-(3.176), we obtain the Green functions +�
�	 ���, +
��
�	 ���, and
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+���	 ���, as follows,

+�
�	 ��� � +����	 ���� +���	 ��� (3.177)
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� �� �-�����+�
�	 ���� +���	 ����� (3.182)

where the relation �
���Æ

� P �
�
� ��Æ�)� has been used. Note that the electron dis-

tribution function -��� is included in only the Keldysh Green function. Because
�� is the eigenenergy of the infinite length one-dimensional lattice, �� is written
as

�� � ���� ��� ��� (3.183)

Thus, we obtain the following retarded Green function +�
�	 ���,
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The Green function +�
�	 depends on only site difference � � ���. We can rewrite
Eq. (3.185) as follows,
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The integrand has the following poles.
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(3.190)

Using the residue theorem, the Green function +�

�
 is obtained as follows.
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� For ���� 0 � 0 ���,

we have
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In the same way, we have
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The absolute values of Green functions, 
+�

�

 and 
+��
�

, are independent
of the distance 
�
. It means that electrons in the energy band of the one-
dimensional lattice can propagate without damping.

� For � 0 ����,

we have following form,
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� For � 1 ���,

we have following form,
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When electrons are in the outside of the energy band of the one-dimensional
lattice, the absolute values of Green functions, 
+�

�

 and 
+��
�

, decrease
proportional to the distance 
�
. It means that electrons can not propagate
without damping.

Inserting Eqs. (3.191)-(3.196) to Eqs. (3.157) and (3.158), we can obtain the
Green functions for electrodes. Especially, the Green function at the edge (	-th
site) of the electrode is written as
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(3.197)
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Green functions for the Kagome-lattice chain

The statistical average of operator �� is given by Eq. (3.65),

������ � Tr��5���� ������� (3.198)
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Here 
'� /� is the ' -electron eigenstate of the Hamiltonian ��� and has the eigenen-
ergy �!. To obtain the Green function +���	 ���, we calculate �5�����!! � �'� /
�5����
'� /�
and �+���	 ���� ����!! � �'� /
T��%���%

�
�	�
'� /�, and then we obtain the Green function

by using Eq. (3.200). The density matrix is obtained as follows,
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where �� is the Fermi energy of the isolated Kagomé-lattice chain. Then, we
obtain �+���	 ���� ����!! as follows,
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Using the relation �%������ � ���
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, equation (3.203)

is rewritten as follows,
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where 4 � �� � ��. We perform the Fourier transform for Eq. (3.204) and obtain,
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Carrying out the integration, we have
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Other functions are obtained similarly,
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We can produce the following functions using Eqs. (3.206)-(3.209).
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Using Eqs. (3.200), (3.202) and (3.210), the advanced Green function for the
Kagomé-lattice chain is given by,
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We consider the only first term,
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Inserting Eq. (3.216) to Eq. (3.215) we have
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In the similar way, we obtain
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+��	��� � �� �-�����+
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where the relation � ��������� � �� �-����� � ���������� has been used.
When we assume that there is no Coulomb interaction between electrons, the

Green functions become more simple form. For example, the eigenstate 
' �
�� /�where the #-th, .-th, and =-th energy levels are filled with electrons is written
as follows,


�� /� � ������
�
���

�
' 
	�� �# 0 . 0 =� (3.220)

where the operator ���� creates an electron at �-th energy level with energy ��,
and 
	� is a vacuum state. The eigenenergy �! for the state becomes �� � �� � �' .
The orbital for the #-th energy level is written in the energy picture as follows,


#� � ����
	�� (3.221)

On the other hand, the orbital is also written in the site picture as follows,
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where ,�
� is the amplitude of the #-th wavefunction at �-th site. A comparison of

Eqs. (3.221) and (3.222) yields
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We can carry out ��� �
�%�
�� /� with aid of Eq. (3.223),
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We do similar calculations about all eigenstates and obtain the following simple
form of Green functions,

+��	��� �
�
�

,�
	
�,�

�

� � �� � �Æ
� (3.225)

+
�	��� �
�
�

,�
	
�,�

�

� � �� � �Æ
� (3.226)
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where the summation runs over the all energy levels.
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3.5.7 Green functions for the joint system

We have already obtained the Green functions for the isolated electrodes and
the Kagomé-lattice chain in the previous subsection. To calculate the electronic
current through the Kagomé-lattice chain by using Eq. (3.142), we must ob-
tain the Keldysh Green functions ��

�� and ��
�� for the joint system which con-

sists of the electrodes and the chain. Then the Dyson equations show that it is
necessary to obtain the Green functions �!

�� in order to calculate ��
�� and ��

��

(/ � �� �� �; ���� � 	� � '�' � ). Therefore, the following contracted matrix
forms of the Green functions and the self-energies should be considered instead
of Eqs. (3.122)-(3.124),
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The retarded Green functions and the self-energies are obtained similarly. Fur-
thermore, using the Dyson equations (3.125) and (3.126), we have the advanced
and the retarded Green functions of the joint system as follows,

�� � ��� ���������� (3.231)

�
 � ��� �
�
����
� (3.232)

where � is the � � � unit matrix. The Keldysh Green functions obey the Dyson
equation (3.127). We have the following equation from Eq. (3.127),

�� � ��� �
�
�������� ������ (3.233)

Furthermore, using Eqs. (3.231) and (3.232), we obtain

�� � �
�
����������� (3.234)

When the �- and �-th sites are included in the Kagomé-lattice chain, the (�,�)-
component of �
�������� is written with aid of Eq. (3.227) as follows,

��
����������	 � �� �-���
����
 � ����������	
� �� �-���������	 � ��
����	�� (3.235)

Equation (3.235) is calculated as follows, by using Eqs. (3.225) and (3.226),

��
����������	 � �� �-���������	 � ��
����	� � �� �-� Æ � 	� (3.236)
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It means that the Fermi energy of the isolated Kagomé-lattice chain doesn’t con-
tribute the electronic current. On the other hand, When the � �� ��-th sites are
included in the left or the right electrode, equation (3.235) is calculated as fol-
lows,

��
����������� � �� �-���������	 � ��
������

�
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���
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�� �-����+��� ���
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�� ���

��� for � � ' � �

(3.237)

Thus, we obtain the Keldysh Green functions for the joint system,
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In this paper, first, we calculated numerically Eqs. (3.231)-(3.232) and obtained
the �� and �
, and then we calculated numerically the �� using Eqs. (3.238) and
(3.239). Finally, the electronic currents are calculated using Eq. (3.142)
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3.6 Appendix II; Additional data

Source-Drain-voltage dependence of current peaks

We investigate the source-drain-voltage dependence of the electronic-current
vs gate-voltage characteristics of the four-plaquette-length Kagomé-lattice chain
without an external electric field. The calculated results for various source-drain
voltages are shown in Figs. 3.21(a)-(c).
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Figure 3.21: The calculated electronic-current vs gate-voltage characteristics of
the four-plaquette-length Kagomé-lattice chain without an external electric field
at the � sd � (a)0.01t, (b)0.1t, (c)0.2t.
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Temperature dependence of current peaks

We investigate the temperature dependence of the electronic-current vs gate-
voltage characteristics of the four-plaquette-length Kagomé-lattice chain. The cal-
culated results for various tempretures voltages are shown in Fig. 3.22.
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Figure 3.22: The calculated electronic-current vs gate-voltage characteristics of
the four-plaquette-length Kagomé-lattice chain at the various temperatures, . �
�		�, . � 		�, . � �	�, and . � �	�. An external filed isn’t applied to the
systems.

Electron transfer energy �� dependence of current peaks

Figure 3.23 shows the transfer energy �� �� ��� dependence of the current
peaks of four-plaquette Kagomé-lattice chains.

0 20 40 60

2

1

0   
J 

  /
tL

   
   

   
  [

e|
t'|

 /h
]

2
-2

10

Flat-band channel
Normal state channel

Transfer energy of leads  tL (= tR )  [t]

tL0

Figure 3.23: The transfer energy of electrode dependence of the current. Note
that the longitudinal axis represents the value, which is divided current by transfer
energy ��. The broken line represents the threshold of the cancellation among the
flat-band channels.
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Coupling magnitude dependence of current peaks

Figure 3.24 shows the coupling magnitude dependence of the current peaks of
(a) two- and (b) four-plaquette Kagomé-lattice chains. The current magnitudes of
flat-band channels are greatly changed by the coupling magnitude.
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Figure 3.24: The calculated current peak height of normal state channel and flat-
band state channel vs. coupling magnitude curves in the case of (a)two- and
(b)four-plaquette length Kagomé lattice chains. The broken line represents the
threshold of the cancellation among the flat-band channels.
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Eigenstates of normal channels

Figure 3.25 shows the normal states of four-plaquette Kagomé-lattice chain.
These states are arranged in energetic order.
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Figure 3.25: Normal states of four-plaquette Kagomé-lattice chain. These states
are arranged in energetic order.





Chapter 4

Time-dependent current in
Nanostructure systems

4.1 Purpose

Recently, designs of novel electronic devices using nanometer scale semicon-
ductor structures and molecules have been attempted from both experiment and
theory sides. When electronic currents through such nanostructures are calculated,
it is often assumed that the electronic states of the systems have reached steady
states. However, in experiments of conductive properties in nanostructures, the
energy dissipative process and the dynamics have received much attention. Con-
sidering future practical applications, it is important to clarify the transient effects.

For example, Bird and coworkers studied the time-dependent conductivity of
low-dimensional semiconductors with time resolution of a few hundred picosec-
onds [43]. As shown in Fig. 4.1(a), a voltage pulse is applied to the input mi-
crostrip line from a pulse generator, and the output pulse is measured using the
50-� input of an oscilloscope. Figure 4.1(b) shows the measured output pulse.
This figure shows very clearly that they were able to detect the pulse with rela-
tively a little distortion, aside from the noticeable overshoot associated with the
rising edge. The origin has not been clarified yet, and it is expected that the origin
isn’t understood by using the calculation method of steady current.

An another example is seen in the conductive properties of single molecule [44–
47]. The advance of STM has made it possible to measure electronic current flow-
ing through a single molecule adsorbed on metal surface. It is expected that the
quantum effect appears clearly in the molecular conductive properties. The dif-
ference between semiconductor nanostructure system and the single molecular
system is that the coupling magnitude between electrons and molecular vibrations
in the molecular system is stronger than that in the semiconductor system. For
example, Kawai and coworkers found that inelastic current injected from STM tip
excites the molecular vibrations [3]. The amplitudes of vibrations are increased
gradually by the current. As a result, the molecule hops or rotates on the metal sur-
face. Figures. 4.2 show the STM images of the carbon monoxide (CO) molecules
adsorbed on the Pd(110) surface. The CO molecule marked “a” in Fig. 4.2A was
dosed with tunneling electrons from STM tip for one second. The tunneling elec-
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Figure 4.1: (a) Schematic diagram illustrating the instrumentation used in the
pulsed measurements of the GaAs/AlGaAs Hall bar. The solid-black lines indicate
the microstrip lines on top of the semiconductor die, which connect to the Ohmic
contacts of the Hall bar. In a typical measurement, only two of these lines are used
and the others are left unconnected [43]. Inset is the input pulse. (b) Measurement
of the pulse-response of the GaAs/AlGaAs 2DEG at 4.2 K. The input pulse in this
case has a rise time of 60 picoseconds, a fall time of about 250 picoseconds, and
a duration of 4 picoseconds [43].
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Figure 4.2: (A and B) STM images (31 Å by 25 Å, tunneling current 1 nA, sample
bias voltage 50 mV) of four CO molecules on Pd(110) [3]. Images are (A) before
and (B) after dosing tunneling electrons on the target molecule “a”. (C and D)
One-dimensional dose-and-scan method images for an isolated CO on Pd(110).
Sample bias voltage for electron dosing is (C) 200 mV and (D) 300 mV. Totally
48 sequences are executed on both cases. Anisotropic hopping along the [�	]
direction with a unit of Pd lattice (2.75 Å) is clearly visible in the right panel.

trons give the energy to the molecular vibrations. The molecule “a” has jumped
three Pd lattice spacing to the left along the [�	] direction as shown in Fig. 4.2B.
Therefore, these are time dependent phenomena with energy dissipative process.

In order to understand these situations, we should calculate time dependent
electronic current without assumption that electronic current reaches a steady
state [48, 49]. However, the calculation method of time dependent current has not
yet been established. Thus, the purpose of this study is to propose the calculation
method of time-dependent current.

4.2 System with energy and particle number conser-
vation

In this section, we review the characteristics of the motion of electrons in closed
systems where the energies and the particle numbers are conserved [50]. As an
example, we consider the two-room system as shown in Fig. 4.3. The left room
has a discrete energy level ��, and the right room has a discrete energy level ��.
The two rooms are connected, and the electron transfer energy is written as �>.
The probability amplitude that we find the electron in the left room is obtained
with "����. Similarly, we define "���� which represents the probability amplitude
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of electron in the right room. We treat electrons as spinless fermions. Then, the
Schrödinger equation is written as follows,

��
�

��

"���� � ��
"����� (4.1)

where the wavefunction and the Hamiltonian are written as,


"���� �
�
"����
"����

�
� "����
2�� "����
��� (4.2)

�� �
�
�� �>
�> ��

�
� (4.3)

We write the electronic state at the initial time �� as 
"�����. When the Hamiltonian
is independent of time, the electronic state at time ��1 ��� is related to the initial
electronic state 
"�����, by solving Eq. (4.1) as


"���� � ���
�
� �

��
�
��� ���

�

"������ (4.4)

Especially, if the initial electronic state becomes an eigenstate of the Hamiltonian,
Eq. (4.4) is rewritten as follows,


"���� � ���
�
� �

�

�
��� ���

�

��� (4.5)

where 
�� is an eigenstate which has an eigenvalue �. Then we obtain the proba-
bility that we find the electron in the right room as���2
"������� � ���2
������ (4.6)

This result shows that the eigenstate of the system is a steady state. Then, we
consider following two cases.

Case of �� � �� � ��

First, we consider the case that two rooms have the same energy level ��. In this
case, the eigenenergies and the eigenfunctions of the Hamiltonian �� are obtained
as

�� � �� � >� (4.7)
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Using Eq. (4.8), we have following equations,
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��� �

�

���� (4.9)


�� � � �
�

��� �

�

���� (4.10)



Sec. 4.2 � System with energy and particle number conservation 89

We assume that there is an electron in the only right room at the initial time ��.
Then the electronic state at any time is obtained using Eqs. (4.4) and (4.9),
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It shows that the time evolution of the system can be expressed by the superposi-
tion of eigenstates 
����� each vibrating at frequency �����. Using Eq. (4.8),
Eq. (4.13) can be rewritten as
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The density matrix of the system is defined as follows,

�:��� � 
"�����"���
� (4.15)

The probability that an electron is in the right room is obtained by using the den-
sity matrix,
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Thus, the electron shuttles between two rooms with a frequency, �>�. The fre-
quency corresponds to the energy difference between two eigenenergies,

� � ��

�
�

�>

�
� (4.19)

The motion of the electron is expressed by the interference of the eigenstates with
the different frequencies. Figure 4.4 is the calculation results of the probability
that an electron is in the right room. Here, �� and �� are set to 	, and the transfer
energy > is . The electron in the right room at initial time moves completely into
the left room after time ����>�.

Case of �� 0 ��

Next, we consider the case that two rooms have the different energy levels. When
the energy level of the left room is different from that of the right room, the
eigenenergies and the eigenfunctions of the Hamiltonian �� are obtained as

�� �
�� � ��

�
��� (4.20)
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Figure 4.3: Schematic picture of two-room system. The left and right rooms have
discrete energy levels, �� and ��, respectively. The two rooms are connected.
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Figure 4.4: Calculated probability that electron is in the right room as a function
of time. The eigenenergies of the left room and right room are set to zero. The
electron transfer energy between two rooms is unity.
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where the quantity � has been introduced as,

� �
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� >�� (4.22)

To simplify, it is assumed that the energy difference between �� and �� is much
larger than the transfer energy >, and we neglect the term over the second order of
>��� � ���. Then we have the following energy eigenvalues,
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On the other hand, the eigenfunctions are also given as,
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We can rewrite this equation as follows,
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Using Eqs. (4.25)-(4.27), when an electron was in the right room at initial time,
��, the wavefunction at time, � �1 ���, is given by
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Equation (4.30) shows that an origin of the electron motion is the interference
between the eigenfunctions 
�� and 
��� vibrating with frequencies, �� and
���, respectively. We obtain the probability that an electron is in the left room
at time, �, by using the density matrix,
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Figure 4.5: Calculated probability that electron is in the right room as a function
of time. The right room have the eigenenergies, (a) �� �  and (b) �� � �,
respectively, whereas the eigenenergies of left room is �� � 	. The electron
transfer energy between two rooms is unity.

The electron shuttles between the right room and the left room with a frequency,
�� � ����. However, the probability amplitude, ��>��� � ����

�, is very
small. Thus, the electron in the right room almost stays in the right room. Figures
4.5(a) and 4.5(b) are the calculated probabilities that an electron is in the right
room under �� � , �� � 	, > �  and �� � �, �� � 	, > � , respectively.
We can confirm that when the energy difference between �� and �� becomes
much larger than the transfer energy >, the period of the probability vibration
becomes shorter and the magnitudes of amplitudes decrease.

These calculation results show that even if the two rooms have different eigenen-
ergies, electrons can not flow one-way from the high-energy room to the low-
energy room. This is because the system is a closed system with respect to the
energy and the particle number in the density matrix method. However, we must
employ the opened systems regarding the energy and the particle number to de-
scribe the nonequilibrium states such as the electronic current flowing one-way
from one electrode to another electrode. The density matrix method has advan-
tage to calculate time development of the systems. Thus, we employ the hybrid
method of the density matrix method and the projection operator method, which
is explained in detail in the next section.
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4.3 Model and Calculation method of time-dependent
current

In this work, we investigate the time evolution of the system which consists of
two bulk electrodes and a nanostructure by using the simple tight-binding model.
The nanostructure (A) has the discrete energy levels �)� , whereas the two bulk
electrodes (B and C) have the continuous energy states, ��� and ��� , which are
labeled with wavevector �, respectively. The Hamiltonian of the joint system of
electrodes and a nanostructure is written as

�� � ��� � ���� (4.35)

where ��� is the Hamiltonian of the isolated electrodes and an isolated nanostruc-
ture, and is defined as follows,

��� � ��) � ��� � ��� (4.36)
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Here, ��� is an annihilation operator of an electron in �-th energy level of the
nanostructure. ��� and �%� are annihilation operators of an electron with wavevector,
�, in the electrode B and C, respectively. We have treated electrons as spinless
fermions in this work. The Hamiltonian ��� represents the junction between the
nanostructure and the electrodes,
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where the quantity �)� represents the electron transfer energy between the nanos-
tructure A and the electrode B. Similarly, �)� represents the transfer energy be-
tween the nanostructure A and the electrode C.

Density matrix method

The density matrix of the joint system is defined by Eq. (3.62). The time evolution
of the density matrix obeys the following Liouville equation,

&�5���

&�
�



��
� ��� �5���� � � ���5���� (4.39)

where �� is the Liouville operator and is defined as �� � � ��� ��� ��. The �
represents any operator. Corresponding to Eqs. (4.35) and (4.36), �� is resolved as

�� � ��� � ��� (4.40)

� ��) � ��� � ��� � ���� (4.41)

where ��� � � ��� ���� �� (� � 	� 9� ?� �� ). As shown in Sec. 4.2, the density
matrix method can describe only closed systems having the energy and the particle
number conservations. Thus, in order to calculate the time-dependent opened
systems under nonequilibrium conditions, we apply the projection operator to the
Liouville equation (4.39) [51].
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Projection method

We would like to investigate the time development of the electronic states after
the nanostructure is connected to the electrodes. It is expected that the electronic
states of the nanostructure are changed by the connection, whereas the states of
the electrodes are preserved because the system size of electrodes are much larger
than that of nanostructure. Thus, we can reasonably resolve the density matrix of
the joint system �5��� as follows,

�5���� �5� �5� �:���� (4.42)

where �5� and �5� are the time-independent density matrixes of the bulk electrodes,
and �:��� represents the time-dependent density matrix of the nanostructure in the
joint system. We assume that the electronic states of electrodes (B and C) are
written by the following grand canonical distribution, respectively.

�5� �
���� ������ ����

Tr������ ������ �����
� (4.43)

�5� �
���� ������ ����

Tr� ����� ������ �����
� (4.44)

Here, �� and �'� represent the Fermi energy and the electron number operator in
electrode, respectively. The inverse temperature . is defined as ���� �. Tr�
means the trace over the eigenstates of the isolated electrode � (� � ? or �).

In order to realize the decomposition form of Eq. (4.42) from the �5���, we
introduce the following projection operator �P,

�P � � �5� �5�Tr�Tr� � � (4.45)

The projection operator satisfies the relation �P
�
� �P. Furthermore another projec-

tion operator �Q is defined as �� �P�. When the projection operator �P is applied to
the density matrix �5���, we have the following equation,

�P�5��� � �5� �5�Tr�Tr� �5��� (4.46)

� �5� �5��:���� (4.47)

Here, the density matrix of the nanostructure in the joint system, �:���, is defined
by the trace of the �5��� over the eigenstates of all isolated electrodes,

�:��� � Tr�Tr� �5���� (4.48)

The projected density matrix means that the electronic states of electrodes in the
joint system are replaced by the time-independent grand canonical distribution.
Therefore, we can consider the time-dependent opened systems under nonequi-
librium states by using the Liouvile equation for the projected density matrix.
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Applying the projection operators �P and �Q to the Liouville equation (4.39), we
have

&�P�5���
&�

� �P
&�5���

&�

� �P� ���P�5��� � �P� ���Q�5���� (4.49)

& �Q�5���

&�
� �Q

&�5���

&�

� �Q� ���P�5��� � �Q� ���Q�5���� (4.50)

where �5��� � �P�5��� � �Q�5��� has been used. Using the variation of parameter
method, Eq. (4.50) is solved as

�Q�5��� �

� �

��

�4�������Q� � �Q� ���P�5�4� � ��������Q� � �Q�5����� (4.51)

The density matrix at initial time, ��, is written as

�5���� � �5� �5�Tr�Tr� �5����� (4.52)

because the connection is performed just after the initial time. Inserting Eq. (4.52)
to Eq. (4.51), the second term of Eq. (4.51) becomes zero. Therefore, inserting
Eq. (4.51) to Eq. (4.49), we have

&�P�5���
&�

� �P� ���P�5��� � �P� ��
� �

��

�4�������Q� � �Q� ���P�5�4�� (4.53)

The first term can be rewrittn as

�P� ���P�5��� � �5� �5�Tr�Tr��� ����5� �5��:�����
� �5� �5�Tr�Tr���5� �5��� ��)�:������ �5� �5�Tr�Tr���� ��� �5���5��:�����
� �5� �5�Tr�Tr���5��� ��� �5���:����� �5� �5�Tr�Tr��� �����5� �5� �:�����

� �5� �5�� ��)�:���� (4.54)

We can rewrite the second term as follows,
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�4�������Q� ��Q� ���
�P�5�4�� (4.55)

Here, we have used the following relations to obtain Eqs. (4.54) and (4.55),

� �������5���� � 	� (4.56)

Tr������ ����5����� � 	� (4.57)

� ���
�P � � 	� (4.58)

�P� ���
�P � � 	� (4.59)

�P� ���Q� � �P� ��� � � (4.60)



96 Chap. 4 � Time-dependent current in Nanostructure systems

As a result, we obtain the exact form of the equation of motion for the density
matrix of nanostructure in the joint system,

&�:���

&�
� � ��)�:��� � Tr�Tr�� ���

� �

��

�4�������Q� ��Q� ����5� �5� �:�4�� (4.61)

It is very difficult to exactly solve the equation. Therefore, we treat the effect of
connection between a nanostructure and an electrode as a perturbation. When the
�� in the exponential part in Eq. (4.61) is replaced by ���, the part is rewrittn as

���
�
��� 4��Q� ���Q�� ���

�
��� 4��Q� ���

�Q
�

(4.62)

� ���
�
��� 4��� �P�� ����� �P�

�
� ���

�
��� 4�� ���

�
� (4.63)

Here, �Q� ���
�P � � 	 and �P� ��� � � 	 have been used. Thus, we obtain the equation

of motion for the second-order of ���,
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� � ��)�:��� � Tr�Tr�� ���

� �

��

�4������� �� � ����5� �5� �:�4� (4.64)

For later discussions, we consider the equation of motion for the density matrix
in the interaction picture. Using Eq. (3.48), the projected density matrix �:��� in
the interaction picture is defined as

�:���� � ��
���
�
�������:������

���
�
������

� ��
���
�
�������:������

���
�
������

� ��
���������:���� (4.65)

We have the following equation of motion for the density matrix in the interaction
picture,

&�:����

&�
�

&

&�
���� ���������:����

� �� ��)�
����������:��� � ��� ��������

&�:���

&�
� (4.66)

In this work, we investigate the transient electronic current flowing through the
nanostructure using Eqs. (4.64) and (4.66).



Sec. 4.4 � Results and Discussion 97
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Figure 4.6: Schematic picture of the joint system consisting of an electrode (B)
and a nanostructure (A).

4.4 Results and Discussion

4.4.1 The joint system of a nanostructure and an electrode

We consider the joint system of a nanostructure (A) and one electrode (B). For
simplicity, the nanostructure is assumed to have only one discrete energy level.
Inserting Eq. (4.64) to Eq. (4.66) and developing the commutation relations ��)

and ���, we obtain
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(4.67)

To obtain the above equation, we neglect terms which don’t satisfy the particle-
number-conservation law, such as terms including ����������4� and �����

�������4 � ��.
The trace over the eigenstates of electrode (B) can be realized by using the Fermi
distribution function, - ��

� , such as

Tr���5���
�
��
������4 � ��� � ���*�

	
�������-��

� Æ���� (4.68)

where -��
� � ����*

�
	
���� � �.

Then we consider the diagonal component of the density matrix �:���. We rep-
resent the eigenstates of the isolated nanostructure as 
	� and 
�. 
	� is the vacuum
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state, and 
� is the state occupying the nanostructure with a single electron. Thus,

� is related to 
	� as,


� � ���
	�� (4.69)

Using Eqs. (4.67)-(4.69), the time dependence of the probability that an electron
is located in the nanostructure is obtained as follows,
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(4.70)

The first term represents the electronic flow from the occupied states of electrode
to the unoccupied states of nanostructure, and the second term represents the flow
from the occupied states of nanostructure to the unoccupied states of electrode.
These flows vibrate at frequency of ��) � ��� ��. The diagonal components of
the density matrix satisfies the relation, �	
�:���
	� � �
�:���
� � , because the
density matrix is normalized. Thus, from Eq. (4.70), we have
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(4.71)
Equation (4.71) is divided into the first term which does not depends on the Fermi
energy of the electrode and the second term which depend on it.

Then, we convert the summation over the wavevectors, �, to the integral on
the energy. To simplify, we assume that the density of states in the electrodes is
uniform from the bottom of the energy band to the top of the energy band as

�
�

   � @

� *edge

�*edge

��    � (4.72)

Here, the magnitude of the density of states is assumed to be constant, @, between
the band bottom, ��edge, to the band top, �edge. When the �edge � �) is satisfied,
the first term of Eq. (4.71) can be rewritten as

�
�

�������� � �)���� 4��� � @

� *edge

�*edge

�� ������� �)���� 4��� (4.73)

� ���@
�� ��edge��� 4���

���� 4�
� (4.74)

Furthermore, when the band width is enough large, the following equation is ob-
tained approximatively from Eq. (4.74),

���@
�� ��edge��� 4���

���� 4�
� ���@Æ��� 4�� (4.75)
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Figure 4.7: Calculated function, ���� � �)! �� ���. Here, �) � �, �� � 	 and
� �  have been employed. The function, �, converges to 1 in case of �� 1 �),
while it converges to 0 in case of �� 0 �).

When the temperature is zero, the second term of Eq. (4.71) is rewritten as fol-
lows,
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Using Eqs. (4.75) and (4.77), Eq. (4.71) is rewritten as
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where

���� � �)! �� ��� � �
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The first term of Eq. (4.79) leads the joint system to a steady state. The second
term contains the Fermi energy of electrode and decides the probability that elec-
tron is located in the nanostructure under the steady state of the system.

The first term of Eq. (4.79) is derived from the first term of Eq. (4.71). When
the band width becomes very wide, an electron having wavevector, �, shuttles
between a nanostructure and an electrode with a frequency, ���� � �)��. The
probabilistic motion of electron is expressed by the superposition of these various
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frequencies, because the energy ��� can take values from ��edge to �edge. As the
result, the delta function appears as shown in Eqs. (4.73)-(4.75) and the first term
of Eq. (4.79) is produced. It shows that the existence of a lot of states in the
electrode is essential to lead the joint system to a steady state. If the band width
of the electrode is very narrow (��� � ��), electrons simply shuttle between an
electrode and a nanostructure at a single frequency about ��� � �)��, instead of
reaching to the steady states. In this case, there is an analogy between this system
and the two-room system discussed in Sec. 4.2.

On the other hand, the function, �, is derived from the second term of Eq. (4.71).
The function, �, depends on the Fermi energy of the electrode. It reflects two dif-
ferent electron motions. One is the shuttle motion between the occupied states of
electrode and the unoccupied state of nanostructure. Another one is that between
the unoccupied states of electrode and the occupied state of nanostructure. There-
fore, the frequency of the function, �, is decided by the superposition of frequen-
cies from ���edge��)�� to �����)�� and from �����)�� to ���edge��)��.
As the result, the superposition gives the function, �, the frequency ��� � �)��
as shown in Eq. (4.77). In other words, the vibration of the electronic current orig-
inates from the quantum interference between the current from the nanostructure
to the electrode and the current in the contrary direction. As an example, the cal-
culated function, �, is shown in Fig. 4.7, where �) � �, �� � 	 and � �  are
employed. The function converges to 1 in case of �� 1 �). However, it converges
to 0 in case of �� 0 �).

The time derivative of the density matrix, �
�:���
�, corresponds to the elec-
tronic current between an electrode and a nanostructure, ������. The electronic
current is defined using Eq. (4.79) as follows,
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In order to compute the electronic current, we use a small but finite time slice 	�
for Eq. (4.79),
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Combining the above two equations, we have the following recurrence formula,
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Using this formula, we obtain �
�:���
� from the initial state �
�:����
�. Fur-
thermore, we obtain electronic current by inserting this �
�:���
� to Eq. (4.82).

Next, we apply the formula to the simple systems and confirm whether the
formula gives valid results.

� Case of �� 1 �)

First, we investigate the time development of the electronic state when the
Fermi energy of the electrode is higher than the energy level of nanostruc-
ture. It is assumed that nanostructure is not filled with electrons at initial
time. In this case, the time development of electron number in the nanos-
tructure and transient electronic current are shown by the red line and the
blue line, respectively, in Fig. 4.8(a). Here, �)� � 	��, �� � 	, �) � �,
@ � , � �  and �� � 	 have been employed. The electrons flow to the
nanostructure from the electrode, and, after that, the joint system reaches to
the steady state that the nanostructure is filled with one electron. To estimate
the relaxation time, it is assumed that there is not time dependence of the
memory function, and we obtain the following equation from Eq. (4.79),
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�

��
�#�+� � �� (4.86)

Thus, the relaxation time is decided by the square of coupling magnitude
�)� . The small vibration of electronic current in approaching to the steady
state comes from the interference between the current from the electrode to
the nanostructure and the inverse current. The frequency of this vibration is
��� � �)��.

Then, we investigate the time development of the joint system in case that
the nanostructure has already been filled with an electron. The calculation
result is shown in Fig. 4.8(b). A few electrons are released from the nanos-
tructure just after the connection. The reason is that some electrons in the
nanostructure can transfer to the unoccupied states of the electrode. Actu-
ally, such current doesn’t appear in case that the energy difference between
the energy level of the nanostructure and the Fermi energy of the electrode
is much larger than the coupling magnitude �)� , because the electrons in
the nanostructure cannot flow to the unoccupied states of the electrode.

We can easily obtain the steady state without numerical calculations. As
shown in Fig. 4.7, the function � converges to 1. Thus, the density matrix
satisfies the following equation in the steady state,
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�:���
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��)�
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��
���@���
�:���
�� �� (4.87)

When time passed longer than the relaxation time, the time derivative of
density matrix must converge to zero. Thus we obtain

���
�:���
�� � � 	� (4.88)

It shows that a state filled with an electron becomes a steady state indepen-
dent of initial states.
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Figure 4.8: Calculated electron number in the nanostructure and electronic current
as a function of time, in case (a) that the there was not electron in the nanostructure
at initial time and in case (b) that the nanostructure was filled with an electron at
initial time. The energy level of the nanostructure is lower than the Fermi energy
of the electrode. �)� � 	��, �� � 	, �) � �, @ � , � �  and �� � 	 have
been used.
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Figure 4.9: Calculated electron number in the nanostructure as a function of time,
in case that there was no electrons in the nanostructure at initial time. The energy
level of the nanostructure is equal to the Fermi energy of the electrode. �)� � 	��,
�� � 	, �) � 	, @ � , � �  and �� � 	 have been used.

� Case of �� � �)

Then we consider the time development in case that the Fermi energy is
equal to the energy level of the nanostructure. In this case, the function, �,
has a constant value 0.5. Therefore, the number of electron in nanostructure
converges to 0.5 without vibrating after the connection. Figure 4.9 is the
calculated result when �� � �) � 	. It is assumed that there was no
electrons in the nanostructure at initial time. The other parameters are same
to ones used in Fig. 4.8(a). The reason of no vibration is that the vibration of
current from the electrode to the nanostructure and the vibration of current
from the nanostructure to the electrode are canceled out each other.

� Case of �� � �)

In case that the energy difference between Fermi energy of the electrode and
the energy level of the nanostructure is much larger than the coupling mag-
nitude �)� , the vibration doesn’t appear in the variation of electron number
in the nanostructure, because the frequency of � is too high and the vibra-
tion is canceled out each other. In other words, it is easy for current to
flow from the electrode to the nanostructure, but it is difficult to come back
from the nanostructure to the electrode. Thus, the vibration induced by the
interference between these currents doesn’t appear. Figure 4.10(a) is the
calculated result when �� � 	 and �) � �	. The other parameters are
same to ones used in Fig. 4.8(a). We show the memory function in this case
in Fig. 4.10(b). The frequency is higher than that shown in Fig. 4.7.

Using the formula developed in this work, we investigated the joint systems
which consist of an electrode and a nanostructure, and confirmed that the formula
gave the valid results for the transient phenomena.
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Figure 4.10: (a) Calculated electron number of the nanostructure as a function of
time, in case that the there was no electrons in the nanostructure at initial time.
(b) Calculated function, �. These figures correspond to the case where the energy
level of the nanostructure is lower than the Fermi energy of the electrode, and
the energy difference is much larger than the coupling magnitude. �)� � 	��,
�� � 	, �) � �	, @ � , � �  and �� � 	 have been used.
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Figure 4.11: Schematic energy diagram of the joint system consisting of two elec-
trodes (B and C) and a nanostructure (A).

4.4.2 The joint system of a nanostructure and two electrodes

Then, we consider the joint system which consists of two electrodes (B and C)
and a nanostructure (A). It is reasonably assumed that the Fermi energy of the left
electrode �� is larger than that of the right electrode �� . Figure 4.11 shows the
schematic energy diagram of the joint system. From the same calculations that
we used to obtain Eq. (4.79), we have the equation of time derivative of density
matrix for the joint system as follows,
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where we assume that the densities of states of two electrodes are same. The
electronic current at left contact is given by the following equation,
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Similarly, the electronic current at right contact is written by
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Using above equations, we investigate the two situations. One is a case that
the energy level of nanostructure is located just exactly at the middle position of
Fermi energies of two electrodes. Another one is a case that the energy level of
nanostructure is located near a Fermi energy of an electrode. We assume that there
is no electrons in the nanostructure at initial time, ��.

� Case of ��� � �)� � ��) � ���
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Figure 4.12: Calculated electron number of the nanostructure and electronic cur-
rents as a function of time, in case that the there was no electrons in the nanos-
tructure at initial time. The electron number is shown by a red line. The electronic
currents at left and right contacts are shown by blue and green lines, respectively.
These currents have the same frequency in this case. �)� � �)� � 	��, �� � ,
�� � �, �) � 	, @ � , � �  and �� � 	 have been used.

First, we consider the situation that the energy level of nanostructure is lo-
cated at the middle position of Fermi energies of two electrodes. The param-
eters adopted in this calculation are �)� � �)� � 	��, �� � , �� � �,
�) � 	, @ � , � �  and �� � 	. The calculated number of electron
in the nanostructure and electronic currents are shown in Fig. 4.12. The
electron number is shown by a redline. The currents at the left and the right
conntacts are shown by blue and green lines, respectively. Under the steady
state, electrons come into the nanostructure from the left electrode and then
the electrons flow out to the right electrode. Since these current have same
magnitude, the nanostructure is half filled with electrons. The current at left
contact vibrates with a frequency, 
����)
�. The frequency of the current
at right contact is equal to that of the current at left contact. Thus, vibration
doesn’t appear in the change of the electron number. Furthermore, Fig. 4.12
shows that, just after the connection, electrons flow into the nanostructure
from not only the left electrode but also the right electrode.

� Case of ��� � �)� 	� ��) � ���

Finally, we consider a case that the energy level of nanostructure is located
near the Fermi energy of left electrode. The parameters adopted in this cal-
culation are �)� � �)� � 	��, �� � , �� � �, �) � 	��, @ � ,
� �  and �� � 	. The calculated number of electron in the nanostructure
and electronic currents are shown in Fig. 4.13. The electron number and
the currents are shown using the same colored curves used in Fig. 4.12. In
this case, the current at left contact vibrates with a frequency, 
�� � �)
�.
On the other hand, the current at right contact vibrates with a different fre-
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Figure 4.13: Calculated electron number of the nanostructure and electronic cur-
rents as a function of time, in case that the there was no electrons in the nanos-
tructure at initial time. The electron number is shown by a red line. The elec-
tronic current between the left (right) electrode and the nanostructure is shown
by a blue (green) line. These currents have different frequencies in this case.
�)� � �)� � 	��, �� � , �� � �, �) � 	��, @ � , � �  and �� � 	 have
been used.
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Figure 4.14: Schematic picture of the joint system. The sites labeled with the
number of less than zero are included in the left electrode, while the sites labeled
with the number of more than two are included in the right electrode. The nanos-
tructure, which has a single orbital, corresponds to the 1-st site.

quency, 
�� � �)
�. As a result, the change of the number of electron in
the nanostructure shows the vibration. Therefore, the system takes more
time to reach the steady state than the previous case. These phenomena
are the results of the quantum interference which can not be obtained by
electronic-current calculation methods under the steady state.

4.4.3 Comparison between the nonequilibrium Green function
method and the projected density matrix method

In order to confirm the validity of the projected density matrix method devel-
oped in this work, we compare the steady current obtained by the nonequilibrium-
Green-function method with the steady current obtained by the projected density-
matrix method. We consider the joint system as shown in Fig. 4.14. Each lattice
point has a single orbital. The left electrode is numbered as less than zero, and
the right electrode is numbered as more than two. The 1-st site represents the
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nanostructure. The energy level of the nanostructure is written by �). The trans-
fer energies in the left and right electrodes are defined as �� and ��, respectively.
The magnitude of contact between the nanostructure and the electrode is set as
��. Then, using the nonequilibrium Green function method, the steady current is
obtained as follows,

��� � �
�

�
��
�

� �

��

���-����� -�����Im�+��������


������

�
�����Im�+��������

(4.92)
When we employ the wide-band approximation for the electrodes, the Green func-
tion of the joint system is rewritten as follows,

��
�� �

+���
� ����+���+

�
�� � +���+
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���

(4.93)
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In case that the energy level of the nanostructure is located between Fermi energies
of two electrodes, we have the following steady current formula,

��� � �
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(4.96)

where we assume �� � ��. The density of states of the left electrode is defined as,

@ �


�
Im�+���� �



���
� (4.97)

Thus, the steady current is rewritten as

��� � �

�
�����

�
@� (4.98)

On the other hand, the current between the left electrode and the nanostructure
is written as

������� � �
� ��

�

��
���@

�
� �
�:���
�� ���� � A)! �� ���

�
� (4.99)

After reaching the steady state, the current at left contact is equal to the current
at right contact. Under the steady state, the memory function converges to 1, thus
we have

������� � �
���

�

��
���@

�
� �
�:����
�� 

�
� (4.100)



Sec. 4.5 � Conclusions 109

From Fig. 4.12, �
�:����
� has 	�� under the steady state. Therefore we obtain
the steady current from the density matrix method as follows,

������� � �
� ��

�

��
��@

�
�

�
�����

�
@�

(4.101)

We can confirm that the nonequilibrium-Green-function method and the projected
density-matrix method give the same steady current in the model discussed in this
work.

4.5 Conclusions

We developed the calculation method for the time-dependent electronic cur-
rent, using the density matrix method and the projection operator method under
the simple tight-binding approximation. Then we applied the formula to the sim-
ple joint systems which consist of two-bulk electrodes and a nanostructure. It
was confirmed that the expected steady state is realized in the joint system. Fur-
thermore, we found that when the Fermi energy of electrode is located near the
discrete energy level of the nanostructure, the transient current shows vibration. It
is clarified that such oscillation originates from the quantum interference between
the current from the electrode to the nanostructure and the inverse current. Finally,
we confirmed that the nonequilibrium-Green-function method and the projected
density-matrix method give the same steady electronic current in our model dis-
cussed in this work.





Chapter 5

Summary

The advance of nanotechnology, which aims for the micro-fabrication and
the integration of electronic devices, has made it possible to fabricate various
nanometer-scale structures. For example, the remarkable progress is seen in the
semiconductor electronics or molecular science fields. It is known that the quan-
tum effects, such as the interference, clearly appear in the physical characteristics
of the nanometer-scale systems. In chapters 2 and 3, we studied the optical and
electron transport properties of nanostructure network systems, which have the
multiple degenerate electronic states originating from the quantum interference
induced by the particular spatial symmetry of the system [36, 40, 52–56]. On
the other hand, recently, the energy dissipative process and the dynamics of the
transport properties of nanostructure systems also attract much attention. When
the practical applications of the nanostructures are considered, we cannot ignore
these. However, the calculation method of time-dependent current has not been
established yet. Thus, in chapter �, we proposed the calculation method of time-
dependent current, in which the density matrix method and the projection operator
method are used. The main conclusions obtained in this thesis are as follows.

� Chapter 2
We studied the optical properties of the InAs Kagomé quantum-wire

system employing a tight-binding model. The Kagomé lattice have the flat
bands at the conduction-band bottom and the valence-band top. We as-
sumed that an electron and a hole exist in the conduction band and the va-
lence band in this system, respectively. We investigated the binding energy
and the radius of flat-band exciton, which is the bound state of the electron
and the hole. For the comparison, excitons in the square, triangular, Tasaki
and one-dimensional lattices are investigated. Tasaki lattice also has flat
bands.

It was found that the binding energies of excitons in the Kagomé and
Tasaki lattices are much larger than those in other two-dimensional lattices
and even larger than that in the one-dimensional lattice, although the radii
of excitons in the Kagomé and Tasaki lattice are almost same as that in
the triangular lattice. Furthermore, the binding energy of exciton in the
Tasaki lattice is larger than on-site Coulomb attractive energy. These results
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indicate that the localization nature of exciton is not the unique origin of
larger exciton binding energy. By the perturbation analysis, it was shown
that both the localization nature and the macroscopic degree of degeneracy
of the flat-band eigenstates of electron and hole are the origins of large
exciton binding energy. It was also found that when a magnetic field is
applied, the binding energy of a flat-band exciton shows a large variation,
because the flat bands become dispersive by applying the magnetic field.

� Chapter 3
We investigated electron transport properties of the finite-size Kagomé-

lattice-chain systems, using the simple tight-binding model and nonequilib-
rium Green function method. To simplify, we assumed that the Coulomb
interaction doesn’t work between electrons.

We found that the current through the flat-band channel is sensitive to
the direction of the applied electric field; a large current is observed to flow
along the chain when the electric field is applied perpendicular to the chain,
while no current is observed to flow along the chain when the electric field
is applied along the chain. By analyzing how the flat-band degeneracy is
broken, we clarified that this strange anisotropy originates from the unique
feature of the flat-band states. Flat-band state has simultaneously both itin-
erant and localized characteristics. However, the electric field along the
chain changes the flat-band states to the spatially localized states, while the
electric field perpendicular to the chain changes it to the spatially extended
states. Thus, the electronic current is sensitively changed by the direction of
applied electric field. Moreover, we found that the transport characteristic
changes from the quantum interference to noninterference regimes with in-
creasing electric field perpendicular to the chain, and the current magnitude
becomes nearly independent of the size of the Kagomé-lattice chain at the
boundary of both regimes. The conditions for observing such current were
also determined.

� Chapter 4
We developed the calculation method of time-dependent electronic cur-

rent, using the density-matrix method and the projection-operator method
under the tight-binding approximation. To simplify, we assumed that the
Coulomb interaction doesn’t work between electrons.

We applied the method to the simple joint systems which consist of two-
bulk electrodes and a nanostructure. It was confirmed that the expected
steady state is realized in the joint system. Furthermore, we confirmed
that the nonequilibrium-Green-function method and the projected density-
matrix method give the same steady electronic current in our model dis-
cussed in this work. Using the method developed in this thesis, we found
that the oscillation of the transient currents originates from the quantum in-
terference between the current from the electrode to the nanostructure and
the inverse current.
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In this thesis, we investigated the transport and optical properties of nanostruc-
ture network systems using the simple tight-binding models. Here, we should like
to emphasize that the degeneracy and quantum interference of electronic states
promote exotic properties in nanoscale systems. For example, we have clarified
that the optical property is dramatically changed, when the degeneracy induced
by the quantum interference is removed by an external field. Furthermore, we
also clarified that the interference effects appear in the dynamics of nanostructure
systems. We expect that the knowledge and method obtained in this thesis will
give the new possibility to the future science.





Appendix A

Flat-band states

In this appendix, we review the characteristics of flat-band states originating
from the interference of electron wavefunctions. Flat-band systems are classified
into three types from the viewpoint of the mechanism of the flat-band appearance.
The mechanisms are explained as follows [29].

� Lieb type

Figure A.1: An example of Lieb-type lattices. The red (blue) circles represent the
A (B) lattice points. The quantity, �, is the transfer energy of electrons.

� Tasaki type

Figure A.2: An example of Tasaki-type lattices.
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� Mielke type

Figure A.3: An example of Mielke-type lattices.

A.1 Lieb type

Lieb-type lattices have AB-sublattice structures as shown in Fig. A.1. The
Hamiltonians of the conductive electrons in such lattices are written as follows,

� �

�
��� 	 �)�

��) 	

�
��� � (A.1)

where the matrix �)� has the 
9
�
?
 dimension, and represents electron transfer
between the 9 lattice points and the ? lattice points. Here, 
9
means the number
of the A lattice points. When the exchanges between the rows are operated on the
above Hamiltonian matrix, the Hamiltonian is rewritten as follows,

� �

�
���

��) 	

	 �)�

�
��� � (A.2)

The number of the eigenstates with eigenvalue zero is more than �
9
�
?
� �
�
?
� �
9
�
?
�, because the rank of the matrix � is less than �
?
 as shown in
Eq. (A.2). For example, the lattice shown in Fig. A.1 has two A-lattice points and
one B-lattice point per unit cell, thus, the �� � �' -fold degenerate eigenstates
have the same eigenenergy, zero. Here, ' is the number of unit cell of the lattice.
These ' -fold degenerate eigenstates produce the flat band, when the system size
increases from the finite size with ' unit cells to the periodic-infinite size.

In order that the systems have the multiple degenerate states with the eigen-
value zero, the following equation should be satisfied,

�)�	 � 
� (A.3)
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Figure A.4: One of the flat-band eigenstates of the Lieb-type lattice shown in Fig.
A.1.

where 	 is the 
9
-dimensional vector. Using the knowledge of the linear algebra,
we can show that there are �
9
�
?
� vectors which satisfy Eq. (A.3). In other
words, one of the eigenfunctions of Hamiltonian (A.1) with eigenvalue zero, �, is
written as following form,

� �

�
����������

>�
>�
...

>
)

	
...
	

�
����������
� (A.4)

where >� is the �-th component of vector 	. This result shows that the wavefunc-
tions have the amplitude only on the A-lattice points. For example, in the Lieb-
type lattice as shown in Fig. A.1, one of the degenerate eigenfunctions is localized
in a unit cell as shown in figure A.4. The � and 	 represent the wavefunction
amplitudes. Such localized states exist similarly in the other unit cells. Thus,
these localized eigenstates produce the flat band, when the system size changes
from the finite size to the periodic-infinite size. Figure A.5 shows the electronic
band structure of the lattice shown in Fig. A.1 [29]. Here, the electron transfer
energy, �, is unity. The Lieb-type lattices always have a flat band in the center of
the electronic band structure. Furthermore, we notice that the localized state has
the overlap with the neighbor localized states. It shows that the Wannier functions
of a flat-band eigenstates are extended over an entire system. It means that the
flat-band electronic states have both localized and itinerant characteristics.

A.2 Tasaki type

In the previous section, we showed that the flat-band eigenstates are localized
in each unit cell. Tasaki found that when the isolated small cell has the localized
eigenstate, such localized states remain as the eigenstates in the larger systems
made by the combination of the small cells. As well as the mechanism of the flat-
band appearance of the Lieb type, the localized eigenstates produce the flat bands.
In order to produce the localized state by the quantum interference, the shape of
small cell is very important. The small cell must be a “complete graph”, which
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Figure A.5: The band structure of the Lieb-type lattice shown in Fig. A.1 [29].

Figure A.6: The triangular cell.
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have the bonds between all lattice points. The triangular cell as shown in Fig. A.6
is an example of a complete graph. When we set the electron transfer energy as
unity, the Hamiltonian of the triangular cell is represented as follows,

� �

�
�   
  
  

�
� � (A.5)

Here, it is assumed that the on-site energy is equal to the transfer energy. The
triangular cell has the 2-fold degenerate eigenvalues, 0, and one eigenvalue, 3.
The 2-fold degenerate eigenstates can be written as follows,

���� �

�
� 	


�

�
� � (A.6)
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�
	

�
� � (A.7)

It is important that the above eigenstates have the node. In the Tasaki-type lat-
tices, the eigenstate having the node remains even in the large systems made by
the combination of the cells. Then, we explain the procedure to make localized
eigenstates of the Tasaki-type lattices.

� Procedure 1.
We consider the transformed triangular cell shown in Fig. A.7, instead of

Figure A.7: The transformed triangular cell. The quantity � and �� represent the
electron transfer energies. The lattice points are labeled by numbers in the lattice
points. The red numbers represent the amplitudes of the wavefunction (A.10).

the triangular cell. We assume the Hamiltonian as follows,

�,�!! � ��%�� � �%�� � %����%� � �%� � %��

� �

�
�  � 
� �� �
 � 

�
� �

(A.8)

where, %� is the annihilation operator of electron at �-th lattice point. In order
that the cell has the eigenvalue zero, the eigenfunction �, should obey the
following equation.

�%� � �%� � %���, � 	� (A.9)
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Thus, the eigenfunctions with the eigenvalue zero can be selected as fol-
lows,

����
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�
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� � (A.10)
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Note that these two eigenfunctions are independent and nonorthogonal each
other.

� Procedure 2.

��������� 
����

Figure A.8: The finite system made by the combination of the two cells. The lat-
tice points are labeled by numbers in the lattice points. The red numbers represent
the amplitudes of the wavefunction.

Next, we connect the two cells as shown in Fig. A.8. The Hamiltonian of
the system connected two cells is written as

��,�!! � �

�
�����
 �  	 	
� �� � 	 	
 � � � 
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	 	  � 

�
����� � (A.12)

The wavefunction which consist of the combination of the �
���
, in the left-

side cell and the �
���
, in the right-side cell is the eigenfunction of above

Hamiltonian. In other words, this Hamiltonian has the following eigenfunc-
tions,

��,�!! �
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�����

	
�
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�
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�
����� � (A.13)

The wavefunction, ��,�!!, is the localized eigenstates having the nodes at the
edges. Furthermore, the wavefunction has the eigenvalue, zero.
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Localized state

Figure A.9: The two-dimensional finite system made by the combination of the
four cells. The lattice points are labeled by numbers in the lattice points. The red
numbers represent the amplitudes of the wavefunction.

� Procedure 3.

Then, we repeat the procedure 2 and can build two-dimensional systems.
For example, the Hamiltonian of the finite system consisting of the four
cells as shown in Fig. A.9 can be written as,
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�������������

 �  	 	 	 	 	 	
� �� � 	 	 	 	 	 	
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and a localized eigenstate, ��,�!!, is obtained as follows,
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�
�������������
� (A.15)

We can confirm that the wavefunction amplitudes become zero at the edges
of the finite system and the eigenvalue of the state is zero.
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� Procedure 4.

��������� 
����

Figure A.10: The two-dimensional finite system made by the combination of the
many cells. The lattice points are labeled by numbers in the lattice points. The
red numbers represent the amplitudes of the wavefunction.

Finally, as shown in Fig. A.10, we can build the much larger systems by link-
ing the finite system shown in Fig. A.9 together at edges. In this process, the state
��,�!! is still staying as the eigenfunction. Such localized eigenstate exist simi-
larly in each unit cell. And all the localized eigenstates have zero eigenvalues,
thus, the flat band appear in the electronic band structures. Figure A.11 represents
the electronic band structure of the Tasaki-type lattice shown in Fig. A.2. The
band structure has the band gap between the dispersive bands and the flat band.

A.3 Mielke type

In this section, we use the basic knowledge of graph theory [57] to explain
the mechanism of flat-band appearance. Flat band is one of the characteristics of
the line graph of the AB-sublattice systems. The Kagomé lattice is classed to the
Mielke type.

A.3.1 The basis of the graph theory

� Definition of the graph
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Figure A.11: The electronic band structure of the Tasaki-type lattice which is
shown in Fig. A.2 (in case of � � �). When the variable � takes the value except
for two, the flat band at � � 	 changes to the dispersive band. However the flat
band at � � ��� remains.

The graph, ������, means a collection of vertices (sites) and edges (bonds)
between them. Here, � is the set of vertices, and � is the set of edges.
The �-th vertex is represented by >�, and the edge connecting between two
vertexes, >� and >	, is represented by ��	 � �>�� >	�. The graph ������ as
shown in Fig. A.12 is represented as follows,

� � �>�� >�� >�� >��� (A.16)

� � ��>�� >��� �>�� >��� �>�� >��� �>�� >���
� ����� ���� ���� �����

(A.17)

We don’t consider the graph where the interval of two vertices is connected
by multiple edges or the edge connects a single vertex (loop edge), as shown
in Fig. A.13.

� Plane graph

When all edges cross only at vertexes, the graph is called the plane graph.
For example, the graph as shown in Fig. A.14 isn’t the plane graph.

� Regular graph
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Figure A.12: An example of the graph ������.

Figure A.13: An example which we don’t call a graph.

When every vertex has the same degree, we call the graph the regular graph.
In the graph theory, the degree of the vertex means the number of the ver-
texes which connect with it in edges.

� Adjacency matrix 9��� and Incidence matrix ?��� of the graph �

We define the adjacency matrix of the graph � to be the matrix 9��� �
���	� where ��	 �  if the two vertices, >� and >	 , are adjacent and ��	 � 	
otherwise. Thus, the adjacency matrix is written as follows,

��	 �

�
 ��	 � �

	 ��	 � �
� (A.18)

The adjacency matrix is the 
� 
�
� 
 dimensional matrix. Here, 
� 
 repre-
sents the number of the vertexes of the graph �.

Furthermore we introduce the following incidence matrix ?��� � ���	� of
the graph �,

��	 �

!"#
"$
 if >� is the starting point of the edge �	���!� (or if � � �)

� if >� is the end point of the edge �	���!� (or if � � /)

	 otherwise

�

(A.19)
The incidence matrix is the 
� 
�
�
 dimensional matrix.

A.3.2 Line graph

We show the procedure for making the line graph �. from the graph �. As an
example, it is shown that the Kagomé lattice is the line graph of the hexagonal
lattice.
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Figure A.14: The example which we don’t call a plane graph.

(1) As shown in Fig. A.15, we add the new vertexes �>�� to the center of every
edge of graph �.

Figure A.15: The hexagonal lattice � (solid lines) and the added vertexes �>��
(solid circles).

(2) If an edge of the graph � is connected to another edge at a vertex, new
edge �� is drawn between the two vertexes >� on these edges. We call the
new graph which is produced by above procedure “a line graph of �”, and
express it with �.���� ���. Here ������ is the collection of the �>������

Figure A.16: The broken lines represent the hexagonal lattice �, and the solid
lines is the Kagomé lattice which is the line graph �. of the hexagonal lattice.

Figure A.16 shows that the Kagomé lattice is the line graph of the hexagonal
lattice. The lattice shown in Fig. A.3 is the line graph of the square lattice.
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A.3.3 Theorem of the graph theory

(1) Theorem 1.

If the graph � is a plane graph, we have the following equation [57].

9��� � @���� ?��� ?����� (A.20)

where the matrix @��� is defined as

��	 �

�
the degree of the vertex >� for � � �

	 for � 	� �
� (A.21)

In the graph theory, the degree of the vertex means the number of the ver-
texes which connect with it in edges. In case that the graph � is a regular
graph, the matrix @��� is rewritten as follows,

@��� � <�
/ 
� (A.22)

where < is the degree of the vertex, and �
/ 
 represents the 
� 
�
� 
 unit
matrix. Thus, Eq. (A.20) may be written as

9��� � <�
/ 
 �?��� ?����� (A.23)

The proof of the equation (A.20).

Because the component of the matrix �??���	 is written by
	�

!
� ��!�	!, if
� � �, the components of �??���� are equal to the degree of the vertex >�:
if edge�>�� >	� �� 	� �� is one of the edge of the graph �, the component of
�??���� is equal to�: otherwise, the component of �?? ���� becomes zero.

(2) Theorem 2.

If the graph � is a plane graph, a regular graph, and an AB sublattice struc-
ture, we have a following equation [22–24],

9��.� � ?���� ?���� ��
�
� (A.24)

Here, every direction of the edge is unified from the vertex of the A sublat-
tice to that of the B sublattice.

(3) Theorem 3.

The incidence matrix ?��� is linear map which projects the 
�
 dimen-
sional space to the 
� 
 dimensional space. The any closed path space % in
the graph � is the kernel of the ?���. In other words, if a closed path in
the graph � is shown by �,, we obtain following equation [57],

?����, � 
� (A.25)

Definition of the closed path �,
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Figure A.17: An example of the closed path �,.

The closed path space % has the orientation, and is defined as,

�, �

!"#
"$
 if the closed path % contains �� and �� and % have the same orientation

� if the closed path % contains �� and �� and % have opposite orientation

	 if the closed path % does not contain ���
(A.26)

For example, in case of Fig. A.17, the collection of the edge is written by,

� � ���� ��� ��� ��� ��� �	�� (A.27)

We set anticlockwise closed path space % which is shown by bold solid lines
in Fig. A.17. Then the closed path �, can be written as,

�, � ��� �
���� ���� �� �

���� ��	�� (A.28)

A.3.4 Flat band and Graph theory

We used the following Hamiltonian under the tight-binding approximation in this
paper,

� �
�
��	

��	��
�
���	� (A.29)

In case that ��	 � , we can consider that the lattice points and the bonds between
them of the tight-binding models correspond to the vertexes and the edges of the
graph, respectively. Thus, the Hamiltonian matrix (A.29) is equal to the adjacency
matrix (A.18).

We have already shown that the line graph �. of the hexagonal lattice � is the
Kagomé lattice. To obtain the eigenstates of the Kagomé lattice, we diagonalize
the adjacency matrix 9��.�. The shrödinger equation to be solved is written as
follow, using the adjacency matrix,

9��.��
�

�
 � ���

�

�
� (A.30)

where ��

�
 and �� represent the eigenvectors and the eigenenergies, respectively.

Substituting Eq. (A.24) into Eq. (A.30), we obtain

?���� ?�����

�
 � ���


�
 � ���
�

�
� (A.31)
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If we take the closed path �, in the hexagonal lattice � as ��

�
, the shrödinger

equation is rewritten as follows by using Eq. (A.25),

����

�
 � ���

�

�
� (A.32)

The result means that the closed paths �, are the eigenvectors. Furthermore, such
closed paths innumerable exist. Thus the eigenvectors correspond to the flat-band
eigenstates. The degree of the degeneracy is equivalent to the number of the linear
independent closed paths, as shown in Fig. A.18.

Figure A.18: A closed path %� is decomposed to two linear independent closed
paths %� and %�.

A.3.5 Flat-band eigenstates

A linear independent closed path of the hexagonal lattice is shown in Fig. A.19.
The closed path is written as

�, � ����	 �
���
	 �

���
	 �

���
��

����� ��		 �
����� ���

��
��	
	 �

�
�
��

�
��� �
		 �� (A.33)

The closed path (A.33) is equivalent to a flat-band eigenstate, because the edges
of hexagonal lattice correspond to the vertexes of the Kagomé lattice. Thus, as
shown in Fig. A.20, we obtain a flat-band eigenstate localized around hexagonal
area

��

�
 � ����	 �

���
	 �

���
	 �

���
��

����� ��		 �
����� ���

��
��	
	 �

�
�
��

�
��� �
		 �� (A.34)

Such localized states exist similarly in each hexagonal area and produce the flat-
band states. The degree of the degeneracy is equivalent to the number of the unit
cell, because the linear independent closed paths exist at each hexagonal ring.
Flat-band eigenstates make the nonorthogonal system. The electronic band struc-
ture of the Kagomé lattice is shown in Fig. A.21(b). A flat band of the Mielke
type lattices appears at the � � ��.

A.3.6 Band structure except flat band

In this subsection, we show the relation of the dispersive band structures between
a graph � (ex. hexagonal lattice) and the line graph �. (ex. Kagomé lattice). The
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Figure A.19: A linear independent closed path �, of the hexagonal lattice.

��������� 
����

Figure A.20: A localized eigenstate of the Kagomé lattice.
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following equation is the Schrödinger equation of the graph �,

9����.

/ 
 � �.�

.

/ 
� (A.35)

where �.

/ 
 and �. represent the eigenvectors and the eigenvalues of the graph �.

Substituting Eq. (A.23) into Eq. (A.35), we obtain

<�.

/ 
 �?��� ?�����.


/ 
 � �.�
.

/ 
 (A.36)

,where < represents the degree of the vertex of the graph �. In case of the hexago-
nal lattice, < is equal to the 3. On the other hand, the Schrödinger equation of the
line graph � can be written using Eq. (A.24) as follows,

?���� ?�����

�
 � ���


�
 � ���
�

�
� (A.37)

We can prove that the eigenvalues except zero of the �?���� ?���� are equal to
the eigenvalues of the �?���  ?�����, thus, using Eq. (A.36) and Eq. (A.37) we
obtain

�� � < � �� �.� (A.38)

If the graph � has the AB-sublattice structure, the band structures become sym-
metric for E=0. Thus, the relation of the dispersive band structures between a
graph � and the line graph �. is deduced as follows,

�� � < � � � �.� (A.39)

As an example, we show the band structures of the hexagonal lattice (�) and
Kagomé lattice (�.) in Fig. A.21(a) and Fig. A.21(b), respectively.
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Figure A.21: (a) The band structures of the hexagonal lattice and (b) the Kagomé
lattice.

A.4 Summary

(1) Lieb type

Condition; AB-sublattice structure with the difference in the lattice point
number of A-sublattice and B-sublattice.

Characteristics; A flat band appears at the � � 	, because the band struc-
tures of the AB-sublattice structures become symmetric for E=0.

(2) Tasaki type

Condition; The existence of the complete graph cell.

Characteristics; The band structure has the band gap between the dispersive
bands and the flat band.

(3) Mielke type

Condition; The line graph �. of the AB-sublattice structure � in the plane
graphs.

Characteristics; The flat band appears at � � ���. The dispersive band
structures of the �. and � are the identical.
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