フローなどのソフト測定

新井田 貴文
 （筑波大学）

QCD相転移やQGP生成のモデル化による重イオン衝突の時空発展 の理解に向けた理論•実験共同研究会＠オンライン，9／24／2021

粒子の集団運動（フロー）

$$
E \frac{d^{3} N}{d^{3} p}=\frac{d^{2} N}{2 \pi p_{\mathrm{T}} d p_{\mathrm{T}} d y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos (n \phi)\right)
$$

$\phi:$ 粒子の反応平面（あるいはイベント平面）からの方位角
－フローは粒子の集団運動を表す。初期の空間異方性•密度揺らぎに対するシステムのレスポンス $\varepsilon_{n} \alpha V_{n}$ 。反応平面と粒子の相関とも言える。

生成粒子の方位角分布のフーリエ係数で表される

- V_{1} ：directed flow，指向型フロー
- V_{2} ：elliptic flow，楕円型フロー
－V_{3} ：triangular flow
－ $\mathrm{V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6} \ldots$
L．Yan，CPC42，042001（2018）

Fig．2．Characteristic shapes of the deformed initial state density profile，corresponding to anisotropies of $\mathcal{E}_{1}, \mathcal{E}_{2}$ ， $\mathcal{E}_{3}, \mathcal{E}_{4}$ and \mathcal{E}_{5}（from left to right）．

楕円型フロー vs．衝突エネルギー

楕円型フロー V_{2} の符号は，エネルギーを変えていくと，2回変わる。

Number of Constituent Quark（NCQ）スケーリング

NCQスケーリングが成り立つことが パートンレベルでの集団運動を示唆。

3 GeV では，＂粒子＂のNCQスケーリングが成り立たない。
パートンではなく，バリオンが支配的。
$\pi^{+}: \Delta$ resonance
K^{+}：associated production of \wedge
p ：spectator proton contribution

モデルとの比較

JAM：JET AA Microscopic Transportation Model UrQMD：Ultra－relativistic Quantum Molecular Dynamics

Y．Nara et al．，PRC61， 0249021 （1999）
S．Bass et al．，Prog．Part．Nucl．Phys．41， 255 （1998）

Baryonic mean－fieldを取り入れたモデル計算（JAM，UrQMD）は，定性的に実験データを再現。 ただし，K＋$V_{2}\left(\pi V_{1}\right.$ や $\wedge V_{2}$ なども）は再現できていない。

指向型フロー \boldsymbol{v}_{1}

1 次相転移に敏感な量として V_{1} は測定されてきた。
最近は，＂even＂成分，初期の＂tilt＂，電磁場の効果，coalescenceの研究がされている。

＊＂輸送クォーグと＂生成クォーグに基づくcoalescence sumルール
－ハイパー核を含む原子核のdv $\mathrm{v}_{1} / \mathrm{dy}$ vs．質量。
ハイパー核生成プロセスはcoalescenceが支配的。

Femtoscopy

Rlong：ビーム軸方向のHBT半径
Rout：ペア横運動量方向のHBT半径＋粒子放出時間 $R_{\text {side：}}$ ：Rlong と $R_{\text {out }}$ に直行する方向の半径

＊ 20 GeV 付近で $\mathrm{R}_{\text {out }} / \mathrm{R}_{\text {side }}$ のピーク。EOSのsoftest point？
＊ 4.5 GeV は（ π 中間子の）放出領域が＂oblate＂から＂prolate＂シェイプへ変化する中間点。

カイラル磁気効果（CME）の探索

CMEは，磁場方向に電流が流れる現象 （masslessクォーク物質＋カイラリティインバランス＋強磁場）

- 同重体衝突 $\mathrm{Ru}+\mathrm{Ru}$ vs． $\mathrm{Zr}+\mathrm{Zr}$
- 同じ質量数，異なる電荷（陽子数）
- Ru＋Ruの方が，10－18\％初期磁場が大きい
- ほぼ同じ大きさなので，v2などによるBGが同じで， CMEシグナルだけ異なる

粒子多重度と楕円型フロー

	Case－1［83］			Case－2［83］			Case－3［113］		
Nucleus	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}
${ }^{96} \mathrm{Ru}$	5.085	0.46	0.158	5.085	0.46	0.053	5.067	0.500	0
${ }_{40} \mathrm{Zr}$	5.02	0.46	0.08	5.02	0.46	0.217	4.965	0.556	0

同じ中心衝突度で～4\％程度の粒子多重度の違い。
different non－flow contributions

V_{2}（BG）は～3\％程度の違い。

\boldsymbol{V}－correlator

S．Voloshin，PRC70．057901（2004）

$$
\begin{aligned}
\gamma_{112} & =\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{2}\right)\right\rangle \\
\Delta \gamma & =\gamma_{112}^{\mathrm{OS}}-\gamma_{112}^{\mathrm{SS}}
\end{aligned}
$$

Predefined CME signature：$\frac{\left(\Delta \gamma / v_{2}\right)^{\mathrm{Ru}+\mathrm{Ru}}}{\left(\Delta \gamma / v_{2}\right)^{\mathrm{Zr}+\mathrm{Zr}}}>1$

事前に定義したCMEシグナルは観測されず。
ベースライン（ratio＝1からのずれ）を理解する必要ある。

Isobar CMEのサマリープロット

－STARは5 グループによるブラインド解析により，アイソバーにおける CME探索を行ったが，＂事前定義＂したCMEシグナルは見えなかった。

粒子多重度の微妙な違いによって，ベースラインの変化（Ratioが 1 以下）が見られるので，その理解に向けて現在調査中。

ハイペロンのグローバル偏極

初期の軌道角運動量L
\rightarrow L方向にスピンが偏極
＂グローバル＂偏極と呼ぶ。

STAR，arXiv：2108．00044

STAR，PRL126， 162301 （2021）

グローバル偏極は理論予測通り，3 GeV付近で最大値をとりそう。
三（spin－1／2）や Ω（spin－3／2）の偏極測定が出始めている。
今の所，（初期磁場による）粒子•反粒子に違いはない。

偏極測定における課題

方位角依存性

AMPT model
D．Wei，W．Deng，X．Huang，PRC99， 014905 （2019）

ラピディティ依存性

BUR2020，STAR Note SN0755

ビーム軸方向の局所渦
AMPT－IC＋MUSIC hydro
B．Fu et al．，PRC103， 024903 （2021）

differentialな測定を見ると，多くのモデルが実験データを再現できていない。局所渦に関しては，BWモデルは定量的に再現している。今も議論が続いている。

渦と v_{1}

STAR，PRC98， 014915 （2018）
（b）tilted source
＋asymmetric density gradient

S．Voloshin，EPJ Web Conf．171， 07002 （2018）

V_{2} や V_{3} と比べると，
V_{1}（エネルギーや粒子種依存性）は定量的に再現できていない。
V_{1} の傾きとグローバル偏極が同じような エネルギー依存性に見える。

まとめ

フローと粒子相関に関する最近の実験結果（ほぼSTARしかカバーしていない）を紹介しました
＊QCD相転移やバリオン高密度領域における物性解明のために，低エネルギー領域 でフローやfemtoscopyの精密測定が進んでいる。
－ブラインド解析によるアイソバーCME探索がついに終了。事前定義したCMEシグ ナルは観測されず，さらなる調査が必要。完全にCMEを否定したわけではない。
－グローバル偏極の新しいデータ（低エネルギーや粒子種依存）が出始めている。

バックアップ

Analysis procedure

	Case－1［83］			Case－2［83］			Case－3［113］		
Nucleus	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}
${ }^{96} \mathrm{Ru}$	5.085	0.46	0.158	5.085	0.46	0.053	5.067	0.500	0
${ }_{40} \mathrm{Zr}$	5.02	0.46	0.08	5.02	0.46	0.217	4.965	0.556	0

Follow blind analysis as recommended by BNL NPP PAC
－No species info．until final step
－Codes frozen before the unblind step

	Case－1［83］		Case－2［83］			Case－3［113］			
Nucleus	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}	$R(\mathrm{fm})$	$a(\mathrm{fm})$	β_{2}
${ }^{94} \mathrm{Ru}$	5.085	0.46	0.158	5.085	0.46	0.053	5.067	0.500	0
${ }_{40} \mathrm{Zr}$	5.02	0.46	0.08	5.02	0.46	0.217	4.965	0.556	0

－Analyzed by 5 independent groups
－Case for CME is pre－defined
STAR，Nucl．Sci．Tech．32（2021）5，48
＂Methods for a blind analysis of isobar data collected by the STAR collaboration＂
Centrality determination
－Done by non－CME analyzers
－Unknown deformation parameter，tried 3 cases of Woods－Saxon parameters below
－Case－3 $\left(\beta_{2}=0\right)$ best describes the data．Potential room for improvement．

Elliptic／triangular flow

，v_{2} differs by $\sim 2-3 \%$ ，indicating different shape and CME background for a given centrality
v_{2} ratio deviates from unity in 0－5\％， while v_{3} deviates in opposite direction．Could be related to nuclear structure difference between the two species．

CME observables

$$
\begin{aligned}
\gamma_{112} & =\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{2}\right)\right\rangle \\
\Delta \gamma & =\gamma_{112}^{\mathrm{OS}}-\gamma_{112}^{\mathrm{SS}} \\
\gamma_{123} & =\left\langle\cos \left(\phi_{\alpha}+2 \phi_{\beta}-3 \Psi_{3}\right)\right\rangle
\end{aligned}
$$

3-correlator
S. Voloshin, PRC70.057901(2004)

- Well-studied charge sensitive correlator
- $\Delta \gamma / \mathrm{v}_{2}$ is commonly used to cancel v_{2}-driven background

D Derived measurements

- γ_{113} : wrt Ψ_{3} which is uncorrelated with B-field direction
- two-particle correlator δ
- pseudorapidity dependence
- invariant mass
- wrt spectator/participant planes

R-correlator
N.N. Ajitnand et al., PRC83.011901(2011)

- Alternative measure for charge separation N. Magdy et al., PRC97.061901(2018)
-Similar to $\Delta \gamma$ in sensitivity to CME based on AVFD model study
S. Choudhury et al., arXiv:2105.06044

