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8 Quantum master equation

This is a lecture note of the theory of condensed matter IV, on Jun. 10 concerning the derivation of
the quantum master equation of a single level quantum dot for a spinless electron system coupled to two
reservoirs. We show that the quantum master equation can be reduced to the GKSL (Lindblad) form,
whose diagonal components are equivalent to the classical master equation that we had discussed.

8.1 Model

We define the Hamiltonian, Ĥ = Ĥ0 + Ĥ1, where the unperturbed part is made of Hamiltonians of a
quantum dot (QD) and of reservoirs, i.e., Ĥ0 = Ĥdot + Ĥres. We consider the simplest model Hamiltonian

of the QD system, Ĥdot = ϵ0n̂, where the electron number operator in the QD is defined by n̂ = d̂†d̂
using QD spinless creation (annihilation) operator d̂†(d̂) satisfying Fermionic anticommutation relation{
d̂, d̂†

}
= 1. Here we assume two reservoirs, left (L) and right (R), as shown in Fig. 1, Ĥres =

∑
α Ĥα.

The Hamiltonian of the reservoir α = L/R is

Ĥα =
∑
k

εkĈ
†
αkĈαk, (1)

where k is the quasi-continuous quantum number in each reservoir and Ĉ†
αk(Ĉαk) is the creation (annihi-

lation) operator of the reservoir α, satisfying the anti-commutation relation
{
Ĉαk, Ĉ

†
α′k′

}
= δαα′δkk′ .

The perturbation term is the tunnel couplings

Ĥ1 =
∑
αk

(VαkĈ
†
αkd̂+H.c.), (2)

where the complex coupling constants Vαk are introduced and “H.c.” depicts the Hermite conjugate.

Figure 1: Model of the system considered in this note.

8.2 Interaction picture and Green functions

In the following, we use a unit system ℏ = 1. Let us introduce an interaction picture of a generic operator

Ô, signified by a symbol ‘tilde’, Õ(t) ≡ eiĤ0tÔe−iĤ0t. Since we assume non-interacting reservoirs, the
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interaction picture of the annihilation/creation operators are1

C̃αk(t) = e−iεktĈαk, C̃†
αk(t) = eiεktĈ†

αk. (4)

Green functions are versatile tool in physics. For example, the general solution to the Poisson equation
can be obtained by a Green function, G(r, r′) = −1/ |r − r′|. They are also quite useful in analyzing
dynamics of quantum many-body system. Here we introduce retarded/advanced and lesser/greater Green
functions. These four Green functions are also very important in the discussions of non-equilibrium physics,
since Keldysh or non-equilibrium Green function, that will be discussed in the next lecture, is made of
these Green functions. In the linear response formalism, time-ordered Green function is also important.

First we define the retarded Green function of the reservoir α as

GR
α (k, t) ≡ −iθ(t) ⟨{C̃αk(t), C̃

†
αk(0)}⟩0 , (5)

where θ(t) is the Heaviside step function and
{
Â, B̂

}
= ÂB̂ + B̂Â is the anticommutator. The thermal

average (for reserviors in local equilibria) is defined by

⟨Ô⟩0 ≡ Tr
{
χ̂0Ô

}
, (6)

with the symbol Tr representing the trace and

χ̂0 = χ̂(t0) =
∏
α

e−β(Ĥα−µαN̂α)

Tr
{
e−β(Ĥα−µαN̂α)

} ⊗ ρ̂0 = R̂0 ⊗ ρ̂0, (7)

is the initial (at time t = t0) density matrix of all system. Here, R̂0 is the density operator of the
reservoirs where β = 1/(kBT ) with the Boltzmann’s constant kB and the bath temperature T assumed to
be common in all reservoirs. (This condition can be easily generalized for any local equilibria with different

temperatures.) µα is the chemical potential and N̂α ≡
∑

k Ĉ
†
αkĈαk is the total electron number operator

of the reservoir α. ρ̂0 is an arbitrary initial density operator of the QD system. Since the average is over
thermal equilibrium reservoirs, GR

α (k, t) is only the function of time difference of two operators, C̃αk(t) and

C̃†
αk(0). Using Eq. (4), we obtain an explicit form

GR
αk(k, t) = −iθ(t)e−iεkt, (8)

and its Fourier transform is

GR
α (k, ω) ≡

∫ ∞

−∞
dteiωtGR

α (k, t) =
1

ω − εk + iη
= P 1

ω − εk
− iπδ(ω − εk), (9)

where a positive infinitesimal η is introduced to make the integral converge and the last expression includes
Cauchy’s principle integral and the Dirac’s delta function. The advanced Green function is defined by

GA
α (k, t) ≡ iθ(−t) ⟨{C̃αk(t), C̃

†
αk(0)}⟩0 , (10)

and whose Fourier transform GA
α (k, ω) is a complex conjugate of GR

α (k, ω).
We also define the lesser Green function of the reservoir α

G<
α (k, t) ≡ i ⟨C̃†

αkC̃αk(t)⟩0 = ie−iεkt ⟨Ĉ†
αkĈαk⟩0 = ie−iεktfα(εk), (11)

where we introduced the Fermi distribution function of the reservoir α:

fα(ε) =
1

eβ(ε−µα) + 1
. (12)

1The derivation is as follows: the Heisenberg equation of motion of C̃αk(t) is

dC̃αk(t)

dt
= eiĤ0ti

[
Ĥ0, Ĉαk

]
e−iĤ0t = −iεkC̃αk(t), (3)

with the initial condition C̃αk(t = 0) = Ĉαk. Hence, the solution is C̃αk(t) = e−iεktĈαk. The result of C̃†
αk(t) is obtained by

taking the Hermite conjugate of C̃αk(t).
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Again, lesser Green function of the reservoir α is also a function of the time difference of the operators.2

The Fourier transform of the lesser Green function is

G<
α (k, ω) = iAα(k, ω)fα(εk), (13)

where Aα(k, ω) is the spectral function of the reservoir α and is proportional to the Dirac’s delta-function
for free (non-interacting) reservoir Aα(k, ω) ≡ 2πδ(ω − εk). Similarly, we introduce the greater Green
function

G>
α (k, t) = −i ⟨C̃αk(t)C̃

†
αk⟩0 (14)

and its Fourier transform is

G>
α (k, ω) = −iAα(k, ω)f̃α(εk), (15)

where we defined hole distribution function f̃α(ε) ≡ 1− fα(ε).

8.3 Density matrix

The total system density matrix at time t is

χ̂(t) = e−iĤtχ̂(t0)e
iĤt, (16)

and its equation of motion (Liouville von Neumann equation) is

d

dt
χ̂(t) = −i[Ĥ, χ̂(t)]. (17)

Moving to the interaction picture χ̃(t) and the equation of motion becomes

d

dt
χ̃(t) = −i[H̃1(t), χ̃(t)], (18)

where the interaction Hamiltonian in the interaction picture is

H̃1(t) ≡ eiĤ0tĤ1e
−iĤ0t. (19)

Equation (18) has a general formal solution:

χ̃(t) = χ̃(t0)− i

∫ t

t0

dt′[H̃1(t
′), χ̃(t′)], (20)

where χ̃(t0) = χ̂0 is the initial density matrix of total system. With putting Eq. (20) into Eq. (18), we
obtain

d

dt
χ̃(t) = −i[H̃1(t), χ̂0]−

∫ t

t0

dt′[H̃1(t), [H̃1(t
′), χ̃(t′)]]. (21)

The density matrix of the system (QD) is defined by

ρ̃(t) ≡ Trresχ̃(t), (22)

where Trres represents the partial trace on the reservoir degree of freedom. Principle approximation resides
in replacing χ̃(t′) in the integral kernel by R̂0 ⊗ ρ̃(t) (Born-Markov approximation). Since the tunnel-
ing Hamiltonian Ĥ1 contains single annihilation or creation operator of the reservoir, it is obvious that
Trres[H̃1(t), χ̂0] = 0. Now taking the partial trace of Eq. (21) provides the final expression (Redfield
equation):

d

dt
ρ̃(t) = −

∫ t

t0

dt′Trres[H̃1(t), [H̃1(t
′), R̂0 ⊗ ρ̃(t)]], (23)

which represents sequential tunnel process.

2In fact, the retarded and lesser Green functions of the QD, defined as

GR
dot(t, t

′) ≡ −iθ(t− t′) ⟨
{
d̃(t), d̃†(t′)

}
⟩
0
,

G<
dot(t, t

′) ≡ i ⟨d̃†(t′)d̃(t)⟩0 ,
which do not appear in the discussion of today, are not in general the function of the time difference, t − t′, but explicitly
depends on both times t and t′. This is because the initial quantum state of the electrons in QD ρ̂0 is not necessarily commutes
with Ĥdot.
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8.4 Quantum master equation

This section explicitly evaluates the Redfield equation derived in the previous section. We change the
variable in Eq. (23) from t′ to τ ≡ t− t′ and

∫ t

t0
dt′ →

∫ t−t0
0

dτ . It can be shown that the integral kernel of

Eq. (23) is a rapidly decaying function of τ . Using the characteristic relaxation time of the reservoir, τrel,
for t− t0 ≫ τrel we can safely extend the upper limit of the integral to ∞ if we are interested in a steady
state property (not the transient property). Then,

dρ̃(t)

dt
= −

∫ ∞

0

dτTrres[H̃1(t), [H̃1(t− τ), R̂0 ⊗ ρ̃(t)]]

= −
∫ ∞

0

dτTrres{H̃1(t)H̃1(t− τ)R̂0 ⊗ ρ̃(t) (24)

− H̃1(t)R̂0 ⊗ ρ̃(t)H̃1(t− τ) (25)

− H̃1(t− τ)R̂0 ⊗ ρ̃(t)H̃1(t) (26)

+ R̂0 ⊗ ρ̃(t)H̃1(t− τ)H̃1(t)}. (27)

Let us first evaluate Eq. (24) noting that Trres

{
Ĉ†

αkĈ
†
βk′R̂0

}
= Trres

{
ĈαkĈβk′R̂0

}
= 0,

(i) = −
∫ ∞

0

dτTrres

[∑
αk

{
VαkC̃

†
αk(t)d̂(t) + V ∗

αkC̃αk(t)d̂
†(t)

}∑
βk′

{
Vβk′C̃†

βk′(t− τ)d̂(t− τ) + V ∗
βk′C̃βk′(t− τ)d̂†(t− τ)

}
× R̂0 ⊗ ρ̃(t)

]
= −

∑
αβkk′

∫ ∞

0

dτTrres

[{
VαkV

∗
βk′C̃

†
αk(t)C̃βk′(t− τ)d̂(t)d̂†(t− τ) + V ∗

αkVβk′C̃αk(t)C̃
†
βk′(t− τ)d̂†(t)d̂(t− τ)

}
× R̂0 ⊗ ρ̃(t)

]
= i

∑
αk

∫ ∞

0

dτ

∫
dω

2π
{VαkV

∗
αke

iωτG<
α (k, ω)d̃(t)d̃†(t− τ)ρ̃(t)− V ∗

αkVαke
−iωτG>

α (k, ω)d̃†(t)d̃(t− τ)ρ̃(t)},

(28)

where we note that at equilibrium, the statistical average is only the function of the time difference,

namely, Trres

{
C̃†

αk(t)C̃βk′(t− τ)R̂0

}
= δαβδkk′ ⟨C̃†

αkC̃αk(−τ)⟩
0
= −iδαβδkk′G<

α (k,−τ). We also note that

the system Hamiltonian Ĥdot is diagonalized with many electron basis as follows:

Ĥdot |N ⟩ = EN |N ⟩ , (29)

where N is the total number of electrons in the QD system. We depict a quantum numberm,n representing
N = 0, 1. With inserting complete sets p like 1 =

∑
p |p⟩ ⟨p| , the m,n matrix element is

⟨m|(i)|n⟩ = i
∑
αk

|Vαk|2
∫ ∞

0

dτ

∫
dω

2π

∑
pq

×
{
eiωτG<

α (k, ω)eiEmt ⟨m|d̂|p⟩ e−iEpteiEp(t−τ) ⟨p|d̂†|q⟩ e−iEq(t−τ)eiEqtρ̂(t)e−iEnt

− e−iωτG>
α (k, ω)eiEmt ⟨m|d̂†|p⟩ e−iEpteiEp(t−τ) ⟨p|d̂|q⟩ e−iEq(t−τ)eiEqtρ̂(t)e−iEnt

}
= i

∑
αk

|Vαk|2
∫ ∞

0

dτ

∫
dω

2π

∑
pq

ei(Em−En)t

×
{
2πiδ(ω − εk)fα(εk)e

i(ω−Ep+Eq)τ ⟨m|d̂|p⟩ ⟨p|d̂†|q⟩ ρqn(t)

+ 2πiδ(ω − εk)f̃α(εk)e
i(−ω−Ep+Eq)τ ⟨m|d̂†|p⟩ ⟨p|d̂|q⟩ ρqn(t)

}
. (30)

In the last step, we executed the τ integral like∫ ∞

0

dτei(Ω+iη)τ =
i

Ω+ iη
≈ πδ(Ω), (31)
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where we introduced the positive infinitesimal η to make the integral converge and we neglected the
contribution of the principle integral. Usually the summation on wave numbers can be replaced with the
integration in energy with introducing the line-width function: for an arbitrary function of reservoir
energy εk, F (εk),∑
αk

VαkV
∗
αkF (εk) =

∑
αk

VαkV
∗
αk

∫
dϵF (ϵ)δ(ϵ− εk) =

∑
α

∫
dϵF (ϵ)

∑
k

VαkV
∗
αkδ(ϵ− εk) =

∑
α

∫
dϵ

2π
Γα(ϵ)F (ϵ),

(32)

where Γα(ϵ) ≡ 2π
∑

k VαkV
∗
αkδ(ϵ − εk) is the line-width function[1] and we neglect its energy dependence

(wide-band limit) in the following arguments. Then we have

⟨m|(i)|n⟩ = iei(Em−En)t
∑
α

∫
dϵ

2π
Γα(ϵ)

∑
pq

πi

×
{
δ(ϵ− Ep + Eq)fα(ϵ) ⟨m|d̂|p⟩ ⟨p|d̂†|q⟩ ρqn(t) + δ(ϵ+ Ep − Eq)f̃α(ϵ) ⟨m|d̂†|p⟩ ⟨p|d̂|q⟩ ρqn(t)

}
.

(33)

Similarly, Eq. (25) is

(ii) = i
∑
αk

∫ ∞

0

dτ

∫
dω

2π
{VαkV

∗
αke

iωτG>
α (k, ω)d̃(t)ρ̃(t)d̃†(t− τ)− V ∗

αkVαke
−iωτG<

α (k, ω)d̃†(t)ρ̃(t)d̃(t− τ)},

(34)

and m,n matrix element is

⟨m|(ii)|n⟩ = iei(Em−En)t
∑
α

∫
dϵ

2π
Γα(ϵ)

∑
pq

(−πi)

×
{
δ(ϵ− Eq + En)f̃α(ϵ) ⟨m|d̂|p⟩ ρpq(t) ⟨q|d̂†|n⟩+ δ(ϵ+ Eq − En)fα(ϵ) ⟨m|d̂†|p⟩ ρpq(t) ⟨q|d̂|n⟩

}
.

(35)

Equation (26) is

(iii) = i
∑
αk

∫ ∞

0

dτ

∫
dω

2π
{VαkV

∗
αke

−iωτG>
α (k, ω)d̃(t− τ)ρ̃(t)d̃†(t)− V ∗

αkVαke
iωτG<

α (k, ω)d̃†(t− τ)ρ̃(t)d̃(t)}.

(36)

and m,n matrix element is

⟨m|(iii)|n⟩ = iei(Em−En)t
∑
α

∫
dϵ

2π
Γα(ϵ)

∑
pq

(−iπ)

×
{
δ(ϵ+ Em − Ep)f̃α(ϵ) ⟨m|d̂|p⟩ ρpq(t) ⟨q|d̂†|n⟩+ δ(ϵ− Em + Ep)fα(ϵ) ⟨m|d̂†|p⟩ ρpq(t) ⟨q|d̂|n⟩

}
.

(37)

Finally, Eq. (27) is

(iv) = i
∑
αk

∫ ∞

0

dτ

∫
dω

2π
{VαkV

∗
αke

−iωτG<
α (k, ω)ρ̃(t)d̃(t− τ)d̃†(t)− V ∗

αkVαke
iωτG>

α (k, ω)ρ̃(t)d̃†(t− τ)d̃(t)}.

(38)

and m,n matrix element is

⟨m|(iv)|n⟩ = iei(Em−En)t
∑
α

∫
dϵ

2π
Γα(ϵ)

∑
pq

πi

×
{
δ(ϵ+ Ep − Eq)fα(ϵ)ρmp(t) ⟨p|d̂|q⟩ ⟨q|d̂†|n⟩ δ(ϵ− Ep + Eq)f̃α(ϵ)ρmp(t) ⟨p|d̂†|q⟩ ⟨q|d̂|n⟩

}
.

(39)
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m,n element of the system density matrix in the interaction picture is

⟨m|ρ̃(t)|n⟩ = ei(Em−En)t ⟨m|ρ̂(t)|n⟩ ≡ ei(Em−En)tρmn(t), (40)

hence the matrix element of its differential is

⟨m|dρ̃(t)
dt

|n⟩ = ei(Em−En)t
{
i(Em − En)ρmn(t) +

d

dt
ρmn(t)

}
. (41)

Then the final expression of the master equation reads

dρmn

dt

∣∣∣∣
seq.

= −i(Em − En)ρmn(t)

+
∑
α

∑
pq

∫
dϵ

Γα

2

[
fα(ϵ)

{
− δ(ϵ− Ep + Eq) ⟨m|d̂|p⟩ ⟨p|d̂†|q⟩ ρqn(t)

− δ(ϵ+ Ep − Eq)ρmp(t) ⟨p|d̂|q⟩ ⟨q|d̂†|n⟩

+ (δ(ϵ− Em + Ep) + δ(ϵ+ Eq − En)) ⟨m|d̂†|p⟩ ρpq(t) ⟨q|d̂|n⟩
}

+f̃α(ϵ)
{
− δ(ϵ− Ep + Eq)ρmp(t) ⟨p|d̂†|q⟩ ⟨q|d̂|n⟩

+ δ(ϵ+ Ep − Eq) ⟨m|d̂†|p⟩ ⟨p|d̂|q⟩ ρqn(t)

+ (δ(ϵ− Eq + En) + δ(ϵ+ Em − Ep)) ⟨m|d̂|p⟩ ρpq(t) ⟨q|d̂†|n⟩
}]

. (42)

8.5 GKSL master equation

We are discussing the simplest system, namely, single QD with single level of energy ϵ0. The only non-zero
element of the matrix element ⟨m|d̂|p⟩ is for m = 0 and p = 1 and the matrix element ⟨p|d̂†|q⟩ is for p = 1
and q = 0. Hence, the master equation can be casted to an operator form

dρ̂(t)

dt

∣∣∣∣
seq.

= −i
[
Ĥdot, ρ̂(t)

]
+
∑
α

∫
dϵ

Γα

2

[
fα(ϵ)

{
−δ(ϵ− ϵ0)d̂d̂

†ρ̂(t)− δ(ϵ− ϵ0)ρ̂(t)d̂d̂
† + (δ(ϵ− ϵ0) + δ(ϵ− ϵ0)) d̂

†ρ̂(t)d̂
}

+ f̃α(ϵ)
{
−δ(ϵ− ϵ0)ρ̂(t)d̂

†d̂+ δ(ϵ− ϵ0)d̂
†d̂ρ̂(t) + (δ(ϵ− ϵ0) + δ(ϵ− ϵ0)) d̂ρ̂(t)d̂

†
}]

= −i
[
Ĥdot, ρ̂(t)

]
+
∑
α

Γαfα(ϵ0)

[
d̂†ρ̂(t)d̂− 1

2

{
d̂d̂†, ρ̂(t)

}]
+
∑
α

Γαf̃α(ϵ0)

[
d̂ρ̂(t)d̂† − 1

2

{
d̂†d̂, ρ̂(t)

}]
, (43)

where
{
d̂d̂†, ρ̂(t)

}
= d̂d̂†ρ̂(t) + ρ̂(t)d̂d̂† is the anti-commutator. This is the Gorini-Kossakowski-Sudarshan-

Lindblad (GKSL) form of the master equation. 3 In fact, general form of the GKSL master equation
is

d ˆρ(t)

dt
= −i

[
Ĥdot, ρ̂(t)

]
+
∑
j

γj

[
L̂†
j ρ̂(t)L̂j −

1

2

{
L̂jL̂

†
j , ρ̂(t)

}]
, (44)

where γj is positive constants and L̂j is system operators, which are called as jump operators.
The (0, 0) element of the master equation is

dρ00(t)

dt
= −

∑
α

Γαfα(ϵ0)ρ00(t) +
∑
α

Γαf̃α(ϵ0)ρ11(t), (45)

3In this simple model, we had proved the microscopic derivation of GKSL master equation from the Redfield equation
without further approximations. However, in general cases, we usually need additional condition, rotating-wave approximation
to achieve GKSL form.
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where the first term represents so-called scattering-out and the second term as scattering-in process. Sim-
ilarly, the element is

dρ11
dt

=
∑
α

Γαfα(ϵ0)ρ00(t)−
∑
α

Γαf̃α(ϵ0)ρ11(t). (46)

These results are identical to those discussed in the previous lectures of the classical master equation.
We also derive the equation for the matrix elements between different N for the sequential tunneling

process. The (0, 1) element reads

dρ01
dt

= −i(E0 − E1)ρ01 −
1

2

∑
α

Γαfα(E1 − E0)ρ01 −
1

2

∑
α

Γαf̃α(E1 − E0)ρ01

= iϵ0ρ01 −
1

2

∑
α

Γαρ01. (47)

Hence, the general solution is

ρ01(t) = ρ01(0)e
iϵ0t−

ΓL+ΓR
2 t, (48)

whose amplitude exponentially dumps with time. Therefore, we do not need to argue the density matrix
elements between different electron number N since they decay very quickly.

8.6 Expectation of the current

The first order integral-differential equation Eq. (20) can be solved with certain initial condition of χ̃(t) as
shown in Eq. (20) and we could obtain arbitrary expectation value of an operator Ô,

⟨Ô⟩ (t) ≡ Tr
{
χ̂(t)Ô

}
= Tr

{
χ̃(t)Õ(t)

}
. (49)

We are concerning about an electrical current. Using the operator of the total electron density in the
reservoir R,

N̂R =
∑
k

Ĉ†
RkĈRk, (50)

the current operator is defined by its change with time:

ÎR(t) = −e
d

dt
N̂R(t) = −ie[Ĥ, N̂R(t)] = −ie

∑
k

{
−VRqĈ

†
Rk(t)d̂(t) + V ∗

Rqd̂
†
d(t)ĈRk(t)

}
. (51)

Now the expectation value of the current at time t is obtained using Eq. (20) and noting Trχ̂0ÎR(t) = 0:

IR(t) = Tr
{
χ̃(t)ĨR(t)

}
= −i

∫ t

0

dt′Tr
{
χ̃(t′)[ĨR(t), H̃1(t

′)]
}
, (52)

then putting the expression Eq. (51) and χ̃(t′) ∼ χ̃(t) = R̂0 ⊗ ρ̃(t) in the integration kernel, we have the
expression for the sequential tunneling current,

IR(t) = −e

∫ ∞

0

dτTr
[
R̂0 ⊗ ρ̃(t)

∑
q

∑
αk

{
− VRqV

∗
αk

[
C̃†

Rq(t)d̃(t), d̃
†(t− τ)C̃αk′(t− τ)

]
+ V ∗

RqVαk

[
d̃†(t)C̃Rq(t), C̃

†
αk′(t− τ)d̃(t− τ)

]}]
= ie

∑
mpq

ρqm(t)

∫
dϵ

2π
ΓR

[
− fR(ϵ) {−2πiδ(ϵ− ϵ0)} ⟨m|d̂|p⟩ ⟨p|d̂†|q⟩

+ f̃R(ϵ) {−2πiδ(ϵ− ϵ0)} ⟨m|d̂†|p⟩ ⟨p|d̂|q⟩
]
. (53)

Now we can obtain the current with this expression after solving the differential equation Eq. (42). The
current expectation value is determined with using the solution of Eq. (45)[2] :

IR(t) = eΓRfR(E)ρ00(t)− eΓRf̃R(E)ρ11(t). (54)
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8.7 Conclusions

We have obtained the master equation and the sequential current expression for a quantum dot (QD)
coupled with two reservoirs. The formula is applied to the problems of single-QD with single level. This
formalism can be extended to the system of multi-levels in a QD or multiple QDs and the system with
Coulomb interaction between the occupied electrons[3]. However, it should be stressed here that the Born-
Markov approximation applied to this simple model corresponds to the situation that the quantum dot is
weakly coupled to the reservoirs and there is rapid decoherencing process for the electron occupying the
quantum dot. Therefore, this formalism cannot account for the coherent transport through the system like
resonant tunneling process. I would like to touch this issue in the last part of this lecture.
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