物性理論IV 講義ノート 5月 20日 2024

Yasuhiro Tokura

May 18, 2024

5 Fluctuation of current

This is the lecture note on May 20, 2024 focusing on the statistics of the current in the large bias condition.

5.1 Poisson process

In a vacuum tube (and in some of solid-state devices) we get a non-steady electrical current, and it is generated by individual electrons, which are emitted from the cathode and are accelerated across a distance and deposit their charge one at a time on the anode. The electric current arising from such a process can be written

$$I(t) = \sum_{t_k} F(t - t_k),\tag{1}$$

where $F(t - t_k)$ represents the contribution to the current of an electron which arrives at time t_k . Each electron is therefore assumed to give rise to the same shaped pulse, but with an appropriate delay, as in Fig. 1.

Figure 1: Illustration of shot noise: identical electron pulses arrive at random times

A statistical aspect arises immediately we consider what kind of choice must be made for t_k . The simplest choice is that each electron arrives *independently* of the previous one — that is, the times t_k are randomly distributed with a certain average number per unit time in the range $(-\infty, \infty)$, or whatever time is under consideration.[1] We shall find that there is a close connection between shot noise and processes described by birth-death master equations. For, if we consider n, the number of electrons which have arrived up to a time t, to be a statistical quantity described by a probability P(n,t), with $\sum_{n=0}^{\infty} P(n,t) = 1$ for all t. The assumption that the electrons arrive independently is clearly the Markov assumption. Then, assuming the probability that an electron will arrive in the time interval between t and $t + \Delta t$

$$\operatorname{Prob}(n \to n+1, \text{in time } [t, t + \Delta t]), \tag{2}$$

is completely independent of t and n, its only dependence can be on Δt . By choosing an appropriate positive constant λ , we may write

$$\operatorname{Prob}(n \to n+1, \text{in time } \Delta t) = \lambda \Delta t, \tag{3}$$

so that for $n\geq 1$

$$P(n, t + \Delta t) = P(n, t)(1 - \lambda \Delta t) + P(n - 1, t)\lambda \Delta t,$$
(4)

and taking the limit $\Delta t \to 0$

$$\frac{\partial P(n,t)}{\partial t} = \lambda \left[P(n-1,t) - P(n,t) \right],\tag{5}$$

which is a pure birth process. For n = 0, the first term is missing. We write the moment generating function for P(n,t),

$$G(s,t) = \sum_{n=0}^{\infty} s^n P(n,t).$$
(6)

This function is used to derive the moment of n, for example,

$$\left\{ \frac{d}{ds} G(s,t) \right\} \Big|_{s=1} = \sum_{n=1}^{\infty} n s^{n-1} P(n,t) \Big|_{s=1} = \langle \hat{n} \rangle , \tag{7}$$

$$\left\{ \frac{d^2}{ds^2} G(s,t) \right\} \Big|_{s=1} = \sum_{n=2}^{\infty} n(n-1)s^{n-2}P(n,t) \Big|_{s=1} \\
= \left\{ \sum_{n=0}^{\infty} n^2 P(n,t) - P(1,t) \right\} - \left\{ \sum_{n=0}^{\infty} nP(n,t) - P(1,t) \right\} = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle . \tag{8}$$

By requiring at time t = 0 that no electrons had arrived, it is clear that P(0,0) is 1 and P(n,0) is zero for all $n \ge 1$, so that G(s,0) = 1. We find

$$\frac{\partial G(s,t)}{\partial t} = \sum_{n=0}^{\infty} s^n \frac{\partial P(n,t)}{\partial t} = \lambda \sum_{n=1}^{\infty} s^n P(n-1,t) - \lambda \sum_{n=0}^{\infty} s^n P(n,t)$$
$$= \lambda \sum_{n=0}^{\infty} s^{n+1} P(n,t) - \lambda \sum_{n=0}^{\infty} s^n P(n,t)$$
$$= \lambda (s-1) G(s,t), \tag{9}$$

so with using the initial condition that

$$G(s,t) = e^{\lambda(s-1)t}.$$
(10)

Expanding the solution Eq. (10) in powers of s,

$$G(s,t) = e^{-\lambda t} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\lambda s t\right)^n,$$
(11)

we find

$$P(n,t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!},$$
(12)

which is known as a *Poisson distribution*.

Using the moment generating function, we obtain several moments,

$$\langle \hat{n} \rangle = \left\{ \frac{d}{ds} G(s, t) \right\} \Big|_{s=1} = \lambda t, \tag{13}$$

$$\langle \hat{n}^2 \rangle = \left\{ \frac{d^2}{ds^2} G(s,t) \right\} \Big|_{s=1} + \langle \hat{n} \rangle = (\lambda t)^2 + \lambda t.$$
(14)

Hence, the variance of n is

$$\sigma_n^2 = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2 = \lambda t.$$
(15)

5.2 Fourier Analysis

The definition of the Fourier transform of a time-dependent random variable x(t) is defined by

$$X(i\omega) = \int_{-\infty}^{\infty} dt x(t) e^{-i\omega t},$$
(16)

and its inverse transformation is

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega X(i\omega) e^{i\omega t},$$
(17)

which is proved with the relation

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\omega(t-t')} = \delta(t-t'), \qquad (18)$$

where $\delta(t)$ is the Dirac's delta function. Since the random variable x(t) is a real number, we have the relation $X(i\omega) = X^*(-i\omega)$.

For any practical noise measurement, a measurement time interval T is finite. Even x(t) is not a statistically-stationary process, the Fourier transform exists for a following gated function $x_T(t) = x(t)$ for $|t| \leq T/2$ and $x_T(t) = 0$ otherwise. Therefore,¹

$$\int_{-\infty}^{\infty} dt x_T(t+\tau) x_T^*(t) = \int_{-\infty}^{\infty} dt x_T(t+\tau) \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega X_T^*(i\omega) e^{-i\omega t}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega X_T^*(i\omega) \int_{-\infty}^{\infty} dt x_T(t+\tau) e^{-i\omega t}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega |X_T(i\omega)|^2 e^{i\omega \tau}.$$
(19)

When $\tau = 0$, Eq.(19) reduces to

$$\int_{-\infty}^{\infty} dt \left| x_T(t) \right|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left| X_T(i\omega) \right|^2, \tag{20}$$

which is a linearly increasing function of T for the statistically-stationary process. Then the average power of $x_T(t)$, statistical average of the left hand side of Eq. (20) divided by T, should have a limiting value independent of T. By first taking the ensemble average, we can exchange the order of $\lim_{T\to 0} and \int_0^\infty d\omega$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} dt \left\langle \left| x_T(t) \right|^2 \right\rangle = \lim_{T \to \infty} \frac{1}{2\pi} \int_0^{\infty} d\omega \frac{2}{T} \left\langle \left| X_T(i\omega) \right|^2 \right\rangle \equiv \frac{1}{2\pi} \int_0^{\infty} d\omega S_x(\omega), \tag{21}$$

where we defined the *power spectral density*

$$S_x(\omega) = \lim_{T \to \infty} \frac{2\left\langle \left| X_T(i\omega) \right|^2 \right\rangle}{T}.$$
(22)

For $\tau \neq 0$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} dt \, \langle x_T(t+\tau) x_T(t) \rangle \equiv \phi_x(\tau) = \frac{1}{2\pi} \int_0^{\infty} d\omega S_x(\omega) \cos \omega \tau, \tag{23}$$

where $\phi_x(\tau)$ is the ensemble averaged *autocorrelation function*. The inverse transformation is

$$4\int_0^\infty d\tau \phi_x(\tau) \cos \omega \tau = \frac{2}{\pi} \int_0^\infty d\omega' S_x(\omega') \int_0^\infty d\tau \cos(\omega\tau) \cos(\omega'\tau).$$
(24)

¹Since $x_T(t)$ is real, complex conjugating does nothing.

Then τ integral is

$$\int_{0}^{\infty} d\tau \cos(\omega\tau) \cos(\omega'\tau) = \int_{0}^{\infty} d\tau \frac{1}{2} \left\{ \cos(\omega - \omega')\tau + \cos(\omega + \omega')\tau \right\}$$
$$= \frac{1}{4} \int_{-\infty}^{\infty} d\tau \left\{ e^{i(\omega - \omega')\tau} + e^{i(\omega + \omega')\tau} \right\}$$
$$= \frac{\pi}{2} \left\{ \delta(\omega - \omega') + \delta(\omega + \omega') \right\}.$$
(25)

Therefore,

$$4\int_0^\infty d\tau \phi_x(\tau) \cos \omega \tau = S_x(\omega), \tag{26}$$

which is the Wiener-Khintchine theorem indicating that $\phi_x(\tau)$ and $S_x(\omega)$ are the Fourier transform pairs.

Simple example of statistically-stationary noise x(t), with an exponentially decaying autocorrelation function, is

$$\phi_x(\tau) = \phi_x(0) \exp\left(-\frac{|\tau|}{\tau_1}\right),\tag{27}$$

where $\phi_x(0) = \langle x^2 \rangle$ and τ_1 is the relaxation time. Then the power spectral density is

$$S_x(\omega) = \frac{4\phi_x(0)\tau_1}{1+\omega^2\tau_1^2},$$
(28)

showing Lorentzian form with the cut-off frequency $\omega_c = 1/\tau_1$.

5.3 Random Pulse Train

A noisy output x(t) often consists of a very large number K of random and independent discrete pulses as was introduced in Sec. 5.1 where x(t) = I(t) and is represented by

$$x_T(t) = \sum_{k=1}^{K} a_k f(t - t_k),$$
(29)

where a_k and t_k are the k-th pulse amplitude and the time of pulse emission event, which are random variables. The function f(t) is the pulse-shape function, which is determined by inherent physical properties of the system. The Fourier transform is

$$X_T(i\omega) = F(i\omega) \sum_{k=1}^K a_k e^{-i\omega t_k},$$
(30)

where $F(i\omega) = \int_{-\infty}^{\infty} dt f(t) e^{-i\omega t}$ is the Fourier transform of f(t). Then the power spectral density is given by

$$S_x(\omega) = \lim_{T \to \infty} \frac{2\left\langle |X_T(i\omega)|^2 \right\rangle}{T}$$
$$= \lim_{T \to \infty} \frac{2\left|F(i\omega)\right|^2}{T} \sum_{k,p=1}^K \left\langle a_k a_p e^{-i\omega(t_k - t_p)} \right\rangle.$$
(31)

We then suppose $\nu = \lim_{T \to \infty} \frac{K}{T}$ as the average rate of pulse emission and assume that different pulse emission events are completely independent. We then split the sum of k and p,

$$S_{x}(\omega) = \lim_{T \to \infty} \frac{2|F(i\omega)|^{2}}{T} \left\{ \sum_{k=1}^{K} \langle a_{k}^{2} \rangle + \sum_{k \neq p} \langle a_{k} \rangle \langle a_{m} \rangle \langle e^{-i\omega t_{k}} \rangle \langle e^{i\omega t_{p}} \rangle \right\}$$
$$= 2|F(i\omega)|^{2} \lim_{T \to \infty} \left\{ \frac{\nu}{K} \sum_{k=1}^{K} \langle a_{k}^{2} \rangle + \frac{1}{T} \langle a \rangle^{2} K^{2} \left(\frac{2\sin \frac{\omega T}{2}}{\omega T} \right)^{2} \right\}$$
$$= 2\nu \langle a^{2} \rangle |F(i\omega)|^{2} + 2|F(0)|^{2} 2\pi\nu^{2} \langle a \rangle^{2} \delta(\omega)$$
$$= 2\nu \langle a^{2} \rangle |F(i\omega)|^{2} + 4\pi \left\{ \overline{\langle x(t) \rangle} \right\}^{2} \delta(\omega), \tag{32}$$

where we noticed

$$\sum_{k=1}^{K} \left\langle e^{-i\omega t_{k}} \right\rangle = K \left\langle e^{-i\omega t} \right\rangle = \frac{K}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} dt e^{-i\omega t}$$
$$= \frac{2K \sin \frac{\omega T}{2}}{\omega T}, \tag{33}$$

and $\langle a^2 \rangle = \lim_{T \to \infty} \frac{1}{K} \sum_k \langle a_k^2 \rangle$ with $\langle a \rangle = \langle a_k \rangle$. Moreover, we used the relation

$$\lim_{T \to \infty} \frac{2\sin^2(\frac{\omega T}{2})}{\omega^2 T} = \pi \delta(\omega), \tag{34}$$

and

$$\overline{\langle x(t)\rangle} = \frac{1}{T} \int_{-\infty}^{\infty} dt \, \langle x_T(t)\rangle = \nu \, \langle a\rangle \int_{-\infty}^{\infty} dt f(t) \tag{35}$$

is the mean of the noisy output x(t). Equation (32) is the Carson theorem.

5.4 Shot noise

One particular example of the random pulse train is the steady current I. The current is assumed as the random transfer (here we assumed uni-directional, for simplicity) of the individual charge (electron) q = -e where e is the unit charge. The pulse amplitudes a_k are the same = q and hence $\langle a \rangle = q$ and $\langle a^2 \rangle = q^2$. The pulse-shape may depend on the physical situations but we assume f(t) = 0 for t < 0 and decays rapidly for t > 0 with $\int_0^\infty dt f(t) = 1$.

The average of the output is the current

$$I \equiv \overline{\langle x(t) \rangle} = \nu q. \tag{36}$$

The power spectrum density for $\omega > 0$ is

$$S_{x}(\omega > 0) = 2\nu q^{2} |F(i\omega)|^{2}$$

= 2 |q| |I| |F(i\omega)|^{2} \rightarrow_{\omega \to 0} 2 |q| |I|. (37)

This type of noise is called *shot noise*, which is significant for non-equilibrium steady state. Important property of shot noise is that it provides the information of the charge unit that contributing the steady current by inspecting so-called *Fano factor*,

$$\lim_{\omega \to 0} \frac{S_x(\omega)}{|I|} = 2|q|.$$
(38)

In normal metals, |q| = e. For superconductors, |q| = 2e and for the fractional quantum Hall state at filling-factor $\nu = 1/3$ (the magnetic flux in unit of magnetic flux quantum per electron is three), the charge is a fraction of unit charge, |q| = e/3. We will see that this simple result should be modified when there are correlations between the electrons.

5.5 Conclusion

We had explained a simple model of the current as a series of random pulse trains, which can be considered as a Poisson distribution. Fourier transform of the averaged autocorrelation function is related to the power spectral density, which is Wiener-Khintchine theorem. Power spectral density of a random pulse train can be expressed as a sum of a term with zero frequency peak and a term with the Fourier transform of each pulse peak. Finally, as a simple example, shot noise of a unidirectional current made of elemental charge q, whose Fano factor gives the information of the charge.

References

[1] S. O. Rice, "Mathematical Analysis of Random Noise".