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5 Fluctuation of current

This is the lecture note on May 20, 2024 focusing on the statistics of the current in the large bias condition.

5.1 Poisson process

In a vacuum tube (and in some of solid-state devices) we get a non-steady electrical current, and it is
generated by individual electrons, which are emitted from the cathode and are accelerated across a distance
and deposit their charge one at a time on the anode. The electric current arising from such a process can
be written

I(t) =
∑
tk

F (t− tk), (1)

where F (t − tk) represents the contribution to the current of an electron which arrives at time tk. Each
electron is therefore assumed to give rise to the same shaped pulse, but with an appropriate delay, as in
Fig. 1.

Figure 1: Illustration of shot noise: identical electron pulses arrive at random times

A statistical aspect arises immediately we consider what kind of choice must be made for tk. The
simplest choice is that each electron arrives independently of the previous one — that is, the times tk are
randomly distributed with a certain average number per unit time in the range (−∞,∞), or whatever time
is under consideration.[1] We shall find that there is a close connection between shot noise and processes
described by birth-death master equations. For, if we consider n, the number of electrons which have arrived
up to a time t, to be a statistical quantity described by a probability P (n, t), with

∑∞
n=0 P (n, t) = 1 for

all t. The assumption that the electrons arrive independently is clearly the Markov assumption. Then,
assuming the probability that an electron will arrive in the time interval between t and t+∆t

Prob(n → n+ 1, in time [t, t+∆t]), (2)

is completely independent of t and n, its only dependence can be on ∆t. By choosing an appropriate
positive constant λ, we may write

Prob(n → n+ 1, in time ∆t) = λ∆t, (3)
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so that for n ≥ 1

P (n, t+∆t) = P (n, t)(1− λ∆t) + P (n− 1, t)λ∆t, (4)

and taking the limit ∆t → 0

∂P (n, t)

∂t
= λ [P (n− 1, t)− P (n, t)] , (5)

which is a pure birth process. For n = 0, the first term is missing. We write the moment generating
function for P (n, t),

G(s, t) =

∞∑
n=0

snP (n, t). (6)

This function is used to derive the moment of n, for example,{
d

ds
G(s, t)

}∣∣∣∣
s=1

=

∞∑
n=1

nsn−1P (n, t)

∣∣∣∣∣
s=1

= ⟨n̂⟩ , (7)

{
d2

ds2
G(s, t)

}∣∣∣∣
s=1

=

∞∑
n=2

n(n− 1)sn−2P (n, t)

∣∣∣∣∣
s=1

=

{ ∞∑
n=0

n2P (n, t)− P (1, t)

}
−

{ ∞∑
n=0

nP (n, t)− P (1, t)

}
= ⟨n̂2⟩ − ⟨n̂⟩ . (8)

By requiring at time t = 0 that no electrons had arrived, it is clear that P (0, 0) is 1 and P (n, 0) is zero
for all n ≥ 1, so that G(s, 0) = 1. We find

∂G(s, t)

∂t
=

∞∑
n=0

sn
∂P (n, t)

∂t
= λ

∞∑
n=1

snP (n− 1, t)− λ

∞∑
n=0

snP (n, t)

= λ

∞∑
n=0

sn+1P (n, t)− λ

∞∑
n=0

snP (n, t)

= λ(s− 1)G(s, t), (9)

so with using the initial condition that

G(s, t) = eλ(s−1)t. (10)

Expanding the solution Eq. (10) in powers of s,

G(s, t) = e−λt
∞∑

n=0

1

n!
(λst)

n
, (11)

we find

P (n, t) = e−λt (λt)
n

n!
, (12)

which is known as a Poisson distribution.
Using the moment generating function, we obtain several moments,

⟨n̂⟩ =
{

d

ds
G(s, t)

}∣∣∣∣
s=1

= λt, (13)

⟨n̂2⟩ =
{

d2

ds2
G(s, t)

}∣∣∣∣
s=1

+ ⟨n̂⟩ = (λt)2 + λt. (14)

Hence, the variance of n is

σ2
n = ⟨n̂2⟩ − ⟨n̂⟩2 = λt. (15)
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5.2 Fourier Analysis

The definition of the Fourier transform of a time-dependent random variable x(t) is defined by

X(iω) =

∫ ∞

−∞
dtx(t)e−iωt, (16)

and its inverse transformation is

x(t) =
1

2π

∫ ∞

−∞
dωX(iω)eiωt, (17)

which is proved with the relation

1

2π

∫ ∞

−∞
dωeiω(t−t′) = δ(t− t′), (18)

where δ(t) is the Dirac’s delta function. Since the random variable x(t) is a real number, we have the
relation X(iω) = X∗(−iω).

For any practical noise measurement, a measurement time interval T is finite. Even x(t) is not a
statistically-stationary process, the Fourier transform exists for a following gated function xT (t) = x(t) for
|t| ≤ T/2 and xT (t) = 0 otherwise. Therefore,1∫ ∞

−∞
dtxT (t+ τ)x∗

T (t) =

∫ ∞

−∞
dtxT (t+ τ)

1

2π

∫ ∞

−∞
dωX∗

T (iω)e
−iωt

=
1

2π

∫ ∞

−∞
dωX∗

T (iω)

∫ ∞

−∞
dtxT (t+ τ)e−iωt

=
1

2π

∫ ∞

−∞
dω |XT (iω)|2 eiωτ . (19)

When τ = 0, Eq.(19) reduces to ∫ ∞

−∞
dt |xT (t)|2 =

1

2π

∫ ∞

−∞
dω |XT (iω)|2 , (20)

which is a linearly increasing function of T for the statistically-stationary process. Then the average power
of xT (t), statistical average of the left hand side of Eq. (20) divided by T , should have a limiting value
independent of T . By first taking the ensemble average, we can exchange the order of limT→0 and

∫∞
0

dω,

lim
T→∞

1

T

∫ ∞

−∞
dt
〈
|xT (t)|2

〉
= lim

T→∞

1

2π

∫ ∞

0

dω
2

T

〈
|XT (iω)|2

〉
≡ 1

2π

∫ ∞

0

dωSx(ω), (21)

where we defined the power spectral density

Sx(ω) = lim
T→∞

2
〈
|XT (iω)|2

〉
T

. (22)

For τ ̸= 0,

lim
T→∞

1

T

∫ ∞

−∞
dt ⟨xT (t+ τ)xT (t)⟩ ≡ ϕx(τ) =

1

2π

∫ ∞

0

dωSx(ω) cosωτ, (23)

where ϕx(τ) is the ensemble averaged autocorrelation function. The inverse transformation is

4

∫ ∞

0

dτϕx(τ) cosωτ =
2

π

∫ ∞

0

dω′Sx(ω
′)

∫ ∞

0

dτ cos(ωτ) cos(ω′τ). (24)

1Since xT (t) is real, complex conjugating does nothing.
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Then τ integral is ∫ ∞

0

dτ cos(ωτ) cos(ω′τ) =

∫ ∞

0

dτ
1

2
{cos(ω − ω′)τ + cos(ω + ω′)τ}

=
1

4

∫ ∞

−∞
dτ
{
ei(ω−ω′)τ + ei(ω+ω′)τ

}
=

π

2
{δ(ω − ω′) + δ(ω + ω′)} . (25)

Therefore,

4

∫ ∞

0

dτϕx(τ) cosωτ = Sx(ω), (26)

which is the Wiener-Khintchine theorem indicating that ϕx(τ) and Sx(ω) are the Fourier transform pairs.
Simple example of statistically-stationary noise x(t), with an exponentially decaying autocorrelation

function, is

ϕx(τ) = ϕx(0) exp

(
−|τ |

τ1

)
, (27)

where ϕx(0) =
〈
x2
〉
and τ1 is the relaxation time. Then the power spectral density is

Sx(ω) =
4ϕx(0)τ1
1 + ω2τ21

, (28)

showing Lorentzian form with the cut-off frequency ωc = 1/τ1.

5.3 Random Pulse Train

A noisy output x(t) often consists of a very large number K of random and independent discrete pulses as
was introduced in Sec. 5.1 where x(t) = I(t) and is represented by

xT (t) =

K∑
k=1

akf(t− tk), (29)

where ak and tk are the k-th pulse amplitude and the time of pulse emission event, which are random
variables. The function f(t) is the pulse-shape function, which is determined by inherent physical properties
of the system. The Fourier transform is

XT (iω) = F (iω)

K∑
k=1

ake
−iωtk , (30)

where F (iω) =
∫∞
−∞ dtf(t)e−iωt is the Fourier transform of f(t). Then the power spectral density is given

by

Sx(ω) = lim
T→∞

2
〈
|XT (iω)|2

〉
T

= lim
T→∞

2 |F (iω)|2

T

K∑
k,p=1

〈
akape

−iω(tk−tp)
〉
. (31)
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We then suppose ν = limT→∞
K
T as the average rate of pulse emission and assume that different pulse

emission events are completely independent. We then split the sum of k and p,

Sx(ω) = lim
T→∞

2 |F (iω)|2

T


K∑

k=1

〈
a2k
〉
+
∑
k ̸=p

⟨ak⟩ ⟨am⟩
〈
e−iωtk

〉 〈
eiωtp

〉
= 2 |F (iω)|2 lim

T→∞

 ν

K

K∑
k=1

〈
a2k
〉
+

1

T
⟨a⟩2 K2

(
2 sin ωT

2

ωT

)2


= 2ν
〈
a2
〉
|F (iω)|2 + 2 |F (0)|2 2πν2 ⟨a⟩2 δ(ω)

= 2ν
〈
a2
〉
|F (iω)|2 + 4π

{
⟨x(t)⟩

}2

δ(ω), (32)

where we noticed

K∑
k=1

〈
e−iωtk

〉
= K ⟨e−iωt⟩ = K

T

∫ T
2

−T
2

dte−iωt

=
2K sin ωT

2

ωT
, (33)

and
〈
a2
〉
= limT→∞

1
K

∑
k

〈
a2k
〉
with ⟨a⟩ = ⟨ak⟩. Moreover, we used the relation

lim
T→∞

2 sin2(ωT
2 )

ω2T
= πδ(ω), (34)

and

⟨x(t)⟩ = 1

T

∫ ∞

−∞
dt ⟨xT (t)⟩ = ν ⟨a⟩

∫ ∞

−∞
dtf(t) (35)

is the mean of the noisy output x(t). Equation (32) is the Carson theorem.

5.4 Shot noise

One particular example of the random pulse train is the steady current I. The current is assumed as
the random transfer (here we assumed uni-directional, for simplicity) of the individual charge (electron)
q = −e where e is the unit charge. The pulse amplitudes ak are the same = q and hence ⟨a⟩ = q and〈
a2
〉
= q2. The pulse-shape may depend on the physical situations but we assume f(t) = 0 for t < 0 and

decays rapidly for t > 0 with
∫∞
0

dtf(t) = 1.
The average of the output is the current

I ≡ ⟨x(t)⟩ = νq. (36)

The power spectrum density for ω > 0 is

Sx(ω > 0) = 2νq2 |F (iω)|2

= 2 |q| |I| |F (iω)|2 →ω→0 2 |q| |I| . (37)

This type of noise is called shot noise, which is significant for non-equilibrium steady state. Important
property of shot noise is that it provides the information of the charge unit that contributing the steady
current by inspecting so-called Fano factor,

lim
ω→0

Sx(ω)

|I|
= 2 |q| . (38)

In normal metals, |q| = e. For superconductors, |q| = 2e and for the fractional quantum Hall state at
filling-factor ν = 1/3 (the magnetic flux in unit of magnetic flux quantum per electron is three), the charge
is a fraction of unit charge, |q| = e/3. We will see that this simple result should be modified when there
are correlations between the electrons.
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5.5 Conclusion

We had explained a simple model of the current as a series of random pulse trains, which can be considered
as a Poisson distribution. Fourier transform of the averaged autocorrelation function is related to the power
spectral density, which is Wiener-Khintchine theorem. Power spectral density of a random pulse train can
be expressed as a sum of a term with zero frequency peak and a term with the Fourier transform of each
pulse peak. Finally, as a simple example, shot noise of a unidirectional current made of elemental charge
q, whose Fano factor gives the information of the charge.
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