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4 Master equation II

This is the lecture note on May 13, 2024 focusing on the dynamics of a single level quantum dot coupled
to two particle reservoirs in local equilibria.

4.1 Extension to the particle reservoir

In the previous lecture, we considered a system with several internal states with different energies, which
are made transitions by the influence of the environment. Namely, the environment can feed (extract)
energy to (from) the system. Today, we consider the situation that the environment is also a particle
reservoir, that can feed (extract) particles to (from) the system.

First, we consider a focused system with a single level of energy ϵ0 (> 0) coupled to a single reservoir.
We disregard other internal degrees of freedom like spin degeneracy. The system can exchange particles
with a reservoir which is in the thermal equilibrium at temperature T and the chemical potential µ. In
the following, we consider two distinct states of the system, namely, the empty state with particle number
N = 0 and its energy E(0) = 0 and the filled state with particle number N = 1 and its energy E(1) = ϵ0
The transition rate γ+ represents the process from empty to filled, and the transition rate γ− represents
the process from filled to empty. In other words, γ+ is the process of one particle fed from the reservoir
and γ− is the process of one particle escaping to the reservoir.

The detailed balance condition is now stated as

γ+
γ−

= e−β(ϵ0−µ), (1)

where β = 1/(kBT ). This can be understood since the transition rates are related to that of the Gibbs

distribution, 1
Ξe

−β(E(N)−µN), and the steady state after a long time is the grand-canonical distribution of
temperature T and chemical potential µ.

Figure 1: Model of a quantum dot coupled with two reservoirs in local equilibrium.
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4.2 A system coupled to two reservoirs

We consider two reservoirs L and R, which are in local thermal equilibria with temperature TL/R and
chemical potential µL/R as shown in Fig. 1 Accordingly, we define two transition rates, γL± and γR±.
We will study the probability distribution of the empty, W0(t), and filled W1(t) states, respectively. The
conservation of the probability requires

W0(t) +W1(t) = 1, for ∀t. (2)

The master equation reads

dW1(t)

dt
= −γ−W1(t) + γ+W0(t), (3)

where we have defined total tunneling-in rate γ+ ≡ γL++γR+ and total tunneling-out rate γ− ≡ γL−+γR−.
Let us move to Dirac notation, where

|W (t)⟩ =
(

W0(t)
W1(t)

)
, (4)

and the master equation becomes

d

dt
|W (t)⟩ = M̂ |W (t)⟩ . (5)

The transition matrix is

M̂ =

(
−γ+ γ−
γ+ −γ−

)
. (6)

The eigenvalues of this matrix is 0 and −(γ+ + γ−). The eigenfunction corresponding to the steady state,
|0⟩ is determined by M̂ |0⟩ = 0 and normalization condition ⟨0|0⟩ = 1 with ⟨0| = (1, 1), which is

|0⟩ = 1

γ

(
γ−
γ+

)
, (7)

where γ ≡ γ+ + γ−.

4.2.1 Global equilibrium

Let us study the obtained result of the steady state more in detail. Here we first consider the situation
that TL = TR = T and µL = µR = µ, which means that the total system is in global equilibrium, hence
the detail balance condition suggests

γ+
γ−

= e−β(ϵ0−µ). (8)

Hence,

γ = γ+ + γ− =
{
e−β(ϵ0−µ) + 1

}
γ−, (9)

and we have

γ− =
γ

1 + e−β(ϵ0−µ)
= γ(1− f(ϵ0)), (10)

where we have introduced the Fermi distribution function

f(ϵ0) =
1

eβ(ϵ0−µ) + 1
. (11)

And

γ+ = e−β(ϵ0−µ)γ− = γf(ϵ0). (12)
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Hence, the steady state reduces

|0⟩ = |Wst⟩ =
1

γ

(
γ(1− f(ϵ0))

γf(ϵ0)

)
=

(
1− f(ϵ0)
f(ϵ0)

)
. (13)

The expectation value of the particle number in the system is

⟨N̂⟩ =
1∑

N=0

NWN,st = W1,st = f(ϵ0), (14)

which is expected from the global equilibrium condition. By the way, here it appears “Fermi distribution
function”. Why is the Fermi statistics ? This is related to our initial assumption that the system has
only two distinct states, “empty” and “filled with one particle”, but no more than one particles. This is
equivalent to Pauli exclusion principle, which is the property of Fermions.

4.2.2 Bose particles

Then let us discuss what will happen when the particles obey Boson statistics. Now the probability
distribution functions of distinct states of the system are W0(t),W1(t),W2(t), . . . and are represented in a
ket vector,

|W (t)⟩ =


W0(t)
W1(t)
W2(t)

...

 . (15)

Master equation is d
dt |W ⟩ = M̂ |W ⟩ with the transition matrix

M̂ =


−γ+ γ− 0 · · ·
γ+ −γ− − γ+ γ− · · ·
0 γ+ −γ− − γ+ · · ·
...

...
...

. . .

 . (16)

The steady state eigenvector corresponding the eigenvalue 0 is solved by an ansatz,

|0⟩ = C


1

e−λ

e−2λ

...

 , (17)

with non-negative parameter λ and a normalization constant C. From the condition, M̂ |0⟩ = 0, we have
the relation for n = 0,

−Cγ+ + Ce−λγ− = 0, (18)

and n ≥ 1,

Ce−(n−1)λγ+ − Ce−nλ(γ− + γ+) + Ce−(n+1)λγ− = 0. (19)

By introducing x ≡ eλ, this is equivalent to

γ+x
2 − (γ+ + γ−)x+ γ− = 0, (20)

which has a solution

x =
γ+ + γ− ± |γ+ − γ−|

2γ+
= 1 or

γ−
γ+

(21)
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The first result (x = 0) is not compatible with Eq. (18). For the second result, from the detailed balance
condition,

x = eλ =
γ−
γ+

= eβ(ϵ0−µ). (22)

It is clear that if λ is negative (x < 1), the norm 1 = ⟨0|0⟩ = C
∑∞

n=0 e
−nλ diverges and the results cannot

be physically acceptable. This situation is corresponding to γ− < γ+ with ϵ0 < µ, when the energy level of
the quantum dot is below the chemical potential of the reservoir(s) and to establish thermal equilibrium,
particles keep flowing into the quantum dot forever and the steady state is never achieved. Next, we study
the case γ+ < γ− with ϵ0 > µ, where the steady state is normalizable 1 = ⟨0|0⟩ = C

∑∞
n=0 e

−nλ = C
1−e−λ

and hence C = 1 − e−λ. Now, we evaluate the expectation value of the total number of particles in the
system,

⟨N̂⟩ =
∞∑

n=0

nWn,st

= (1− e−λ)
{
e−λ + 2e−2λ + 3e−3λ + · · ·

}
=

e−λ

1− e−λ
=

1

eλ − 1
. (23)

Hence the expectation value of the particles becomes Boson distribution function as it should be,

⟨N̂⟩ = 1

eβ(ϵ0−µ) − 1
. (24)

4.2.3 Local equilibria and global non-equilibrium

Let us go back to the Fermion system. We assume general non-equilibrium situations, µL ̸= µR and
TL ̸= TR. We assume local detailed balance conditions are satisfied:

γL+

γL−
= e−βL(ϵ0−µL), (25)

γR+

γR−
= e−βR(ϵ0−µR), (26)

where βL/R = 1/(kBTL/R). With defining γL = γL+ + γL− and γR = γR+ + γR−, we can fix four rates
γL/R,± using Fermi distribution functions (ν = L/R)

fν(ϵ0) =
1

eβν(ϵ0−µν) + 1
. (27)

The total tunneling-in and tunneling-out rates are

γ+ = γLfL(ϵ0) + γRfR(ϵ0), (28)

γ− = γL(1− fL(ϵ0)) + γR(1− fR(ϵ0)), (29)

respectively. Then the steady state (not in equilibrium, but non-equilibrium steady state; NESS) is

|Wst⟩ = |0⟩ = 1

γ

(
γ−
γ+

)
, (30)

where γ ≡ γ+ + γ− = γL + γR. In particular, the probability that the system is filled in the steady state is

Wst,1 =
γLfL(ϵ0) + γRfR(ϵ0)

γL + γR
. (31)

In Fig. 2, we plot Wst,1 ≡ ⟨N̂⟩ as a function of ϵ0 for a set of fixed parameters.
Exercise III: Plot the probability Wst,1 as a function of ϵ0/γ when γL = γR ≡ γ, µL = µR = 0, and

βL = 0.2/γ and βR = 5/γ. Then provide physical explanation of the obtained result.
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Figure 2: The probability that the system is filled as a function of the level energy for γL = γR ≡ γ,
µL = γ/2, µR = −γ/2 and ℏ = 1. Left: Low temperature behavior: β = 20/γ, Right: High temperature
behavior: β = 5/γ.

4.2.4 Current

Since the total system is not in equilibrium, there can be some flow of particles. From the system to the
right reservoir, the particle flux (current) is defined by

IR(t) = W1(t)γR− −W0(t)γR+, (32)

and the flux from the system to the left reservoir is

IL(t) = W1(t)γL− −W0(t)γL+. (33)

The total flux from the system to the environment is

IR(t) + IL(t) = W1(t)γ− −W0(t)γ+. (34)

This is related to the change of the occupation of the system

d

dt
⟨N̂⟩ = d

dt
W1(t) = −γ−W1(t) + γ+W0(t)

= −IR(t)− IL(t). (35)

This is understood as the continuity relation,

d

dt
ρ(t) + div⃗j(t) = 0, (36)

where particle density is ρ(t) = ⟨N̂⟩ /(∆x)3 and the current density jν(t) = Iν(t)/(∆x)2 where ∆x is some

certain length characterizing the size of the system. We used the relation div⃗j(t) = djx(t)
dx = jR(t)−{−jL(t)}

∆x =
1

(∆x)3 {IR(t) + IL(t)}.
In the steady state condition,

d ⟨N̂⟩
dt

=
dWst,1

dt
= 0, (37)
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and

IstR = −IstL = Wst,1γR− −Wst,0γR+

=
γ+
γ
γR(1− fR(ϵ0))−

γ−
γ

γRfR(ϵ0)

=
1

γ
[{γLfL(ϵ0) + γRfR(ϵ0)} γR(1− fR(ϵ0))− {γL(1− fL(ϵ0)) + γR(1− fR(ϵ0))} γRfR(ϵ0)]

=
γLγR
γ

{fL(ϵ0)(1− fR(ϵ0))− (1− fL(ϵ0))fR(ϵ0)}

=
γLγR

γL + γR
{fL(ϵ0)− fR(ϵ0)} . (38)

The ϵ0 dependence of the current in the steady state is depicted in Fig. 3. As is evident from the results,
finite steady current flows when the energy level locates in the energy window µR < ϵ0 < µL at lower
temperatures.

Figure 3: Steady current as a function of the level energy for γL = γR ≡ γ, µL = γ/2, µR = −γ/2 and
ℏ = 1. Left: Low temperature behavior: β = 20/γ, Right: High temperature behavior: β = 5/γ.

Exercise IV: Plot steady state current Ist/γ as a function of ϵ0/γ when γL = γR ≡ γ, µL = µR = 0,
and βL = 0.2/γ and βR = 5/γ. Then provide physical explanation of the obtained result.

4.3 Conclusion

We have extended the master equation for the system with exchanging particles with fermionic or bosonic
reservoirs. When the system is coupled to two reservoirs with global non-equilibrium situation, system
can achieve a steady state accompanying a steady flow of particles. It is important to understand that the
current discussed today is the average current. In fact, from a microscopic viewpoint, the current is made
of the flow of many particles and is in fact fluctuating in time. In the next lecture, we will consider the
fluctuation of the current, or equivalently, the current noise.
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