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2 Fokker-Planck equation

This is the lecture note on Apr. 22, 2024 focusing on the random walks and Fokker-Planck equation.

2.1 Discrete time and discrete site random walk

We consider a particle on an infinite discrete chain with lattice constant ∆x and the position of the site
is represented as n∆x, (nmin < n < nmax). The time is also discretized with a finite period ∆t and we
discuss the position of the particle at discrete times k∆t, (k = 0, 1, 2, · · · ). The position of the particle at
time k∆t is defined by Xk. We assume the particle start from X0 = 0 at t = 0.

Basic assumption is as follows: the displacement at k-th step (k ≥ 1), ∆Xk ≡ Xk −Xk−1, is a random
variable taking +∆x with a probability p and −∆x with a probability q while the relation p + q = 1
holds. If the particle were at the edge of the system namely Xk = nmin∆x or nmax∆x, the situation
should be different and is considered in the last section. For the time being, we assume nmin = −∞ and
nmax = ∞. This is called Markov process, where ∆Xk are random variables constituting infinite set
{∆X1,∆X2,∆X3, · · · } are independent and identically distributed (i.i.d.). The position of the particle
after k (≥ 1) steps is

Xk ≡
k∑

j=1

∆Xj , (1)

where {X1, X2, · · · } is also a set of random variables. This type of dynamics is called discrete time and
discrete site random walk.

We evaluate the expectation value and the variance of ∆Xk:

⟨∆Xk⟩ = p(+∆x) + q(−∆x) = (p− q)∆x, (2)

⟨(∆Xk)
2⟩ = p(+∆x)2 + q(−∆x)2 = (∆x)2,

⟨δ(∆Xk)
2⟩ = ⟨(∆Xi)

2⟩ − ⟨∆Xi⟩2 = (∆x)2 − (p− q)2(∆x)2 = 4pq(∆x)2. (3)

The “fluctuation” of the variable ∆Xk is σp[∆Xk] ≡
√

⟨δ(∆Xk)2⟩ = 2
√
pq∆x, which takes a maximum

value when p = q = 1/2 and is zero when p = 0 or p = 1. While the expectation value ⟨∆Xk⟩ = (p− q)∆x
is nonzero only for p ̸= q.

Similarly, we evaluate the expectation value and variance of Xk:

⟨Xk⟩ = ⟨
k∑

j=1

∆Xj⟩ =
k∑

j=1

⟨∆Xj⟩ = k(p− q)∆x, (4)

⟨(Xk)
2⟩ =

k∑
j=1

⟨(∆Xj)
2⟩+

k∑
j ̸=ℓ

⟨∆Xj⟩ ⟨∆Xℓ⟩ ,

⟨δ(Xk)
2⟩ = ⟨(Xk)

2⟩ − ⟨Xk⟩2 = k(∆x)2 + (k(k − 1)− k2)((p− q)∆x)2 = 4pqk(∆x)2. (5)

When p > q, the average position of the particle moves to the right with a constant “speed” ⟨Xk⟩−⟨Xk−1⟩
k∆t−(k−1)∆t =

(p−q)∆x/∆t. Similarly for p < q, the average position moves to the left with a constant speed (q−p)∆x/∆t.
The “fluctuation” of the variable Xi is σp[Xk] ≡

√
⟨δ(∆Xk)2⟩ = 2

√
pqk∆x. Therefore, when p ̸= q, the

ratio σp[Xk]/ ⟨Xk⟩ = 2
p−q

√
pq
k becomes smaller for larger k, which is the law of larger number.
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2.2 Probability distribution function

We will consider the probability distribution of the particle position after k (≥ 0) steps, W (x, k), with
Xk = x. This probability distribution function needs to satisfy following relations:

W (x, k) ≥ 0,

nmax∑
n=nmin

W (n∆x, k) = 1 ∀k. (6)

Obviously, the initial condition of the distribution function is

W (x, 0) =

{
1, x = 0
0, x ̸= 0

(7)

Let us consider the case that there are r steps to the right and k− r steps to the left within the i steps
(0 ≤ r ≤ k). The total displacement is x = r(+∆x) + (k − r)(−∆x) = (2r − k)∆x, which results in

r =
1

2

(
k +

x

∆x

)
, k − r =

1

2

(
k − x

∆x

)
. (8)

Clearly, the position of the particle after k steps is in the range −k∆x ≤ x ≤ k∆x.
The probability of r steps to the right and k− r steps to the left is prqi−r, whose number of occurences

is given by a combination kCr = k!/(r!(k − r)!). Therefore, the probability distribution function is

W (x, k) = kCrp
rqk−r. (9)

We would like to consider the relation between the function W (x, k − 1) and W (x, k). The particle
locating at x at i-th step was resulted from two possibilities. One is that the particle was at x − ∆x at
k − 1-th step and jump to the right and the other is that the particle was at x+∆x at k − 1-th step and
jump to the left. Hence, the probability distribution at k-th step is

W (x, k) = pW (x−∆x, k − 1) + qW (x+∆x, k − 1). (10)

This difference equation can be solved for k ≥ 1 with the initial condition Eq. (7).

2.3 Continuum limit and Fokker-Planck equation

In order to make a connection with the Brownian motion discussed in the previous lecture, we take the
continuum limit, ∆t → 0 and ∆t → 0 and consider the position of the particle at time t = k∆t, X(t).
Using the results of Eq. (4), we have

⟨X(t)⟩ = ⟨Xk⟩ =
t

∆t
(p− q)∆x, (11)

⟨δ(X(t))2⟩ = t

∆t
4pq(∆x)2. (12)

We note that both of the expectation value and its variance linearly grow with time t. First, we require
the variance is finite and the ratio appearing in it is

(∆x)2

∆t
= finite ≡ 2D, (13)

where we introduced a positive constant D. Moreover, for p ̸= q, the expectation value ⟨X(t)⟩ is also finite,
namely, p− q ∝ ∆x. In particular, we choose the proportional constant as follows:

p− q = − v

2D
∆x, (14)

introducing a new constant v, which could be a positive or negative value. From the relation p+ q = 1, we
have

p =
1

2
− v

4D
∆x, q =

1

2
+

v

4D
∆x. (15)
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Using these assumptions, we have the expectation value and variance of the position of the particle at time
t as

⟨X(t)⟩ = t

∆t

−v

2D
(∆x)2 = −vt, (16)

⟨δ(X(t))2⟩ = t

∆t
4

{
1

4
−
( v

4D
∆x

)2
}
(∆x)2 → 2Dt, (17)

where in the last we took the limit ∆x → 0. The first relation shows that the average velocity of the
particle is −v. Assuming we have applied a constant external force to the particle in a fluid Fext = −f ,
the total force to the field (in average) is Ftotal = −f + ζv, where ζ is the friction coefficient of the fluid.
We expect the particle acquire a steady state of a velocity −v, that satisfies f = ζv.

The difference equation (10) is rewritten as

W (x, t) = pW (x−∆x, t−∆t) + qW (x+∆x, t−∆t), (18)

and the initial condition reads W (x, 0) = δ(x), where δ(x) is Dirac’s delft function. Assuming the function
W (x, t) in the continuum limit is differentiable with x and t, by Taylor expansion

W (x±∆x, t−∆t) ∼ W (x, t)− ∂W (x, t)

∂t
∆t± ∂W (x, t)

∂x
∆x+

1

2

∂2W (x, t)

∂x2
(∆x)2, (19)

and hence the right-hand-side of Eq. (18) becomes

r.h.s. = W (x, t)− ∂W (x, t)

∂t
∆t+ (q − p)

∂W (x, t)

∂x
∆x+

1

2

∂2W (x, t)

∂x2
(∆x)2. (20)

Hence, after some manipulations we have

∂W (x, t)

∂t
= v

∂W (x, t)

∂x
+D

∂2W (x, t)

∂x2
, (21)

which is a special example of the Fokker-Planck equation. When v = 0, this reduces to the diffusion
equation, which was discussed in the previous lecture. Therefore, the parameter D can be identified with
the diffusion constant of the particle. General solution of Eq. (21) for an infinite system is

W (x, t) =
1√
4πDt

e−
(x+vt)2

4Dt , (22)

(Check this !) which is a Gaussian distribution centered at x = −vt and the variance 2Dt. From this
results, the system will never achieve a steady distribution and hence we could not expect an equilibrium.

2.4 Fokker-Planck equation in semi-infinite system

Let us consider a semi-infinite system where the particle can only move in the range 0 ≤ x (nmin = 0 and
nmax = ∞). In such system, an equilibrium state can be established from any initial conditions. Since the
probability distribution does not change with time at equilibrium, W (x, t) → Weq(x), we have

0 = v
∂Weq(x)

∂x
+D

∂2Weq(x)

∂x2
, (23)

which has a unique solution

Weq(x) = W0e
− v

D x, (24)

where a positive constant W0 is determined by the normalization condition
∫∞
0

dxWeq(x) = 1. Figure 1
shows the schematics of this distribution.

As discussed above, the velocity v is resulted from the external force −f applying to the particle. The
potential energy of this system is given by

Ep = fx. (25)
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The expectation value of the potential energy is

⟨Ep⟩ = ⟨fx⟩ = f

∫ ∞

0

dx xWeq(x) = f
D

v
= Dζ, (26)

and the average kinetic energy is zero (since the average position of the particle does not move). Using the
equipartition theorem, the total energy of the particle is equal to kBT , and hence we have once again the
relation

D =
kBT

ζ
. (27)

Figure 1: Equilibrium probability distribution Weq(x) under an external force −f . This could be the
distribution of the density of dusts (PM2.5, for example) as a function of altitude, assuming that the
atmosphere is in thermal equilibrium with a constant temperature T .

2.5 Conclusions

We have discussed the random walk in discrete time and discrete sites and by taking the continuum limit,
we obtain Fokker-Planck equation for the probability distribution function. By solving the equation under
a finite force in a semi-infinite system, we obtain an equilibrium distribution and confirm the relation
between the diffusion constant and the friction constant.
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